首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High-resolution spectroscopic searches for the starlight reflected from close-in extrasolar giant planets have the capability of determining the optical albedo spectra and scattering properties of these objects. When combined with radial velocity measurements they also yield the true mass of the planet. To date, only two such planets have been targeted for reflected-light signals, yielding upper limits on the optical albedos of the planets. Here we examine the prospects for future searches of this kind. We present Monte Carlo estimates of prior probability distributions for the orbital velocity amplitudes and planet/star flux ratios of six bright stars known to harbour giant planets in orbits with periods of less than 5 d. Using these estimates, we assess the viability of these targets for future reflected-light searches using 4- and 8-m class telescopes.  相似文献   

2.
A full understanding of the properties of substellar objects is one of the major challenges facing astrophysics. Since their discovery in 1995, hundreds of brown dwarfs and extrasolar planets have been discovered. While these discoveries have enabled important comparisons with theory, observational progress has been much more rapid than the theoretical understanding of cool atmospheres. The reliable determination of mass, abundances, gravities and temperatures is not yet possible. The key problem is that substellar objects emit their observable radiation in the infrared region of the spectrum where our knowledge of atomic, molecular and line broadening data is poor. Here we report on the status of our PoSSO (Physics of SubStellar Objects) project. In order to understand brown dwarfs and extrasolar planets increasing more like those in our solar system, we are studying a wide range of processes. Here we give an update on the project and sketch an outline of atoms, molecules and processes requiring study. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
A rich population of low‐mass planets orbiting solar‐type stars on tight orbits has been detected by Doppler spectroscopy. These planets have masses in the domain of super‐Earths and Neptune‐type objects, and periods less than 100 days. In numerous cases these planets are part of very compact multiplanetary systems. Up to seven planets have been discovered orbiting one single star. These low‐mass planets have been detected by the HARPS spectrograph around 30 % of solar‐type stars. This very high occurrence rate has been recently confirmed by the results of the Kepler planetary transit space mission. The large number of planets of this kind allows us to attempt a first characterization of their statistical properties, which in turn represent constraints to understand the formation process of these systems. The achieved progress in the sensitivity and stability of spectrographs have already led to the discovery of planets with masses as small as 1.5 M (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Infrared spectra from the Spitzer Space Telescope ( SSC ) of many debris discs are well fit with a single blackbody temperature which suggest clearings within the disc. We assume that clearings are caused by orbital instability in multiple planet systems with similar configurations to our own. These planets remove dust-generating planetesimal belts as well as dust generated by the outer disc that is scattered or drifts into the clearing. From numerical integrations, we estimate a minimum planet spacing required for orbital instability (and so planetesimal and dust removal) as a function of system age and planet mass. We estimate that a 108 yr old debris disc with a dust disc edge at a radius of 50 au hosted by an A star must contain approximately five Neptune mass planets between the clearing radius and the iceline in order to remove all primordial objects within it. We infer that known debris disc systems contain at least a fifth of a Jupiter mass in massive planets. The number of planets and spacing required is insensitive to the assumed planet mass. However, an order of magnitude higher total mass in planets could reside in these systems if the planets are more massive.  相似文献   

5.
日冕是太阳大气活动的关键区域,是日地空间天气的源头.受观测限制,对日冕低层大气等离子体结构和磁场状态的研究非常欠缺,国际上对于可见光波段日冕低层大气的亮度分层研究很少.利用丽江日冕仪YOGIS(Yunnan Green-line Imaging System)的日冕绿线(FeⅩⅣ5303?)观测资料,对内日冕区域(1.03R-1.25R,R表示太阳半径)亮结构及其中冕环进行了有效的强度衰减分析.对亮结构的强度在太阳径向高度上进行了指数衰减拟合,比较这些拟合结果发现所得到的静态内冕环的衰减指数在一固定值附近.然后将比较明显的冕环提取出来,通过对不同高度的绿线强度进行指数拟合,得出的衰减指数与亮结构中也比较相近,这对进一步研究日冕中的各项物理参数演化提供了参考.  相似文献   

6.
In this paper we determine dynamically the mass of the Kuiper Belt Objects by exploiting the latest least-squares determinations of the extra rates of perihelia of the inner planets of the Solar system. By modelling classical Kuiper Belt Objects as an ecliptic ring of finite thickness, we obtain 0.033 ± 0.115 in units of terrestrial masses. For resonant Kuiper Belt Objects, a two-ring model yields 0.018 ± 0.063. These values are consistent with recent determinations obtained using ground- and space-based optical techniques. Some implications for precise tests of Einsteinian and post-Einsteinian gravity are briefly discussed.  相似文献   

7.
The origin of global magnetic fields in celestial bodies is generally ascribed to dynamo action by fluid motions in their electrically conducting interiors. Some objects – e.g. close‐in extra‐solar planets or the moons of some giant planets – are embedded in ambient magnetic fields which modify the generation of the internal field in these bodies. Recently, the feedback of the magnetospheric field by Chapman‐Ferraro currents in the magnetopause onto the interior dynamo has been proposed to explain the observed weakness of the intrinsic magnetic field of planet Mercury. We study a simplified mean‐field dynamo model which allows us to analytically address various issues like positive and negative feedback situations, stationary versus time‐dependent solutions, and the stability of weak and strong field branches. We discuss the influence of the response function on the solutions when the external field depends on the strength of the intrinsic field like in the situation of the feedback dynamo of Mercury. We find that the feedback mechanism works only for a narrow range of dynamo numbers in the case of Mercury which makes him unique in our solar system. We conclude with some implications for extra‐solar planets (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Here we show preliminary calculations of the cooling and contraction of a 2 MJ planet. These calculations, which are being extended to 1–10 MJ, differ from other published “cooling tracks” in that they include a core accretion‐gas capture formation scenario, the leading theory for the formation of gas giant planets.We find that the initial post‐accretionary intrinsic luminosity of the planet is ∼3 times less than previously published models which use arbitrary initial conditions. These differences last a few tens of millions of years. Young giant planets are intrinsically fainter than has been previously appreciated. We also discuss how uncertainties in atmospheric chemistry and the duration of the formation time of giant planets lead to challenges in deriving planetary physical properties from comparison with tabulated model values. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We propose that astronomers will be eventually be able to discriminate between extrasolar Earth-like planets with surface oceans and those without using the shape of phase light curves in the visible and near-IR spectrum. We model the visible light curves of planets having Earth-like surfaces, seasons, and optically-thin atmospheres with idealized diffuse-scattering clouds. We show that planets partially covered by water will appear measurably brighter near crescent phase (relative to Lambertian planets) because of the efficient specular reflection (“glint”) of starlight incident on their surfaces at a highly oblique angle. Planets on orbits within 30° of edge-on orientation (50% of all planets) will show pronounced glint over a sizeable range of orbital longitudes, from quadrature to crescent, all outside the glare of their parent stars. Also, water-covered planets will appear darker than a Lambertian disk near full illumination. Finally, we show that planets with a mixed land/water surface will polarize the reflected signal by as much as 30-70%. These results suggest several new ways of directly identifying water on distant planets.  相似文献   

10.
We use numerical simulations to model the migration of massive planets at small radii and compare the results with the known properties of 'hot Jupiters' (extrasolar planets with semimajor axes   a < 0.1  au). For planet masses   M pl sin  i > 0.5 M J  , the evidence for any 'pile-up' at small radii is weak (statistically insignificant), and although the mass function of hot Jupiters is deficient in high-mass planets as compared to a reference sample located further out, the small sample size precludes definitive conclusions. We suggest that these properties are consistent with disc migration followed by entry into a magnetospheric cavity close to the star. Entry into the cavity results in a slowing of migration, accompanied by a growth in orbital eccentricity. For planet masses in excess of 1 Jupiter mass we find eccentricity growth time-scales of a few ×105 yr, suggesting that these planets may often be rapidly destroyed. Eccentricity growth appears to be faster for more massive planets which may explain changes in the planetary mass function at small radii and may also predict a pile-up of lower mass planets, the sample of which is still incomplete.  相似文献   

11.
Light and cold extrasolar planets such as OGLE 2005‐BLG‐390Lb, a 5.5 Earth masses planet detected via microlensing, could be frequent in the Galaxy according to some preliminary results from microlensing experiments. These planets can be frozen rocky‐ or ocean‐planet, situated beyond the snow line and, therefore, beyond the habitable zone of their system. They can nonetheless host a layer of liquid water, heated by radiogenic energy, underneath an ice shell surface for billions of years, before freezing completely. These results suggest that oceans under ice, like those suspected to be present on icy moons in the Solar system, could be a common feature of cold low‐mass extrasolar planets. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Planetary formation models predict the existence of massive terrestrial planets and experiments are now being designed that should succeed in discovering them and measuring their masses and radii. We calculate internal structures of planets with one to ten times the mass of the Earth (Super-Earths) to obtain scaling laws for total radius, mantle thickness, core size and average density as a function of mass. We explore different compositions and obtain a scaling law of RM0.267-0.272 for Super-Earths. We also study a second family of planets, Super-Mercuries with masses ranging from one mercury-mass to ten mercury-masses with similar composition to the Earth's but with a larger core mass fraction. We explore the effect of surface temperature and core mass fraction on the scaling laws for these planets. The scaling law obtained for the Super-Mercuries is RM∼0.3.  相似文献   

13.
The space telescope Search for Terrestrial Exo-Planets (STEP) employed a method of sub-pixel technology which ensures that the astrometric accuracy of the telescope on the focal plane is at the order of 1 μas. This kind of astrometric precision is promising to detect the earth-like planets beyond the solar system. In this paper, we analyze the influence of some key factors, including the errors in the stellar proper motion, parallax, the optical center of the system, and the velocity and position of the satellite, on the detection of exoplanets. We propose a relative angular distance method to evaluate the non-linear terms in the variation of star-pair's angular distance caused by the possibly existing exoplanet. This method could avoid the direct influence of measuring errors of the position and proper motion of the reference stars. Supposing that there are eight reference stars and a target star with a planet system in the same field of view, we simulate their five-year observational data, and use the least square method to get the parameters of the planet orbit. Our results show that the method is robust to detect terrestrial planets based on the 1 μas precision of STEP.  相似文献   

14.
With the ceaseless progress of detecting technology, over 3500 exo-planets have been discovered. It is interesting but unexpected that the majority of the detected exoplanets are unlike any planets in our solar system. They have a size and mass between the Earth and the Neptune, and thus they are called as Super-Earths or Sub-Neptunes. In this article, I introduce these newly rising planets and review our current knowledge of their physical properties, orbital properties, and origins. Finally, I discuss the promising and exciting prospects.  相似文献   

15.
We present deep high dynamic range infrared images of young nearby stars in the Tucana/Horologium and β Pic associations, all ∼10 to 35 Myrs young and at ∼10 to 60 pc distance. Such young nearby stars are well‐suited for direct imaging searches for brown dwarf and even planetary companions, because young sub‐stellar objects are still self‐luminous due to contraction and accretion. We performed our observations at the ESO 3.5m NTT with the normal infrared imaging detector SofI and the MPE speckle camera Sharp‐I. Three arc sec north of GSC 8047‐0232 in Horologium a promising brown dwarf companion candidate is detected, which needs to be confirmed by proper motion and/or spectroscopy. Several other faint companion candidates are already rejected by second epoch imaging. Among 21 stars observed in Tucana/Horologium, there are not more than one to five brown dwarf companions outside of 75 AU (1.5″ at 50 pc); most certainly only ≤5% of the Tuc/HorA stars have brown dwarf companions (13 to 78 Jupiter masses) outside of 75 AU. For the first time, we can report an upper limit for the frequency of massive planets (∼10 Mjup) at wide separations (∼100 AU) using a meaningfull and homogeneous sample: Of 11 stars observed sufficiently deep in β Pic (12 Myrs), not more than one has a massive planet outside of ∼100 AU, i.e. massive planets at large separations are rare (≤9%). (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We discuss the effects of a Comptonizing corona on the appearance of the reflection components, and in particular of the reflection hump, in the X-ray spectra of accreting black holes. Indeed, in the framework of a thermal corona model, we expect that some (or even all, depending on the coronal covering factor) of the reflection features should cross the hot plasma, and thus suffer Compton scattering, before being observed. We have studied in detail the dependence of these effects on the physical (i.e. temperature and optical depth) and geometrical (i.e. inclination angle) parameters of the corona, concentrating on the slab geometry. Owing to the smoothing and shifting towards high energies of the Comptonized reflection hump, the main effects on the emerging spectra appear above 100 keV. We have also investigated the importance of such effects on the interpretation of the results obtained with the standard fitting procedures. We found that fitting Comptonization models, taking into account Comptonized reflection, by the usual cut-off power law + unComptonized reflection model may lead to an underestimation of the reflection normalization and an overestimation of the high-energy cut-off. We discuss and illustrate the importance of these effects by analysing recent observational results, such as those of the galaxy NGC 4258. We also find that the Comptonizing corona can produce and/or emphasize correlations between the reflection feature characteristics (like the iron line equivalent width or the covering fraction) and the X-ray spectral index, similar to those recently reported in the literature. We also underline the importance of these effects when dealing with accurate spectral fitting of the X-ray background.  相似文献   

17.
In this paper we investigate the evolution of a pair of interacting planets – a Jupiter-mass planet and a Super-Earth with a mass of  5.5 M   – orbiting a Solar-type star and embedded in a gaseous protoplanetary disc. We focus on the effects of type I and II orbital migrations, caused by the planet–disc interaction, leading to the capture of the Super-Earth in first-order mean-motion resonances by the Jupiter. The stability of the resulting resonant system in which the Super-Earth is on the internal orbit relative to the Jupiter is studied numerically by means of full 2D hydrodynamical simulations. Our main aim is to determine the Super-Earth behaviour in the presence of the gas giant in the system. It is found that the Jupiter captures the Super-Earth into the interior 3:2 or 4:3 mean-motion resonance, and that the stability of such configurations depends on the initial positions of the planets and on the evolution of the eccentricity. If the initial separation of the orbits of the planets is larger than or close to that required for the exact resonance, the final outcome is the migration of the pair of planets at a rate similar to that of the gas giant, at least for the time of our simulations. Otherwise, we observe a scattering of the Super-Earth from the disc. The evolution of planets immersed in a gaseous disc is compared with their behaviour in the case of the classical three-body problem when the disc is absent.  相似文献   

18.
We have performed N-body simulation on final accretion stage of terrestrial planets, including the effect of damping of eccentricity and inclination caused by tidal interaction with a remnant gas disk. As a result of runway and oligarchic accretion, about 20 Mars-sized protoplanets would be formed in nearly circular orbits with orbital separation of several to ten Hill radius. The orbits of the protoplanets would be eventually destabilized by long-term mutual gravity and/or secular resonance of giant gaseous planets. The protoplanets would coalesce with each other to form terrestrial planets through the orbital crossing. Previous N-body simulations, however, showed that the final eccentricities of planets are around 0.1, which are about 10 times higher than the present eccentricities of Earth and Venus. The obtained high eccentricities are the remnant of orbital crossing. We included the effect of eccentricity damping caused by gravitational interaction with disk gas as a drag force (“gravitational drag”) and carried out N-body simulation of accretion of protoplanets. We start with 15 protoplanets with 0.2M⊕ and integrate the orbits for 107 years, which is consistent with the observationally inferred disk lifetime (in some runs, we start with 30 protoplanets with 0.1M⊕). In most runs, the damping time scale, which is equivalent to the strength of the drag force, is kept constant throughout each run in order to clarify the effects of the damping. We found that the planets' final mass, spatial distribution, and eccentricities depend on the damping time scale. If the damping time scale for a 0.2M⊕ mass planet at 1 AU is longer than 108 years, planets grow to Earth's size, but the final eccentricities are too high as in gas-free cases. If it is shorter than 106 years, the eccentricities of the protoplanets cannot be pumped up, resulting in not enough orbital crossing to make Earth-sized planets. Small planets with low eccentricities are formed with small orbital separation. On the other hand, if it is between 106 and 108 years, which may correspond to a mostly depleted disk (0.01-0.1% of surface density of the minimum mass model), some protoplanets can grow to about the size of Earth and Venus, and the eccentricities of such surviving planets can be diminished within the disk lifetime. Furthermore, in innermost and outermost regions in the same system, we often find planets with smaller size and larger eccentricities too, which could be analogous to Mars and Mercury. This is partly because the gravitational drag is less effective for smaller mass planets, and partly due to the “edge effect,” which means the innermost and outermost planets tend to remain without collision. We also carried out several runs with time-dependent drag force according to depletion of a gas disk. In these runs, we used exponential decay model with e-folding time of 3×106 years. The orbits of protoplanets are stablized by the eccentricity damping in the early time. When disk surface density decays to ?1% of the minimum mass disk model, the damping force is no longer strong enough to inhibit the increase of the eccentricity by distant perturbations among protoplanets so that the orbital crossing starts. In this disk decay model, a gas disk with 10−4-10−3 times the minimum mass model still remains after the orbital crossing and accretional events, which is enough to damp the eccentricities of the Earth-sized planets to the order of 0.01. Using these results, we discuss a possible scenario for the last stage of terrestrial planet formation.  相似文献   

19.
The High Dispersion Spectrograph (HDS) is the échelle spectrograph for an open‐use instrument of the Subaru Telescope. The current status of the instrument is reviewed. The new image slicers that significantly improve the efficiency of observations with very high resolving power have been installed in the past three years. Brief overview of recent science results is given on studies of early generations of stars and extra‐solar planets. An upgrade plan and future prospects of this instrument are discussed. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Adrián Brunini 《Icarus》2005,177(1):264-268
The sample of known exoplanets is strongly biased to masses larger than the ones of the giant gaseous planets of the Solar System. Recently, the discovery of two extrasolar planets of considerably lower masses around the nearby Stars GJ 436 and ρ Cancri was reported. They are like our outermost icy giants, Uranus and Neptune, but in contrast, these new planets are orbiting at only some hundredth of the Earth-Sun distance from their host stars, raising several new questions about their origin and constitution. Here we report numerical simulations of planetary accretion that show, for the first time through N-body integrations that the formation of compact systems of Neptune-like planets close to the hosts stars could be a common by-product of planetary formation. We found a regime of planetary accretion, in which orbital migration accumulates protoplanets in a narrow region around the inner edge of the nebula, where they collide each other giving rise to Neptune-like planets. Our results suggest that, if a protoplanetary solar environment is common in the Galaxy, the discovery of a vast population of this sort of ‘hot cores’ should be expected in the near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号