首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Twenty-three volcanic rocks from the Setouchi volcanic belt, southwest Japan, were analyzed for Nd and Sr isotopic compositions for the purpose of examining the genetic relationships among the basalt, high-magnesium andesite (HMA) and evolved porphyritic andesite. The andesites have higher87Sr/86Sr (0.70487–0.70537) and lower143Nd/144Nd (0.512509–0.512731) than the basalts, i.e., 0.70408–0.70468 and 0.512691–0.512830, respectively. This result confirms earlier conclusions obtained from petrologic study that the andesites cannot be fractionation products of basaltic magma but that the andesitic and basaltic magmas were generated independently. On the basis of melting experiments for HMA and basalt, it is inferred that there is an isotopically stratified mantle beneath southwest Japan. Evolved porphyritic andesites have essentially identical Sr and Nd isotopic ratios to HMA and can be derived by fractionation of primary andesitic magma. A model to produce orogenic andesite is proposed on petrologic, experimental and isotopic bases.  相似文献   

2.
Merapi Volcano (Central Java, Indonesia) has been frequently active during Middle to Late Holocene time producing basalts and basaltic andesites of medium-K composition in earlier stages of activity and high-K magmas from 1900 14C yr BP to the present. Radiocarbon dating of pyroclastic deposits indicates an almost continuous activity with periods of high eruption rates alternating with shorter time spans of distinctly reduced eruptive frequency since the first appearance of high-K volcanic rocks. Geochemical data of 28 well-dated, prehistoric pyroclastic flows of the Merapi high-K series indicate systematic cyclic variations. These medium-term compositional variations result from a complex interplay of several magmatic processes, which ultimately control the periodicity and frequency of eruptions at Merapi. Low eruption rates and the absence of new influxes of primitive magma from depth allow the generation of basaltic andesite magma (56–57 wt% SiO2) in a small-volume magma reservoir through fractional crystallisation from parental mafic magma (52–53 wt% SiO2) in periods of low eruptive frequency. Magmas of intermediate composition erupted during these stages provide evidence for periodic withdrawal of magma from a steadily fractionating magma chamber. Subsequent periods are characterised by high eruption rates that coincide with shifts of whole-rock compositions from basaltic andesite to basalt. This compositional variation is interpreted to originate from influxes of primitive magma into a continuously active magma chamber, triggering the eruption of evolved magma after periods of low eruptive frequency. Batches of primitive magma eventually mix with residual magma in the magmatic reservoir to decrease whole-rock SiO2 contents. Supply of primitive magma at Merapi appears to be sufficiently frequent that andesites or more differentiated rock types were not generated during the past 2000 years of activity. Cyclic variations also occurred during the recent eruptive period since AD 1883. The most recent eruptive episode of Merapi is characterised by essentially uniform magma compositions that may imply the existence of a continuously active magma reservoir, maintained in a quasi-steady state by magma recharge. The whole-rock compositions at the upper limit of the total SiO2 range of the Merapi suite could also indicate the beginning of another period of high eruption rates and shifts towards more mafic compositions.  相似文献   

3.
Sr and Nd isotope and geochemical investigations were performed on a remarkably homogeneous, high-silica rhyolite magma reservoir of the Aira pyroclastic eruption (22,000 years ago), southern Kyushu, Japan. The Aira caldera was formed by this eruption with four flow units (Osumi pumice fall, Tsumaya pryoclastic flow, Kamewarizaka breccia and Ito pyroclastic flow). Quite narrow chemical compositions (e.g., 74.0–76.5 wt% of SiO2) and Sr and Nd isotopic values (87Sr/86Sr=0.70584–0.70599 and Nd=−5.62 to −4.10) were detected for silicic pumices from the four units, with the exception of minor amounts of dark pumices in the units. The high Sr isotope ratios (0.7065–0.7076) for the dark pumices clearly suggest a different origin from the silicic pumices. Andesite to basalt lavas in pre-caldera (0.37–0.93 Ma) and post-caldera (historical) eruptions show lower 87Sr/86Sr (0.70465–0.70540) and higher Nd (−1.03 to +0.96) values than those of the Aira silicic and dark pumices. Both andesites of pre- and post-caldera stages are very similar in major- and trace-element characteristics and isotope ratios, suggesting that the both andesites had a same source and experienced the same process of magma generation (magma mixing between basaltic and dacitic magmas). Elemental and isotopic signatures deny direct genetic relationships between the Aira pumices and pre- and post-caldera lavas. Relatively upper levels of crust (middle–upper crust) are assumed to have been involved for magma generation for the Aira silicic and dark pumices. The Aira silicic magma was derived by partial melting of a separate crust which had homogeneous chemistry and limited isotope compositions, while the magma for the Aira dark pumice was generated by AFC mixing process between the basement sedimentary rocks and basaltic parental magma, or by partial melting of crustal materials which underlay the basement sediments. The silicic magma did not occupy an upper part of a large magma body with strong compositional zonation, but formed an independent magma body within the crust. The input and mixing of the magma for dark pumices to the base of the Aira silicic magma reservoir might trigger the eruptions in the upper part of the magma body and could produce a slight Sr isotope gradient in the reservoir. An extremely high thermal structure within the crust, which was caused by the uprise and accumulation of the basaltic magma, is presumed to have formed the large volume of silicic magma of the Aira stage.  相似文献   

4.
The Spurr volcanic complex (SVC) is a calc-alkaline, medium-K, sequence of andesites erupted over the last 250000 years by the eastern-most currently active volcanic center in the Aleutian arc. The ancestral Mt. Spurr was built mostly of andesites of uniform composition (58%–60% SiO2), although andesite production was episodically interrupted by the introduction of new batches of more mafic magma. Near the end of the Pleistocene the ancestral Mt. Spurr underwent avalanche caldera formation, resulting in the production of a volcanic debris avalanche with overlying ashflows. Immediately afterward, a large dome (the present Mt. Spurr) formed in the caldera. Both the ash flows and dome are made of acid andesite more silicic (60%–63% SiO2) than any analyzed lavas from the ancestral Mt. Spurr, yet contain olivine and amphibole xenocrysts derived from more mafic magma. The mafic magma (53%–57% SiO2) erupted during and after dome emplacement from a separate vent only 3 km away. Hybrid block-and-ash flows and lavas were also produced. The vents for the silicic and mafic lavas are in the center and in the breach of the 5-by-6-km horseshoe-shaped caldera, respectively, and are less than 4 km apart. Late Holocene eruptive activity is restricted to Crater Peak, and magmas continue to be relatively mafic. SVC lavas are plag ±ol+cpx±opx+mt bearing. All postcaldera units contain small amounts of high-Al2O3, high-alkali amphibole, and proto-Crater Peak and Crater Peak lavas contain abundant pyroxenite and anorthosite clots presumably derived from an immediately preexisting magma chamber. Ranges of mineral chemistries within individual samples are often nearly as large as ranges of mineral chemistries throughout the SVC suite, suggesting that magma mixing is common. Elevated Sr, Pb, and O isotope ratios and trace-element systematics incompatible with fractional crystallization suggest that a significant amount of continental crust from the upper plate has been assimilated by SVC magmas during their evolution.  相似文献   

5.
Quaternary volcanoes in the Padang area on the west coast of Sumatra have produced two-pyroxene, calc-alkaline andesite and volumetrically subordinate rhyolitic and andesitic ash-flow tuffs. A sequence of andesite (pre-caldera), rhyolitic tuff and andesitic tuff, in decreasing order of age, is related to Maninjau caldera. Andesite compositions range from 55.0 to 61.2% SiO2 and from 1.13 to 2.05% K2O. Six K-Ar whole-rock age determinations on andesites show a range of 0.27 ± 0.12 to 0.83 ± 0.42 m.y.; a single determination on the rhyolitic ashflow tuff gave 0.28 ± 0.12 m.y.Eight 57Sr/26Sr ratios on andesites and rhyolite tuff west of the Semangko fault zone are in the range 0.7056 – 0.7066. These ratios are higher than those elsewhere in the Sunda arc but are comparable to the Taupo volcanic zone of New Zealand and calc-alkaline volcanics of continental margins. An 87Sr/86Sr ratio of 0.7048 on G. Sirabungan east of the Semangko fault is similar to an earlier determination on nearby G. Marapi (0.7047), and agrees with 87Sr/86Sr ratios in the rest of the Sunda arc. The reason for this distribution of 87Sr/86Sr ratios is unknown.The high 87Sr/86Sr ratios are tentatively regarded to reflect a crustal source for the andesites, while moderately fractionated REE patterns with pronounced negative Eu anomalies suggest a residue enriched in plagioclase with hornblende and/or pyroxenes. Generation of associated andesite and rhyolite could have been caused by hydrous fractional melting of andesite or volcanogenic sediments under adiabatic decompression.  相似文献   

6.
The Mascota volcanic field is located in the Jalisco Block of western Mexico, where the Rivera Plate subducts beneath the North American Plate. It spans an area of ∼ 2000 km2 and contains ∼ 87 small cones and lava flows of minette, absarokite, basic hornblende lamprophyre, basaltic andesite, and andesite. There are no contemporary dacite or rhyolite lavas. New 40Ar/39Ar ages are presented for 35 samples, which are combined with nine dates from the literature to document the eruptive history of this volcanic field. The oldest lavas (2.4 to 0.5 Ma) are found in the southern part of the field area, whereas the youngest lavas (predominantly < 0.5 Ma) are found in the northern portion. On the basis of these ages, field mapping, and the use of ortho aerial photographs and digital elevation models, it is estimated that a combined volume of 6.8 ± 3.1 km3 erupted in the last 2.4 Myr, which leads to an average eruption rate of ∼ 0.003 km3/kyr, and an average volume per eruptive unit of < 0.1 km3. The dominant lava type is andesite (2.1 ± 0.9 km3), followed by absarokite (1.6 ± 0.8 km3), basaltic andesite (1.2 ± 0.5 km3), basic hornblende lamprophyre (1.0 ± 0.4 km3), and minette (0.9 ± 0.5 km3). Thus, the medium-K andesite and basaltic andesite comprise approximately half (49%) of the erupted magma, with twice as much andesite as basaltic andesite, and they occur in close spatial and temporal association with the highly potassic, lamprophyric lavas. There is no time progression to the type of magma erupted. A wide variety of evidence indicate that the high-MgO (8–9 wt.% ) basaltic andesites (52–53% wt.% SiO2) were formed by H2O flux melting of the asthenopheric arc mantle wedge, whereas the mafic minettes and absarokites were formed by partial melting (induced by thermal erosion) of depleted lithospheric mantle containing phlogopite-bearing veins. There is only limited differentiation of the potassic magmas, with none more evolved than 55.4 wt.% SiO2 and 4.4 wt.% MgO. This may be attributable to rapid crystallization of the mantle-derived melts in the deep crust, owing to their low volumes. Thus, the andesites (58–63 wt.% SiO2) are notable for being both the most voluminous and the most evolved of all lava types in the Mascota volcanic field, which is not consistent with their extraction from extensively crystallized (60–70%), low-volume intrusions. Instead, the evidence supports the origin of the andesites by partial melting of amphibolitized, mafic lower crust, driven by the emplacement of the minettes, absarokites, and the high-Mg basaltic andesites.  相似文献   

7.
The Nevado Sabancaya in southern Peru has exhibited a persistent eruptive activity over eight years following a violent eruption in May–June 1990. The explosive activity consisted of alternated vulcanian and phreatomagmatic events, followed by declining phreatic activity since late 1997. The mean production rate of magma has remained low (106–107 m3 per year).The 1990–1998 eruptive episode produced andesitic and dacitic magmas. The juvenile tephra span a narrow range of compositions (60–64 wt% SiO2). While SiO2 contents do vary slightly, they do not show any systematic variation with time. Phenocryst assemblages in the juvenile rocks consist of mainly plagioclase, associated with high-Ca pyroxene, hornblende, biotite, and iron-titanium oxides. Rare fine-grained magmatic enclaves, with angular to subrounded shapes, are contained within some of the juvenile lava blocks, which were expelled since 1992. They have a homogeneous andesitic composition (57 wt% SiO2) and show randomly oriented interlocking columnar or acicular crystals (plagioclase and amphibole), with interstitial glass and a few voids, which define a quench-textured groundmass.Textural, mineralogical and chemical evidence suggests that the 1990–1998 eruptions have mainly erupted hybrid andesites, except for the 1990 dacite. The hybrid andesites contain a mixed population of plagioclase phenocrysts: Ca-rich clear plagioclase (An40–60), Na-rich clear plagioclase (An25–35), and inversely zoned dusty-rimmed plagioclase with a sodic core (An25–40) surrounded by a Ca-rich mantle (An45–65). Melt-inclusions, wavy dissolution surfaces and stepped zoning within the dusty-rimmed plagioclases are compatible with resorption induced by magma recharge events. Chemical and isotopic lines of evidence also show that andesites are hybrids resulting from magma mixing processes. Repeated magma recharge, incomplete homogenisation and different degrees of crustal assimilation may explain the extended range of isotopic signatures.Our study leads to propose an evolution model for the magmatic system at Nevado Sabancaya. The main magma body consisted of dacitic magmas differentiating through extensive open-system crystallization (AFC). Repeated recharge of more mafic magmas induced magma mixing, leading to the formation of hybrid andesites. A partially crystalline boundary layer formed at the interface between the andesites and the recharge magma. The magmatic enclaves were produced by the disruption and dispersion of this andesitic layer as a result of new magma injection and/or sustained tectonic activity.Periodic magma recharge and interactions with groundwater are two processes that have enabled the explosive regime to remain persistent over an 8-year-long period. What precise mechanism triggers the eruptive activity remains speculative, but it may be related either to new magma injection, or to the sustained tectonic activity that occurred at that time in the vicinity of the volcano, or a combination of both.  相似文献   

8.
Melting phase relations of an augite-olivine high-magnesian andesite and an augite-olivine basalt from the Miocene Setouchi volcanic belt in southwest Japan have been studied under water-saturated, water-undersaturated and under anhydrous conditions. Both the andesite and the basalt are characterized by low FeO*/MgO ratios (0.86 and 0.76 in weight, respectively) and qualify as primary magmas derived from the upper mantle.The andesite melt coexists with olivine, orthopyroxene and clinopyroxene at 15 kbar and 1030°C under water-saturated conditions, and at 10 kbar and 1070°C under water-undersaturated conditions (7 wt.% H2O in the melt). The basalt-melt also coexists with the above three phases at 11 kbar and 1305°C under anhydrous conditions, and at 15 kbar and 1205°C in the presence of 4 wt.% water.Present studies indicate that high-magnesian andesite magmas may be produced even under water-undersaturated conditions by partial melting of mantle peridotite. It is suggested that two types of high-magnesian andesites in the Setouchi volcanic belt (augite-olivine and bronzite-olivine andesites) were produced by different degrees of partial melting; augite-olivine andesite magmas, whose mantle residual is lherzolite, were formed by lower degrees of partial melting than bronzite-olivine andesite magmas, which coexist with harzburgite. The basalt magmas, which were often extruded in close proximity to the high-magnesian andesite magmas, are not partial melting products of a mantle peridotite which had previously melted to yield high-magnesian andesite magmas.  相似文献   

9.
Changes in oceanic O–Sr isotopic compositions and global cooling beginning in the Eocene are considered to have been caused by the uplift of the Tibetan Plateau. The specific timing and uplift mechanism, however, have long been subjects of debate. We investigated the Duogecuoren lavas of the central-western Qiangtang Block, which form the largest outcrops among Cenozoic lavas in northern-central Tibet and have widely been considered as shoshonitic. Our study demonstrates, however, that most of these lavas are high-K calc-alkaline andesites, dacites and rhyolites. Moreover, they are characterized by high Sr (367–2472 ppm) and Al2O3 (14.55–16.86 wt.%) and low Y (3.05–16.9 ppm) and Yb (0.31–1.48 ppm) contents and high La/Yb (27–100) and Sr/Y (48–240) ratios, similar to adakitic rocks derived by partial melting of an eclogitic source. They can be further classified as either peraluminous and metaluminous subtypes. The peraluminous rocks have relatively high SiO2 (> 66 wt.%) contents, and low MgO (< 1.0 wt.%), Cr (4.94–23.3 ppm) and Ni (2.33–17.0 ppm) contents and Mg# (20–50) values, while the metaluminous rocks exhibit relatively low SiO2 (55–69 wt.%) contents, and high MgO (1.41–6.34), Cr (25.7–383 ppm), Ni (14.13–183 ppm) and Mg# (46–69) values, similar to magnesian andesites. 40Ar/39Ar and SHRIMP zircon U–Pb dating reveal that both peraluminous and metaluminous adakitic rocks erupted in the Eocene (46–38 Ma). Paleocene–Early Miocene thrust faults and associated syn-contractional basin deposits in the Qiangtang Block suggest that this region was undergoing crustal shortening within a continent during the Eocene. The low εNd (− 2.81 to − 6.91) and high 87Sr/86Sr (0.7057–0.7097), Th (11.2–32.3 ppm) and Th/La (0.23–0.88) values in the Duogecuoren adakitic rocks further indicate that they were not derived by partial melting of subducted oceanic crust. Taking into account tectonic and geophysical data and the compositions of xenoliths in Cenozoic lava in northern-central Tibet, we suggest that the peraluminous adakitic rocks were most probably derived by partial melting of subducted sediment-dominated continent of the Songpan-Ganzi Block along the Jinsha suture to the north at a relatively shallow position (the hornblende + garnet stability field), but the metaluminous adakitic rocks likely originated from the interaction between peraluminous adakitic melts generated at greater depths (the garnet + rutile stability field) and mantle. Because the Duogecuoren adakitic rocks must have originated from a garnet-bearing (namely, eclogite facies) source, Eocene continental subduction along the Jinsha suture caused the thickening of the Qiangtang crust. Given that crustal thickening generally equates with elevation, the uplift of the Central Tibetan Plateau probably began as early as 45–38 Ma, which provides important evidence for tectonically driven models of oceanic O–Sr isotope evolution during global cooling and Asian continental aridification beginning in the Eocene.  相似文献   

10.
Fluorine contents in about 160 representative Quaternary volcanic rocks and 15 hornblende and biotite phenocrysts in a calc-alkali series in Japan have been determined by a selective ion-electrode method. Tholeiites have the lowest contents and the narrowest range (58–145 ppm), while alkali basalts have the highest contentws and the widest range (301–666 ppm), high-alumina basalts have intermediate values (188–292 ppm). F contents in basalts clearly increase from east to west across the Japanese Islands, as do alkalies, P2O5 REE, U, Th and H2O.The volcanic rocks studied are divided into two groups on the basis of F: (1) witt, increasing % SiO2 or advancing fractionation, F contents show either progressive enrichment; or (2) with increasing fractionation, F contents show rather constant values. The former is produced by fractionation of anhydrous phases from basalt to mafic andesite magmas; the tholeiite series of Nasu volcanic zone (outer zone), northeastern, Japan is a typical example. The latter group is derived through separation of amphibole-bearing phases from basaltic magmas at various depths from upper mantle (about 30 km) to upper crust; the alkali series in southwestern Japan and the calc-alkali series of Chokai volcanic zone (inner zone), northeastern Japan, are examples.  相似文献   

11.
After a 26 years long quiescence El Reventador, an active volcano of the rear-arc zone of Ecuador, entered a new eruptive cycle which lasted from 3 November to mid December 2002. The initial sub-Plinian activity (VEI 4 with andesite pyroclastic falls and flows) shifted on 6 and 21 November to an effusive stage characterized by the emission of two lava flows (andesite to low-silica andesite Lava-1 and basaltic andesite Lava-2) containing abundant gabbro cumulates. The erupted products are medium to high-K calc-alkaline and were investigated with respect to major element oxides, mineral chemistry, texture and thermobarometry. Inferred pre-eruptive magmatic processes are dominated by the intrusion of a high-T mafic magma (possibly up to 1165 ± 15 °C) into an andesite reservoir, acting as magma mixing and trigger for the eruption. Before this refilling, the andesite magma chamber was characterized by water content of 5.3 ± 1.0%, high oxygen fugacity (> NNO + 2) and temperatures, in the upper and lower part of the reservoir, of 850 and 952 ± 65 °C respectively. Accurate amphibole-based barometry constrains the magma chamber depth between 8.2 and 11.3 km (± 2.2 km). The 6 October 2002 seismic swarm (hypocenters from 10 to 11 km) preceding El Reventador eruption, supports the intrusion of magmas at these depths. The widespread occurrence of disequilibrium features in most of the andesites (e.g. complex mineral zoning and phase overgrowths) indicates that convective self-mixing have been operating together with fractional crystallization (inferred from the cognate gabbro cumulates) before the injection of the basic magma which then gave rise to basaltic andesite and low-silica andesite hybrid layers. Magma mixing in the shallow chamber is inferred from the anomalous SiO2–Al2O3 whole-rock pattern and strong olivine disequilibria. Both lavas show three types of amphibole breakdown rims mainly due to heating (mixing processes) and/or relatively slow syn-eruptive ascent rate (decompression) of the magmas. The lack of any disequilibrium textures in the pumices of the 3 November fall deposit suggest that pre-eruptive mixing did not occur in the roof zone of the chamber. A model of the subvolcanic feeding system of El Reventador, consistent with the intrusion of a low-Al2O3 crystal-rich basic magma into an already self-mixed andesite shallow reservoir, is here proposed. It is also inferred that before entering the shallow chamber the “basaltic” magma underwent a polybaric crystallization at deeper crustal levels.  相似文献   

12.
The Hasan Dagi volcano is one of the two large Plio-Quaternary volcanoes in Cappadocia (Central Anatolia, Turkey). Three stages of edifice construction have been identified for this volcano: Paleovolcano, Mesovolcano and Neovolcano. Most samples from Hasan Dagi volcano are calc-alkaline and define an almost complete trend from basaltic andesite to rhyolite. However, the more recent (Neovolcano) mafic samples are alkaline basalts. The mineralogical and geochemical characteristics of the oldest lavas (Keçikalesi (13 Ma) and Paleo-Hasan Dagi (7 Ma)) are significantly different from those of the younger lavas (Meso- and Neo-Hasan Dagi (<1 Ma)). Calcic plagioclase and pigeonite are typically observed in these older lavas. The Paleovolcano basalts are depleted in alkalis and display a tholeiitic tendency whereas the differentiated lavas are depleted in Na2O but enriched in K2O compared to younger lavas. There is an evolution through time towards higher TiO2, Fe2O3*, MgO, Na2O and K2O and lower Al2O3 and SiO2 which is reflected in the basalt compositions. All the basalts display multi-element patterns typical of continental margin magmas with a significant enrichment in LILE (K, Rb, Ba and Th) and LREE and strong (Paleovolcano) to moderate (Meso- and Neovolcano) negative Nb, Zr and Ti anomalies. However, the younger basalts are the most enriched in incompatible elements, in agreement with their alkaline affinities and do not systematically display negative HFSE anomalies. REE data suggest an hydrous amphibole-bearing crystallization history for both Meso- and Neovolcano lavas. The distinction between the older and younger lavas is also apparent in trace element ratios such as Nb/Y, Ti/Y and Th/Y. These ratios indicate the role of a subducted component±crustal contamination in the genesis of the Hasan Dagi lavas, particularly for the oldest lavas (Keçikalesi and Paleo-Hasan Dagi). The decreasing influence of this component through time, over the last 6–7 m.y., has been accompanied by an increasing contribution of melt-enriched lithosphere. Although the range of variation of Sr, Nd and Pb isotopic ratios is small (0.70457–0.70515; 0.51262–0.51273; 18.80–18.94; 15.64–15.69; 38.87–39.10), it also reflects the evolution of the magma sources through time. Indeed, the youngest (Neovolcano) and most primitive basalts display significantly lower 87Sr/86Sr than the Paleo- and Mesovolcano basalts, whereas the Mesovolcano basalts display more radiogenic Pb than Paleovolcano samples. Magma mixing processes between initially heterogeneous and/or variably contaminated magmas may account for the genesis of the less differentiated and intermediate lavas (48–57% SiO2). Meso- and Neovolcano differentiated lavas (60–68% SiO2) are either derived from the analyzed basalts or from more primitive and more depleted magmas by fractional crystallization±some crustal contamination (AFC). Furthermore, the highly differentiated samples (72–75% SiO2) are not strongly contaminated. The strong calc-alkaline character of Hasan Dagi lavas, in the absence of contemporaneous subduction, must reflect the heritage of the early subduction of the Afro–Arabian plate under the Eurasian plate. The evolution towards alkaline compositions through time is clearly related to the development of extensional tectonics in Central Anatolia in the Late Miocene.  相似文献   

13.
A dacitic magma (64.5 wt.% SiO2), a mixture of phenocryst-rich rhyodacite and an aphyric mafic magma, was erupted during the recent 1991–1995 Mount Unzen eruptive cycle. The experimental and analytical results of this study reveal additional details about conditions in the premixing and postmixing magmas, and the nature of the mixing process. The preeruption rhyodacitic magma was at a temperature of 790±20°C according to Fe–Ti oxide phenocryst cores, and at a depth of 6 to 7 km (160 MPa) according to Al-in-hornblende geobarometry. The mafic magma that mixed with the rhyodacite is found as andesitic (54 to 62 wt.% SiO2) enclaves in the erupted magma and was essentially aphyric when intruded. Phase equilibria indicate that an aphyric andesite at 160 MPa is >1030°C (H2O-saturated) and possibly as high as 1130°C (2 wt.% H2O). The composition of the rhyodacite which was mixed with the andesite is estimated to lie between 67 and 69 wt.% SiO2. Using these compositions and temperatures, the temperature of the Unzen magma after mixing is estimated to be at least 850° to 870°C. The groundmass Fe–Ti oxide microphenocrysts and those in pargasite-bearing reaction zones around biotite phenocrysts both give 890±20°C temperatures; the oxide–oxide contacts give temperatures of 910±20°C. The 900±30°C postmixing temperatures are consistent with phase-equilibria experiments which show that the magma was not above 930°C at 160 MPa. Our Fe–Ti oxide reequilibration experiments suggest that the mixing of the two magmas began within a few weeks of the eruption, which is a shorter time than is calculated using available diffusion data. There is also evidence that some mixing took place much closer to the time of extrusion based on the presence of unrimmed biotite phenocrysts in the magma.  相似文献   

14.
High-magnesian andesites of middle Miocene age occur in southwest Japan, forming an obvious volcanic belt. These andesites have low FeO*/MgO ratios (0.546–0.931), and are rich in Ni (101–312 ppm), Co (30.0–45.1 ppm), and Cr (208–756 ppm). They are relatively aphyric (phenocrysts <10 vol.%), and the phenocrysts of magnesian olivine (~Fo88) are in equilibrium with the host high-magnesian andesite magmas on the basis of the Fe-Mg exchange partitioning. These features suggest that the high-magnesian andesites are not differentiated or accumulative; they appear to represent primary andesites generated in the upper mantle. These southwest Japanese high-magnesian andesites are rich in incompatible elements, and show light rare earth enrichment relative to boninites, suggesting that the former is derived from a less depleted mantle source than the latter.  相似文献   

15.
We have characterized pumice products belonging to the climactic phase of the 800-year-b.p. Quilotoa eruption. Bulk rock compositions, petrography, mineral, and glass chemistry and textural investigations were performed on the three end-member pumice types, namely white, gray, and mingled pumices. All the investigated pumice clasts are dacites characterized by the same bulk rock composition and mineralogical assemblage, but glass compositions and bulk textures change according to different pumice types. White pumice has higher crystallinity (~48 wt%), abundant euhedral pheno/microphenocrysts, no groundmass microlites, the most evolved glass compositions (74–78 wt% SiO2), and heterogeneous vesicle populations marked by deformed and highly coalesced vesicles with thin walls. Gray pumice exhibits lower crystallinity (29–36 wt%), abundant broken and/or resorbed crystals, ubiquitous groundmass phenocryst fragments and microlites, the widest range of glass compositions (69–78 wt% SiO2), and quite homogeneous poorly deformed and coalesced vesicles with thicker walls. Mingled pumices are characterized by the alternation of bands or patches with white and gray pumice compositional and textural characteristics. We attribute heterogeneities in glass compositions and crystal and vesicle textures to processes occurring within volcanic conduits as magma is ascending to the surface. In particular, the above observations and results are consistent with an origin of a gray magma by heating of the original white magma in a strongly sheared region of the conduit because of a mechanism of viscous dissipation and crystal grinding and resorption at the conduit walls. The less viscous gray magma, therefore, would enable the onset and preservation of a high mass flux of the eruption otherwise difficult to explain for highly viscous crystal-rich dacitic magmas.Editorial responsibility: D. Dingwell  相似文献   

16.
Pyroclastic deposits from the 1982–1983 eruption of Galunggung volcano (Java, Indonesia) reflect preeruptive magmatic evolution which is of interest because of: (1) its duration of nine months, compared to a few hours or days for most historical eruptions; (2) the diversity of eruptive styles, from ash and scoria flows to phreatomagmatic explosions, and to the strombolian activity that marked the end of the eruption; and (3) the progressive variation in chemical composition with time, from andesite (58 wt.% SiO2) to high-Mg basalt (47 wt.% SiO2). The 1982–1983 Galunggung basalts are rather primitive: 10 to 12 wt% MgO, 180 to 200 ppm Ni and 550 to 700 ppm Cr. Despite the presence of about 40% phenocrysts, they may represent the most primitive basalts recognized in western Java. Basalts contain phenocrysts of olivine (Fo90-80), diopside-salite, and plagioclase (An95-75). Andesites contain plagioclase (An80–60), augite, hypersthene (En67-64), and titanomagnetite. The distribution of mineral compositions in each petrographic type is nearly unimodal, although scarce plagioclase and olivine xenocrysts have been observed. Abundance of gabbroic cumulates associated with the pyroclastic flows and evolution of mineral compositions from high-Mg basalts to andesites support crystal fractionation as the main differentiation mechanism, although magma mixing of basaltic andesite and andesite cannot be excluded. Major and trace element trends, which display rough decreases of MgO, CaO, Ni, Cr with increasing degree of differentiation and also linear positive correlations of hygromagmaphile elements, are compatible with both processes. However, some discrepancies are observed between major and trace element modelling, which may be explained to some extent by the influence of in situ crystallization and/or magma mixing. The constancy of 143Nd/144Nd (0.51286±3), 230Th/232Th (0.65±0.02), Th/U (4.08±0.07) ratios, and to a lesser extent 18O values (+5.8 to +6.4 % SMOW) and 87Sr/86Sr ratios (0.70440 to 0.70468) is compatible with a magmatic evolution through fractional crystallization without significant crustal contamination. Nevertheless low-18O and high 87Sr/86Sr values in basaltic andesites may be due to the introduction of meteoric fluids into the Galunggung magma.  相似文献   

17.
Tanna island is part of a large volcanic complex mainly subsided below sea-level. On-land, two series of hydroclastic deposits and ignimbrites overlie the subaerial remains of a basal, mainly effusive volcano. The ‘Older’ Tanna Ignimbrite series (OTI), Late Pliocene or Pleistocene in age, consists of ash flows and ash- and scoria-flow deposits associated with fallout tephra layers, overlain by indurated pumice-flow deposits. Phreatomagmatic features are a constant characteristic of these tuffs. The ‘younger’ Late Pleistocene pyroclastics, the Siwi sequence, show basal phreatomagmatic deposits overlain by two successive flow units, each comprising a densely welded layer and a nonwelded ash-flow deposit. Whole-rock analyses of 17 juvenile clasts from the two sequences (vitric blocks from the phreatomagmatic deposits, welded blocks, scoriaceous bombs and pumices from the ignimbrites) show basaltic andesite and andesite compositions (SiO2=53–60%). In addition, 296 microprobe analyses of glasses in these clasts show a wide compositional range from 51 to 69% SiO2. Dominant compositions at ∼54, 56, 58.5 and 61–62% SiO2 characterize the glass from the OTI. Glass compositions in the lower – phreatomagmatic – deposits from the Siwi sequence also show multimodal distribution, with peaks at SiO2=55, 57.5, 61–62 and 64% whereas the upper ignimbrite has a predominant composition at 61–62% SiO2. In both cases, mineralogical data and crystal fractionation models suggest that these compositions represent the magmatic signature of a voluminous layered chamber, the compositional gradient of which is the result of fractional crystallization. During two major eruptive stages, probably related to two caldera collapses, the OTI and Siwi ignimbrites represent large outpourings from these magmatic reservoirs. The successive eruptive dynamics, from phreatomagmatic to Plinian, emphasize the role of water in initiating the eruptions, without which the mafic and intermediate magmas probably would not have erupted. Received: February 19, 1993/Accepted October 10, 1993  相似文献   

18.
Mount Drum is one of the youngest volcanoes in the subduction-related Wrangell volcanic field (80×200 km) of southcentral Alaska. It lies at the northwest end of a series of large, andesite-dominated shield volcanoes that show a northwesterly progression of age from 26 Ma near the Alaska-Yukon border to about 0.2 Ma at Mount Drum. The volcano was constructed between 750 and 250 ka during at least two cycles of cone building and ring-dome emplacement and was partially destroyed by violent explosive activity probably after 250 ka. Cone lavas range from basaltic andesite to dacite in composition; ring-domes are dacite to rhyolite. The last constructional activity occurred in the vicinity of Snider Peak, on the south flank of the volcano, where extensive dacite flows and a dacite dome erupted at about 250 ka. The climactic explosive eruption, that destroyed the top and a part of the south flank of the volcano, produced more than 7 km3 of proximal hot and cold avalanche deposits and distal mudflows. The Mount Drum rocks have medium-K, calc-alkaline affinities and are generally plagioclase phyric. Silica contents range from 55.8 to 74.0 wt%, with a compositional gap between 66.8 and 72.8 wt%. All the rocks are enriched in alkali elements and depleted in Ta relative to the LREE, typical of volcanic arc rocks, but have higher MgO contents at a given SiO2, than typical orogenic medium-K andesites. Strontium-isotope ratios vary from 0.70292 to 0.70353. The compositional range of Mount Drum lavas is best explained by a combination of diverse parental magmas, magma mixing, and fractionation. The small, but significant, range in 87Sr/86Sr ratios in the basaltic andesites and the wide range of incompatible-element ratios exhibited by the basaltic andesites and andesites suggests the presence of compositionally diverse parent magmas. The lavas show abundant petrographic evidence of magma mixing, such as bimodal phenocryst size, resorbed phenocrysts, reaction rims, and disequilibrium mineral assemblages. In addition, some dacites and andesites contain Mg and Ni-rich olivines and/or have high MgO, Cr, Ni, Co, and Sc contents that are not in equilibrium with the host rock and indicate mixing between basalt or cumulate material and more evolved magmas. Incompatible element variations suggest that fractionation is responsible for some of the compositional range between basaltic andesite and dacite, but the rhyolites have K, Ba, Th, and Rb contents that are too low for the magmas to be generated by fractionation of the intermediate rocks. Limited Sr-isotope data support the possibility that the rhyolites may be partial melts of underlying volcanic rocks. Received March 13, 1993/Accepted September 10, 1993  相似文献   

19.
Thermal waters of the Ömer–Gecek geothermal field, Turkey, with temperatures ranging from 32 to 92°C vary in chemical composition and TDS contents. They are generally enriched in Na–Cl–HCO3 and suggest deep water circulation. Silica and cation geothermometers applied to the Ömer–Gecek thermal waters yield reservoir temperatures of 75–155°C. The enthalpy–chloride mixing model, which approximates a reservoir temperature of 125°C for the Ömer–Gecek field, accounts for the diversity in the chemical composition and temperature of the waters by a combination of processes including boiling and conductive cooling of deep thermal water and mixing of the deep thermal water with cold water. It is also determined that the solubility of silica in most of the waters is controlled by the chalcedony phase. Equilibrium states of the Ömer–Gecek thermal waters studied by means of the Na–K–Mg triangular diagram, Na–K–Mg–Ca diagram, K–Mg–Ca geoindicator diagram, activity diagrams in the systems composed of Na2O–CaO–K2O–Al2O3–SiO2–CO2–H2O phases, log SI diagrams, and finally the alteration mineralogy indicate that most of the spring and low-temperature well waters in the area can be classified as shallow or mixed waters which are likely to be equilibrated with calcite, chalcedony and kaolinite at predicted temperature ranges similar to those calculated from the chemical geothermometers. It was also observed that mineral equilibrium in the Ömer–Gecek waters is largely controlled by CO2 concentrations.  相似文献   

20.
The Pleistocene-Recent volcanism of this arc extends nearly linearly NNE from northern New Zealand for some 2800 km. Along its western margin lies an active marginal basin (Lau Basin and Havre Trough) which has its southern termination in the Taupo volcanic zone (TVZ, New Zealand). The New Zealand arc segment is developed within a continental crust, whereas the Tonga-Kermadec segments are developed on a ridge system within the oceanic basin. Submarine morphology suggests that the Kermadec volcanoes represent a less advanced stage of evolution relative to those of Tonga.Magmas erupted within the TVZ are dominantly rhyolitic (≈16,000 km3) with subordinate andesites and rare high-alumina tholeiites and dacites. The Kermadec Islands are dominated by tholeiites and basaltic andesites, with subordinate andesites and dacites. The Tongan Islands are dominated by basaltic andesites, with locally developed andesites and dacites. These Tonga-Kermadec lavas are characterised by subcalcic groundmass clinopyroxenes, whereas the younger group of TVZ andesites contain groundmass hypersthene and augite.Geochemically, the TVZ andesites are systematically enriched (relative to those of Tonga-Kermadec) in “incompatible” elements (e.g. K, Rb, Cs, Ba, light REE, U, Th, Zr, Pb), are less Fe-enriched, and contain more radiogenic Sr and Pb (excepting certain 207Pb/204Pb compositions). The evidence points to crustal equilibration of the TVZ andesites prior to eruption.A complete overlap of major and trace element chemistry (including TiO2) is observed between the Kermadec-TVZ tholeiites and basaltic andesites, and the ocean floor tholeiites of the Lau Basin. Compared to the Tongan lavas, those of the Kermadecs exhibit a greater degree of chemical variability, also reflected in the greater heterogeneity in their Pb isotopic compositions. Moreover, many of the Tonga-Kermadec basaltic andesites exhibit more depleted “incompatible” trace element abundances than the Kermadec and TVZ tholeiites.The “primary” magmas of this arc are interpreted to be of basaltic andesite type, derived from Benioff zone melting (essentially anhydrous), but extensively modified by low-pressure crystal fractionation processes. The Kermadec tholeiites are explained as products of relatively shallow upper mantle partial fusion induced during the earlier stages of diapiric rise of Benioff zone-derived magmas, which are sufficiently hot to intersect the peridotite solidus. This should result in the production and intermixing of a series of magmas extending from olivine tholeiite to basaltic andesite composition. The voluminous rhyolites of TVZ are interpreted as the products of crustal fusion involving Mesozoic sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号