首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
In the Rogaland–Vest Agder terrain of the Sveconorwegian Province of SW Norway, two main Sveconorwegian metamorphic phases are reported: a phase of regional metamorphism linked to orogenic thickening (M1) and a phase of low-pressure thermal metamorphism associated with the intrusion of the 931 ± 2 Ma anorthosite-charnockite Rogaland igneous complex (M2). Phase M1 reached granulite facies to the west of the terrane and M2 culminated locally at 800–850 °C with the formation of dry osumilite-bearing mineral associations. Monazite and titanite U-Pb geochronology was conducted on 17 amphibolite- to granulite-facies orthogneiss samples, mainly from a suite of 1050 +2/−8 Ma calc-alkaline augen gneisses, the Feda suite. In these rocks, prograde negatively discordant monazite crystallized during breakdown of allanite and titanite in upper amphibolite facies at 1012–1006 Ma. In the Feda suite and other charnockitic gneisses, concordant to slightly discordant monazite at 1024–997 Ma probably reflects breakdown of biotite during granulite-facies M1 metamorphism. A spread of monazite ages down to 970 Ma in biotite ± hornblende samples possibly corresponds to the waning stage of this first event. In the Feda suite, a well defined monazite growth episode at 930–925 Ma in the amphibolite-facies domain corresponds to major clinopyroxene formation at the expense of hornblende during M2. Growth or resetting of monazite was extremely limited during this phase in the granulite-facies domain, up to the direct vicinity of the anorthosite complex. The M2 event was shortly followed by cooling through ca. 610 °C as indicated by tightly grouped U-Pb ages of accessory titanite and titanite relict inclusions at 918 ± 2 Ma over the entire region. A last generation of U-poor monazite formed during regional cooling below 610 °C, in hornblende-rich samples at 912–904 Ma. This study suggests: (1) that monazite formed during the prograde path of high-grade metamorphism may be preserved; (2) that monazite ages reflect primary or secondary growth of monazite linked to metamorphic reactions involving redistribution of REEs and Th, and/or fluid mobilisation; (3) that the U-Pb system in monazite is not affected by thermal events up to 800–850 °C, provided that conditions were dry during metamorphism. Received: 9 January 1997 / Accepted: 15 April 1998  相似文献   

2.
The Kurtoğlu metamorphic complex, that forms part of the pre-Liassic basement of the Sakarya zone in northern Turkey, consists of at least two tectonic units. Blueschist-facies rocks of unknown metamorphic age in the southern part of the complex are tectonically overlain by Variscan low-pressure high-temperature metamorphic rocks. The latter comprise mica schists and fine-grained gneisses, cut by metaleucogranitic dikes, as well as migmatitic biotite gneisses and subordinate amphibolite intercalations. Structural data indicate that metamorphism and penetrative deformation occurred after dyke intrusion. Peak metamorphic conditions of the mica schists, fine-grained gneisses and metaleucogranites are estimated to ∼650°C and ∼0.4 GPa, based on phase relationships in the system NCKFMASH, Fe–Mg partitioning between garnet and biotite as well as garnet-aluminosilicate-quartz-plagioclase (GASP) and garnet-plagioclase-biotite-quartz (GBPQ) barometry. Peak temperatures of the migmatitic biotite gneisses and amphibolite intercalations are not well constrained but might have been significantly higher (690–740°C), as suggested from hornblende-plagioclase thermometry. 40Ar–39Ar incremental dating on muscovite and biotite fractions from the mica schists and fine-grained gneisses yielded plateau ages of ∼323 Ma. Significantly older model ages of ∼329 and ∼337 Ma were obtained on muscovite fractions from two metaleucogranite samples. These fractions contain both relict igneous and newly formed metamorphic muscovite.  相似文献   

3.
This study focuses on metapelites of the Polinik complex in the Kreuzeck Mts. southeast of the Tauern Window, Eastern Alps, where kyanite — staurolite — garnet gneisses host eclogites and high pressure (HP) amphibolites of the Austroalpine basement. The stable mineral assemblage is garnet — staurolite — biotite — kyanite — quartz. Estimated metamorphic conditions from conventional geothermobarometry are 654±30 °C and 0.9±0.08 GPa, and Average P-T values calculated by THERMOCALC, are 665±15 °C at 0.77±0.09 GPa. Formation of the present mineral association in gneisses is related to the exhumation (D2) stage of hosted eclogites/HP amphibolites within a lateral strike-slip zone.  相似文献   

4.
Summary The Karimnagar granulite terrain is an integral part of the Eastern Dharwar Craton (EDC). It has received much interest because of the only reported granulite facies rocks in the EDC. These granulites contain quartz-free sapphirine-spinel-bearing granulites, kornerupine – bearing granulites, mafic granulites, orthopyroxene-cordierite gneisses, charnockites, amphibolites, dolerite dykes, granite gneisses, quartzites and banded magnetite quartzite. The orthopyroxene-cordierite gneisses occur as enclaves within granite-gneiss in association with banded magnetite quartzites, charnockites and amphibolites. The observed reaction textures, spectacular as they are, have an extraordinary information content within a tiny domain. Coronas, symplectites and resorption textures are of particular interest as they reflect discontinuous or continuous reactions under changing physical conditions. The main mineral assemblages encountered in these gneisses are orthopyroxene – cordierite – biotite – plagioclase – perthite – quartz and garnet – orthopyroxene – cordierite – biotite – quartz – plagioclase – perthite ± sillimanite. Multiphase reaction textures in conjunction with mineral chemical data in the KFMASH system indicate the following reactions: Based on chemographic relationships and petrogenetic grids in the K2O–FeO–MgO–Al2O3–SiO2–H2O (KFMASH) system, a sequence of prograde (early stage), isothermal decompression (middle stage) and retrograde (late stage) reactions (‘back reactions’ and hydration reactions) are inferred. Relatively lower PT estimates (0.35 GPa/550–750 °C) obtained from the different geothermobarometers are attributed to late Fe–Mg re-equilibration during cooling. Therefore, the convergence method has been applied to retrieve simultaneously the PT conditions of the thermal peak of metamorphism. The near thermal peak condition of metamorphism estimated by the convergence method are 850 °C/0.62 GPa. The PT estimates define a retrograde trajectory with substantial decompression.  相似文献   

5.
Sapphirine-bearing orthopyroxene-kyanite (Opx-Ky) and -sillimanite (Opx-Sil) granulites have been found in the Lewisian complex of South Harris in northwest Scotland. In the Opx-Ky granulites, orthopyroxene and kyanite are intergrown in a stable mineral assemblage, which indicates metamorphic condition at 800–900 °C >12 kbar. Sillimanite inclusions within orthopyroxene suggest that sillimanite formed earlier; conditions are estimated at 950 ± 30 °C at 10 kbar from orthopyroxene isopleths for aluminous orthopyroxene (<9.7 wt%). In the Opx-Sil granulite, the orthopyroxene + sillimanite + garnet + sapphirine assemblage is stable at the peak metamorphic stages, indicating P-T condition of 930–950 °C, >8 kbar according to the FMAS petrogenetic grid, and similar conditions were obtained by using orthopyroxene-garnet geothermobarometers. The two types of orthopyroxene-aluminosilicate granulites indicate that the peak metamorphic conditions were over 900 °C, compatible with ultra-high temperature metamorphism. As accessory sapphirine occurs in several assemblages and with different compositions; it is interpreted to be formed at different stages of the metamorphism. These granulites were formed during Early Proterozoic high-grade metamorphism due to the emplacement of the South Harris Igneous Complex at c. 2170–1870 Ma, and are not related to the major metamorphic episode of the Badcallian/Inverian metamorphism at c. 2700–2500 Ma in the mainland Lewisian. Received: 17 July 1998 / Accepted 8 March 1999  相似文献   

6.
In the Boi Massif of Western Timor the Mutis Complex, which is equivalent to the Lolotoi Complex of East Timor, is composed of two lithostratigraphical components: various basement schists and gneisses; and the dismembered remnants of an ophiolite. Cordierite-bearing pelitic schists and gneisses carry an early mineral assemblage of biotite + garnet + plagioclase + Al-silicate, but contain no prograde muscovite; sillimanite occurs in a textural mode which suggests that it replaced and pseudomorphed kyanite at an early stage and some specimens of pelitic schist contain tiny kyanite relics in plagioclase. Textural relations between, and mineral chemistries of, ferro-magnesian phases in these pelitic chists and gneisses suggest that two discontinuous reactions and additional continuous compositional changes have been overstepped, possibly with concomitant anatexis, as a result of decrease in Pload during high temperature metamorphism. The simplified reactions are: garnet and/or biotite + sillimanite + quartz + cordierite + hercynite + ilmenite + excess components. P-T conditions during the development of the early mineral assemblage in the pelitic gneisses are estimated to have been P + 10 kbar and T > 750°C, based upon the plagioclase-garnet-Al-silicate-quartz geobarometer and the garnet-biotite geothermometer. P-T conditions during the subsequent development of cordierite-bearing mineral assemblages in the pelitic gneisses are estimated to have been P + 5 kbar and T + 700°C with XH2O < 0.5, based upon the Fe content of cordierite occurring in the assemblage quartz + plagioclase + sillimanite + biotite + garnet + cordierite coexisting with melt. Final equilibration between some of the phases suggests that conditions dropped to P > 2.3 kbar and T > 600°C. A similar exhumation P-T path is suggested for the pelitic schists with early metamorphic conditions of P > 6.2 kbar and T > 745°C and subsequent development of cordierite under conditions in the range P = 3-4 kbar and T = 600-700°C. The tectonic implications of these P-T estimates are discussed and it is concluded that the P-T path followed by these rocks was caused by decompression during rifting and synmetamorphic ophiolite emplacement resulting from processes during the initiation and development of a convergent plate junction located in Southeast Asia during late Jurassic to Cretaceous time.  相似文献   

7.
Eclogites and related high‐P metamorphic rocks occur in the Zaili Range of the Northern Kyrgyz Tien‐Shan (Tianshan) Mountains, which are located in the south‐western segment of the Central Asian Orogenic Belt. Eclogites are preserved in the cores of garnet amphibolites and amphibolites that occur in the Aktyuz area as boudins and layers (up to 2000 m in length) within country rock gneisses. The textures and mineral chemistry of the Aktyuz eclogites, garnet amphibolites and country rock gneisses record three distinct metamorphic events (M1–M3). In the eclogites, the first MP–HT metamorphic event (M1) of amphibolite/epidote‐amphibolite facies conditions (560–650 °C, 4–10 kbar) is established from relict mineral assemblages of polyphase inclusions in the cores and mantles of garnet, i.e. Mg‐taramite + Fe‐staurolite + paragonite ± oligoclase (An<16) ± hematite. The eclogites also record the second HP‐LT metamorphism (M2) with a prograde stage passing through epidote‐blueschist facies conditions (330–570 °C, 8–16 kbar) to peak metamorphism in the eclogite facies (550–660 °C, 21–23 kbar) and subsequent retrograde metamorphism to epidote‐amphibolite facies conditions (545–565 °C and 10–11 kbar) that defines a clockwise P–T path. thermocalc (average P–T mode) calculations and other geothermobarometers have been applied for the estimation of P–T conditions. M3 is inferred from the garnet amphibolites and country rock gneisses. Garnet amphibolites that underwent this pervasive HP–HT metamorphism after the eclogite facies equilibrium have a peak metamorphic assemblage of garnet and pargasite. The prograde and peak metamorphic conditions of the garnet amphibolites are estimated to be 600–640 °C; 11–12 kbar and 675–735 °C and 14–15 kbar, respectively. Inclusion phases in porphyroblastic plagioclase in the country rock gneisses suggest a prograde stage of the epidote‐amphibolite facies (477 °C and 10 kbar). The peak mineral assemblage of the country rock gneisses of garnet, plagioclase (An11–16), phengite, biotite, quartz and rutile indicate 635–745 °C and 13–15 kbar. The P–T conditions estimated for the prograde, peak and retrograde stages in garnet amphibolite and country rock are similar, implying that the third metamorphic event in the garnet amphibolites was correlated with the metamorphism in the country rock gneisses. The eclogites also show evidence of the third metamorphic event with development of the prograde mineral assemblage pargasite, oligoclase and biotite after the retrograde epidote‐amphibolite facies metamorphism. The three metamorphic events occurred in distinct tectonic settings: (i) metamorphism along the hot hangingwall at the inception of subduction, (ii) subsequent subduction zone metamorphism of the oceanic plate and exhumation, and (iii) continent–continent collision and exhumation of the entire metamorphic sequences. These tectonic processes document the initial stage of closure of a palaeo‐ocean subduction to its completion by continent–continent collision.  相似文献   

8.
New U–Pb geochronology for an extensive exposure of high-pressure granulites in the East Lake Athabasca region of the western Canadian shield is consistent with a history characterized by 2.55 Ga stabilization of cratonic lithosphere, 650 million years of lower crustal residence and cratonic stability, and 1.9 Ga reactivation of the craton during lithospheric attenuation and asthenospheric upwelling. High precision single-grain and fragment zircon data define distinctive discordia arrays between 2.55 and 1.9 Ga. U–Pb ion microprobe spot analyses yield a similar range of U–Pb dates with no obvious correlation between date and cathodoluminescence zonation. We attribute the complex U–Pb zircon systematics to growth of the primary populations during a 2.55 Ga high-pressure granulite facies event (~1.3 GPa, 850°C) recorded by the dominant mineral assemblage of the mafic granulite gneisses, with subsequent zircon recrystallization and minor secondary zircon growth during a second high-pressure granulite facies event (1.0 GPa, ~800°C) at 1.9 Ga. The occurrence of two discrete granulite facies metamorphic events in the lower crust, separated by an interval of 650 million years that included isobaric cooling for at least some of this time, suggests that the rocks resided at lower crustal depths until 1.9 Ga. We infer that this phase of lower crustal residence and little tectonic activity is coincident with an extended period of cratonic stability. Detailed structural and thermochronological datasets indicate that multistage unroofing of the lower crustal rocks occurred in the following 200 million years. Extended lower crustal residence would logically be the history inferred for lower crust in most cratonic regions, but the unusual aspect of the history in the East Lake Athabasca region is the subsequent lithospheric reactivation that initiated transport of the lower crust to the surface. We suggest that a weakened strength profile related to the 1.9 Ga heating left the lithosphere susceptible to far-field tectonic stresses from bounding orogens that drove the lower crustal exhumation. An ultimate return to cratonic stability is responsible for the preservation of this extensive lower crustal exposure since 1.7 Ga.  相似文献   

9.
The pre-Mesozoic, mainly Variscan metamorphic basement of the Col de Bérard area (Aiguilles Rouges Massif, External domain) consists of paragneisses and micaschists together with various orthogneisses and metabasites. Monazite in metapelites was analysed by the electron microprobe (EMPA-CHIME) age dating method. The monazites in garnet micaschists are dominantly of Variscan age (330–300 Ma). Garnet in these rocks displays well developed growth zonations in Fe–Mg–Ca–Mn and crystallized at maximal temperatures of 670°C/7 kbar to the west and 600°C/7–8 kbar to the east. In consequence the monazite is interpreted to date a slightly pressure-dominated Variscan amphibolite-facies evolution. In mylonitic garnet gneisses, large metamorphic monazite grains of Ordovician–Silurian (~440 Ma) age but also small monazite grains of Variscan (~300 Ma) age were discovered. Garnets in the mylonitic garnet gneisses display high-temperature homogenized Mg-rich profiles in their cores and crystallized near to ~800°C/6 kbar. The Ordovician–Silurian-age monazites can be assigned to a pre-Variscan high-temperature event recorded by the homogenised garnets. These monazite age data confirm Ordovician–Silurian and Devonian–Carboniferous metamorphic cycles which were already reported from other Alpine domains and further regions in the internal Variscides.  相似文献   

10.
A detailed study based on textural observations combined with microanalysis [back scattered electron imaging (BSE) and electron microprobe analysis (EMPA)] and microstructural data transmission electron microscopy (TEM) has been made of K-feldspar micro-veins along quartz–plagioclase phase and plagioclase–plagioclase grain boundaries in granulite facies, orthopyroxene–garnet-bearing gneiss's (700–825 °C, 6–8 kbar) from the Val Strona di Omegna, Ivrea–Verbano Zone, northern Italy. The K-feldspar micro-veins are commonly associated with quartz and plagioclase and are not found in quartz absent regions of the thin section. This association appears to represent a localised reaction texture resulting from a common high grade dehydration reaction, namely: amphibole + quartz = orthopyroxene + clinopyroxene + plagioclase + K-feldspar + H2O, which occurred during the granulite facies metamorphism of these rocks. There are a number of lines of evidence for this. These include abundant Ti-rich biotite, which was apparently stable during granulite facies metamorphism, and total lack of amphibole, which apparently was not. Disorder between Al and Si in the K-feldspar indicates crystallisation at temperatures >500 °C. Myrmekite and albitic rim intergrowths in the K-feldspar along the K-feldspar–plagioclase interface could only have formed at temperatures >500–600 °C. Symplectic intergrowths of albite and Ca-rich plagioclase between these albitic rim intergrowths and plagioclase suggest a high temperature grain boundary reaction, which most likely occurred at the start of decompression in conjunction with a fluid phase. Relatively high dislocation densities (>2 × 109 to 3 × 109/cm2) in the K-feldspar suggest plastic deformation at temperatures >500 °C. We propose that this plastic deformation is linked with the extensional tectonic environment present during the mafic underplating event responsible for the granulite facies metamorphism in these rocks. Lastly, apparently active garnet grain rims associated with side inclusions of K-feldspar and quartz and an exterior K-feldspar micro-vein indicate equilibrium temperatures within 20–30 °C of the peak metamorphic temperatures estimated for the sample (770 °C). Contact between these K-feldspar micro-veins and Fe-Mg silicate minerals, such as garnet, orthopyroxene, clinopyroxene or biotite along the interface, is observed to be very clean with no signs of melt textures or alteration to sheet silicates. This lends support to the idea that these micro-veins did not originate from a melt and, if fluid induced, that the water activity of these fluids must have been relatively low. All of these lines of evidence point to a high grade origin for the K-feldspar micro-veins and support the hypothesis that they formed during the granulite facies metamorphism of the metabasite layers in an extensional tectonic environment as the consequence of localised dehydration reactions involving the breakdown of amphibole in the presence of quartz to orthopyroxene, clinopyroxene, plagioclase, K-feldspar and H2O. It is proposed that the dehydration of the metabasite layers to an orthopyroxene–garnet-bearing gneiss over a 4-km traverse in the upper Val Strona during granulite facies metamorphism was a metasomatic event initiated by the presence of a high-grade, low H2O activity fluid (most likely a NaCl–KCl supercritical brine), related to the magmatic underplating event responsible for the Mafic Formation; and that this dehydration event did not involve partial melting. Received: 15 February 2000 / Accepted: 26 June 2000  相似文献   

11.
Located adjacent to the Banded Gneissic Complex, Rampura–Agucha is the only sulfide ore deposit discovered to date within the Precambrian basement gneisses of Rajasthan. The massive Zn–(Pb) sulfide orebody occurs within graphite–biotite–sillimanite schist along with garnet–biotite–sillimanite gneiss, calc–silicate gneisses, amphibolites, and garnet-bearing leucosomes. Plagioclase–hornblende thermometry in amphibolites yielded a peak metamorphic temperature of 720–780°C, whereas temperatures obtained from Fe–Mg exchange between garnet and biotite (580–610°C) in the pelites correspond to postpeak resetting. Thermodynamic considerations of pertinent silicate equilibria, coupled with sphalerite geobarometry, furnished part of a clockwise PTt path with peak PT of ∼6.2 kbar and 780°C, attained during granulite grade metamorphism of the major Zn-rich stratiform sedimentary exhalative deposits orebody and its host rocks. Arsenopyrite composition in the metamorphosed ore yielded a temperature [and log f(S 2)] range of 352°C (−8.2) to 490°C (−4.64), thus indicating its retrograde nature. Contrary to earlier research on the retrogressed nature of graphite, Raman spectroscopic studies on graphite in the metamorphosed ore reveal variable degree of preservation of prograde graphite crystals (490 ± 43°C with a maximum at 593°C). The main orebody is mineralogically simple (sphalerite, pyrite, pyrrhotite, arsenopyrite, galena), deformed and metamorphosed while the Pb–Ag-rich sulfosalt-bearing veins and pods that are irregularly distributed within the hanging wall calc–silicate gneisses show no evidence of deformation and metamorphism. The sulfosalt minerals identified include freibergite, boulangerite, pyrargyrite, stephanite, diaphorite, Mn–jamesonite, Cu-free meneghinite, and semseyite; the last three are reported from Agucha for the first time. Stability relations of Cu-free meneghinite and semseyite in the Pb–Ag-rich ores constrain temperatures at >550°C and <300°C, respectively. Features such as (1) low galena–sphalerite interfacial angles, (2) presence of multiphase sulfide–sulfosalt inclusions, (3) microcracks filled with galena (±pyrargyrite) without any hydrothermal alteration, and (4) high contents of Zn, Ag (and Sb) in galena, indicate partial melting in the PbS–Fe0.96S–ZnS–(1% Ag2S ± CuFeS2) system, which was critical for metamorphic remobilization of the Rampura–Agucha deposit.  相似文献   

12.
Summary ?Diffusion modeling of zoning profiles in garnet rims from mafic granulites is used to estimate cooling rates in the Proterozoic basement of Sri Lanka, which represents a small, but important fragment of the Gondwana super-continent. Metamorphic peak temperatures and pressures, estimated with two-pyroxene thermometry and garnet–clinopyroxene–plagioclase–quartz (GADS) barometry, yield 875±20 °C and 9.0±0.1 kbar. These peak metamorphic conditions are slightly higher than results obtained by garnet-biotite Fe–Mg exchange thermometry of 820±20 °C. Reset flat zoning profiles were observed in most garnets. Only narrow garnet rims touching biotite exhibit retrograde zoning in terms of Fe and Mg exchange. The garnet zoning observed requires a slow cooling history. Equilibrium was achieved along grain boundaries during or close to peak metamorphism. During subsequent cooling to lower temperatures, only local exchange between garnet and biotite occurred. A cooling rate of 1–5 °C/Ma is estimated. The estimated temperature-time history from garnet profiles is in good agreement with the cooling history inferred from mineral radiogenic ages in the literature. Received December 11, 2001; revised version accepted August 28, 2002  相似文献   

13.
The cooling and tectonic history of the Higher Himalayan Crystallines (HHC) in southwest Zanskar (along the Kishtwar-Padam traverse) is constrained by K-Ar biotite and fission-track (FT) apatite and zircon ages. A total of nine biotite samples yields ages in the range of 14–24 Ma, indicating the post-metamorphic cooling of these rocks through ∼ 300°C in the Miocene. Overall, the ages become younger away from the Zanskar Shear Zone (ZSZ), which marks the basement-cover detachment fault between the HHC and the Tethyan sedimentary zone, towards the core of the HHC. The same pattern is also observed for the FT apatite ages, which record the cooling of the rocks through ∼ 120°C. The apatite ages range from 11 Ma in the vicinity of the ZSZ to 4 Ma at the granitic core of the HHC. This pattern of discordant cooling ages across the HHC in southwest Zanskar reveals an inversion of isotherms due to fast uplift-denudation (hence cooling) of the HHC core, which is, in turn, related to domal uplift within the HHC. The Chisoti granite gneiss is the exposed domal structure along the studied traverse. Cooling history of two granite gneisses at the core of the HHC is also quantified with the help of the biotite, zircon and apatite ages; the time-temperatures thus obtained indicate a rapid pulse of cooling at ∼ 6 Ma, related to accelerated uplift-denudation of the HHC core at this time. Long-term denudation rates of 0.5–0.7 mm/yr are estimated for the high-grade rocks of the Higher Himalaya in southwest Zanskar over the past 4.0–5.5 m.yr.  相似文献   

14.
The Dongpo tungsten ore deposit, the largest scheelite skarn deposit in China, is located at the contact of a 172-m. y. biotite granite with a Devonian marble. The mineralization associated with the granite includes W, Bi-Mo, Cu-Sn and Pb-Zn ores. Several W mineralization stages are shown by the occurrence of ore in massive skarn deposits and in later cross-cutting veins. The high garnet/pyroxene ratio, the hedenbergite and diopside-rich pyroxene and the andradite-rich garnet show the deposit belongs to the oxidized skarn type. Detailed fluid inclusion studies of granite, greisen, skarn and vein samples reveal three types of fluid inclusion: (1) liquid-rich, (2) gas-rich and (3) inclusions with several daughter minerals. Type (3) is by far the most common in both skarn and vein samples. The dominant daughter mineral in fluid inclusions is rhembic, highly birefringent, and does not dissolve on heating even at 530°C. We assume that this mineral is calcite. The liquid phase in most of the fluid inclusions has low to moderate salinities: 0–15 wt. %; in a few has higher salinities (30–40 wt. % NaCl equivalent). The homogenization temperatures of inclusions in the skarn stage range from 350°C to 530°C, later tungsten mineralization-stage inclusions homogenize between 200°C and 300°C, as do inclusions in veins. Fluid inclusions in granite and greisen resemble those of the late tungsten mineralization stage, with low salinity and homogenization temperatures of 200°–360°C. The tungsten-forming fluids are probably a mixture that came from biotite granite and the surrounding country rocks.  相似文献   

15.
A sequence of mineral associations was examined in eclogitized basites of the Krasnaya Guba dike field in the Belomorian Mobile Belt. Two morphological types of eclogite and eclogite-like rocks were recognized: (1) eclogite rocks that developed after ferrogabbro dikes and completely replaced these dikes from contact to contact and (2) eclogite-like rocks that developed after gabbronorites in zones of ductile deformations and shearing. According to data mineral geothermobaromety, both rock types were formed within temperature and pressure ranges corresponding to high-pressure and high-temperature amphibolite facies at T = 700 ± 40°C and P = 10.0 ± 0.5 kbar. The peak metamorphic parameters of the host gneisses are analogous. The decompressional stage, which is unambiguously identified by reaction textures, occurred at 630–660°C and 7.9–8.2 kbar. As the temperature and, first of all, pressure decreased, the SiO2 activity in the fluid systematically varied. The eclogitization of the basites took place locally in relation to fluid fluxes, which were restricted to zones of intense deformations, at variable SiO2 activity. The rocks show evidence of two stages of post-eclogite amphibolization. Older amphibolization 1 was coeval with the late prograde metamorphic stage (T = 650°C, P = 10–11 kbar). Younger amphibolization 2 affected eclogitized basite dikes and unaltered gabbronorites (together with their host gneisses) over large areas. This process coincided with decompression (T = 580°C, P = 7–8 kbar) and was likely accompanied by the exhumation of deep zones of BMB to upper-middle crustal levels.  相似文献   

16.
Summary Integration of new mineral chemical, geochronological and structural data from the Texel Complex yielded information on (re)crystallization and deformation processes in metapelites, eclogites and tonalitic orthogneisses during eclogite facies metamorphism. Maximum PT conditions reached 1.2 to 1.4 GPa and 540–620 °C in the Upper Cretaceous. In tonalitic orthogneisses and metapelites, substantial garnet growth took place prior to eclogite facies metamorphism and Sm–Nd data indicate the presence of pre-Cretaceous mineral relics. In contrast, complex garnet-growth and -resorption processes are inferred for eclogites, which produced characteristic atoll microstructures and occurred close to the pressure peak of a single, coherent high pressure event. Garnet Sm–Nd data indicate eclogite facies crystallization at 85 ± 5 Ma. While eclogites retained information on the maximum burial stage, matrix phases in metapelites and orthogneisses were intensely recrystallized during the amphibolite facies metamorphic decompression. All the meso- and macro-scale deformation structures formed during the high pressure event and subsequent exhumation. The major mylonitic foliation is represented by the high pressure phases but was refolded during amphibolite facies exhumation. A biotite-whole-rock Rb–Sr age of 70–80 Ma indicates that cooling below about 300 °C occurred in the Upper Cretaceous. Supplementary material to this paper is available in electronic form at Appendix available as electronic supplementary material  相似文献   

17.
Fourteen cogenetic quartz-biotite pairs from gneissic wall rocks, and 22 quartz, 16 calcite, and 8 biotite samples and 1 sample of albite from fissure-filling veins in the Western Tauern Window were analyzed for their oxygen isotope composition. The δ18O values show the following ranges: (a) quartz, +6.0 in fissure in amphibolite to +10.3 in fissures in granite gneisses; (b) biotite, +2.5 to +6.7; and (c) calcite, +7.0 to +8.9. The δ18O value of albite is +7.1. Only a small variation in the hydrogen isotope composition of biotite was detected. δD values of 7 biotites from gneisses and fissure fillings varied from −54 to −59. There is no significant difference in the hydrogen isotope composition of fissure biotite and biotite from the host rock. This indicates that a common water source of probably deep-seated origin existed, with no detectable contribution from isotopically light meteoric water. Oxygen isotope fractionations between coexisting quartz and biotite of 3.5 to 7.0‰ indicate equilibrium temperatures of 640 ° to 450 ° C, respectively, using the fractionation curve of Hoernes and Friedrichsen (1978). The highest temperatures of equilibration are for the rocks at the Alpenhauptkamm, i.e., the central part of the Tauern Window. Successively lower temperatures are found to the north and to the south of the Alpenhauptkamm along a traverse through Penninic units of the Tauern Window. The metamorphism of the host rocks and the filling of fissures has occurred at the same temperature in a given sample locality.  相似文献   

18.
A temperature–time path was constructed for high-temperature low-pressure (HT–LP) migmatites of the Bayerische Wald, internal zone of the Variscan belt, Germany. The migmatites are characterised by prograde biotite dehydration melting, peak metamorphic conditions of approximately 850 °C and 0.5–0.7 GPa and retrograde melt crystallisation at 800 °C. The time-calibration of the pressure–temperature path is based on U–Pb dating of single zircon and monazite grains and titanite separates, on 40Ar/39Ar ages obtained by incremental heating experiments on hornblende separates, single grains of biotite and K-feldspar, and on 40Ar/39Ar spot fusion ages of biotite determined in situ from sample sections. Additionally, crude estimates of the duration of peak metamorphism were derived from garnet zoning patterns, suggesting that peak temperatures of 850 °C cannot have prevailed much longer than 2.5 Ma. The temperature–time paths obtained for two areas approximately 30 km apart do not differ from each other considerably. U–Pb zircon ages reflect crystallisation from melt at 850–800 °C at 323 Ma (southeastern area) and 326 Ma (northwestern area). The U–Pb ages of monazite mainly coincide with those from zircon but are complicated by variable degrees of inheritance. The preservation of inherited monazite and the presence of excess 206Pb resulting from the incorporation of excess 230Th in monazite formed during HT–LP metamorphism suggest that monazite ages in the migmatites of the Bayerische Wald reflect crystallisation from melt at 850–800 °C and persistence of older grains at these temperatures during a comparatively short thermal peak. The U–Pb ages of titanite (321 Ma) and 40Ar/39Ar ages of hornblende (322–316 Ma) and biotite (313–309 Ma) reflect cooling through the respective closure temperatures of approximately 700, 570–500 and 345–310 °C published in the literature. Most of the feldspars' ages (305–296 Ma) probably record cooling below 150–300 °C, while two grains most likely have higher closure temperatures. The temperature–time paths are characterised by a short thermal peak, by moderate average cooling rates and by a decrease in cooling rates from 100 °C/my at temperatures between 850–800 and 700 °C to 11–16 °C/my at temperatures down to 345–310 °C. Further cooling to feldspar closure for Ar was probably even slower. The lack of decompressional features, the moderate average cooling rates and the decline of cooling rates with time are not easily reconciled with a model of asthenospheric heating, rapid uplift and extension due to lithospheric delamination as proposed elsewhere. Instead, the high peak temperatures at comparatively shallow crustal levels along with the short thermal peak require external advective heating by hot mafic or ultramafic material. Received: 7 July 1999 / Accepted: 28 October 1999  相似文献   

19.
Fault bound blocks of granulite and enderbite occur within upperamphibolite-facies migmatitic tonalitic–trondhjemitic–granodioritic(TTG) gneisses of the Iisalmi block of Central Finland. Theseunits record reworking and partial melting of different levelsof the Archean crust during a major tectonothermal event at2·6–2·7 Ga. Anhydrous mineral assemblagesand tonalitic melts in the granulites formed as a result ofhydrous phase breakdown melting reactions involving amphiboleat peak metamorphic conditions of 8–11 kbar and 750–900°C.A nominally fluid-absent melting regime in the granulites issupported by the presence of carbonic fluid inclusions. Thegeochemical signature of light rare earth element (LREE)-depletedmafic granulites can be modelled by 10–30 wt % partialmelting of an amphibolite source rock leaving a garnet-bearingresidue. The degree of melting in intermediate granulites isinferred to be less than 10 wt % and was restricted by the availabilityof quartz. Pressure–temperature estimates for the TTGgneisses are significantly lower than for the granulites at660–770°C and 5–6 kbar. Based on the P–Tconditions, melting of the TTG gneisses is inferred to haveoccurred at the wet solidus in the presence of an H2O-rich fluid.A hydrous mineralogy, abundant aqueous fluid inclusions andthe absence of carbonic inclusions in the gneisses are in accordancewith a water-fluxed melting regime. Low REE contents and strongpositive Eu anomalies in most leucosomes irrespective of thehost rock composition suggest that the leucosomes are not meltcompositions, but represent plagioclase–quartz assemblagesthat crystallized early from felsic melts. Furthermore, similarplagioclase compositions in leucosomes and adjacent mesosomesare not a ‘migmatite paradox’, as both record equilibrationwith the same melt phase percolating along grain boundaries. KEY WORDS: Archean continental crust; fluid inclusion; granulite; migmatite; partial melting  相似文献   

20.
Multiple eruptions of silicic magma (dacite and rhyolites) occurred over the last ~3 My in the Kos-Nisyros volcanic center (eastern Aegean sea). During this period, magmas have changed from hornblende-biotite-rich units with low eruption temperatures (≤750–800°C; Kefalos and Kos dacites and rhyolites) to hotter, pyroxene-bearing units (>800–850°C; Nisyros rhyodacites) and are transitioning back to cooler magmas (Yali rhyolites). New whole-rock compositions, mineral chemistry, and zircon Hf isotopes show that these three types of silicic magmas followed the same differentiation trend: they all evolved by crystal fractionation and minor crustal assimilation (AFC) from parents with intermediate compositions characterized by high Sr/Y and low Nb content, following a wet, high oxygen fugacity liquid line of descent typical of subduction zones. As the transition between the Kos-Kefalos and Nisyros-type magmas occurred immediately and abruptly after the major caldera collapse in the area (the 161 ka Kos Plateau Tuff; KPT), we suggest that the efficient emptying of the magma chamber during the KPT drew out most of the eruptible, volatile-charged magma and partly solidified the unerupted mush zone in the upper crust due to rapid unloading, decompression, and coincident crystallization. Subsequently, the system reestablished a shallow silicic production zone from more mafic parents, recharged from the mid to lower crust. The first silicic eruptions evolving from these parents after the caldera collapse (Nisyros units) were hotter (up to >100°C) than the caldera-forming event and erupted from reservoirs characterized by different mineral proportions (more plagioclase and less amphibole). We interpret such a change as a reflection of slightly drier conditions in the magmatic column after the caldera collapse due to the decompression event. With time, the upper crustal intermediate mush progressively transitioned into the cold-wet state that prevailed during the Kefalos-Kos stage. The recent eruptions of the high-SiO2 rhyolite on Yali Island, which are low temperature and hydrous phases (sanidine, quartz, biotite), suggest that another large, potentially explosive magma chamber is presently building under the Kos-Nisyros volcanic center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号