首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A correct understanding of the dynamical effect of solar radiation exerted on fluffy dust particles can be achieved with assistance of a light scattering theory as well as the equation of motion. We reformulate the equation of motion so that the radiation pressure and the Poynting-Robertson effect on fluffy grains are given in both radial and nonradial directions from the center of the Sun. This allows numerical estimates of these radiation forces on fluffy dust aggregates in the framework of the discrete dipole approximation, in which the first term of the scattering coefficients in Mie theory determines the polarizability of homogeneous spheres forming the aggregates.The nonsphericity in shape turns out to play a key role in the dynamical evolution of dust particles, while its consequence depends on the rotation rate and axis of the grains. Unless a fluffy dust particle rapidly revolves on its randomly oriented axis, the nonradial radiation forces may prevent, apart from the orbital eccentricity and semimajor axis, the orbital inclination of the particle from being preserved in orbit around the Sun. However, a change in the inclination is most probably controlled by the Lorentz force as a consequence of the interaction between electric charges on the grains and the solar magnetic field. Although rapidly and randomly rotating grains spiral into the Sun under the Poynting-Robertson effect in spite of their shapes and structures, fluffy grains drift inward on time scales longer at submicrometer sizes and shorter at much larger sizes than spherical grains of the same sizes. Numerical calculations reveal that the dynamical lifetimes of fluffy particles are determined by the material composition of the grains rather than by their morphological structures and sizes. The Poynting-Robertson effect alone is nevertheless insufficient for giving a satisfactory estimate of lifetimes for fluffy dust grains since their large ratios of cross section to mass would reduce the lifetimes by enhancing the collisional probabilities. We also show that the radiation pressure on a dust particle varies with the orbital velocity of the particle but that this effect is negligibly small for dust grains in the Solar System.  相似文献   

2.
The Kelperian motion of dust particles in the solar system is mainly influenced by the electromagnetic and plasma Poynting-Robertson drag. The first force is isotropic while the second one shows latitudinal variations due to the observed differences of the solar wind parameters in the ecliptic plane and over the solar poles. Close to the Sun other effects become important, e.g. sublimation and sputtering, as well as for submicron particles Lorentz scattering has to be taken into account. These forces are very weak for dust grains of moderate size (10–100 µ) not too close (>0.03 AU) to the Sun and are neglected here. Assuming that the general form of the latidudinally dependent force is a series expansion in Legendre polynomials, we have studied the averaged equations of motion for the classical elements and found the first integral of them. The general character of motion is the same as for the classical Poynting-Robertson drag: particles spiral towards the Sun. The new features in the orbital evolution under the latitudinally dependent force as compared with the isotropic Poynting-Robertson drag are:
  1. not only the semimajor axisa and the eccentricity ε but also the argument of the perihelion ω varies with time,
  2. the rate of change ofa, ε, ω depends on the inclination.
An example of particle trajectories in the phase space of elements is presented.  相似文献   

3.
Guy J. Consolmagno 《Icarus》1980,43(2):203-214
The equations describing the change in orbital elements of interplanetary dust due to Lorentz-force accelerations are presented in a simplified form. Such accelerations depend on the charge state of the dust; results of theoretical calculations for five possible dust materials are presented. Under present-day conditions, it is possible that semiconducting material such as graphite might carry a net voltage near zero, compared with a roughly 10-V charge expected for other grains. The scattering of dust by a randomly changing magnetic field can be viewed analogously to the dust diffusing in space; the equations presented thus can be used to interpret observations of the present distribution of dust in terms of its possible sources and sinks. The stronger magnetic fields of the early solar system would have led to more vigorous scattering of the dust; particles as large as 1 mm could have been significantly transported by Lorentz scattering during this time.  相似文献   

4.
Abrupt or gradual disintegration of the interplanetary dust particle causes increase of its distance from the Sun due to the solar radiation pressure. The problem of the orbital evolution of the interplanetary dust particles under such disintegration processes is discussed. The process of gradual disintegration due to the solar wind particles is calculated in detail. Obtained results represent corrections to the changes of orbital elements for the Poynting-Robertson effect and effect of the solar wind.  相似文献   

5.
The particles making up the Jovian ring may be debris which has been excavated by micrometeoroids from the surfaces of many unseen (R ? 1 km) parent bodies (or “mooms” as we will occasionally call them) residing in the ring. A distribution of particle sizes exists: large objects are sources for the small visible ring particles and also account for the absorption of charged particles noted by Pioneer; the small grains are generated by micrometeoroid impacts, by jostling collisions among different-sized particles, and by self-fracturing due to electrostatic stresses. The latter are most effective in removing surface asperities to thereby produce smooth and crudely equidimensional grains. The presence of intermediate-sized (radius of several to several hundred microns) objects is also expected; these particles will have a total area comparable to the area of the visible ring particles. The nominal size (?2 μm) of the visible particles derived from their forward-scattering characteristics is caused, at least in part, by a selection effect but may also reflect a fundamental grain size or the preferential generation of certain sizes along with the destruction of others. The tiny ring particles have short lifetimes (?102?103 years) limited by erosion due to sputtering and meteoroid impacts. Plasma drag significantly modifies orbits in ~102 years but Poynting-Robertson drag is not effective (TPR ~ 105 years) in removing debris. The ring width is influenced by the distribution of source satellites, by the initial ejection velocity off them, by electromagnetic scattering, and by solar radiation forces. In the absence of electromagnetic forces, debris will reimpact a mother satellite or collide with another particle in about 10 years. A relative drift between different-sized particles, caused by a lessened effective gravity due to the Lorentz force, will substantially shorten these times to less than a month. The ring thickness is determined by a balance between initial conditions (abetted perhaps by electromagnetic scattering) and collisional damping; existence of the “halo” over the diffuse disk compared to its relative absence over the bright ring indicates the presence of mooms in the bright ring but not in the faint disk. Small satellites (R ? 1 km) will not reaccumulate colliding dust grains whereas satellites having the size of J14 or J16 may be able to do so, depending upon their precise shape, size, density, and location. Visible ring structure could indicate separate source satellites. The particles in the faint inner disk are delivered from the bright ring by orbital evolution principally under plasma drag. The halo is comprised of small particles (~0.1 μm) partially drawn out of the faint disk by interactions with the tilted Jovian magnetic field.  相似文献   

6.
A more complete expression for the radiation force on a small particle in the solar system is given which includes the effect of asymmetry of the thermal reradiation and also of inelastic scattering such as fluorescence. Both the Poynting-Robertson drag and the Yarkovsky effect are affected by such asymmetries and are incorporated into the formalism. For non-spherical particles the direction of the radiation force will no longer coincide with the solar irradiation.  相似文献   

7.
A spacecraft that generates an electrostatic charge on its surface in a planetary magnetic field will be subject to a perturbative Lorentz force. Active modulation of the surface charge can take advantage of this electromagnetic perturbation to modify or to do work on the spacecraft’s orbit. Lagrange’s planetary equations are derived using the Lorentz force as the perturbation on a Keplerian orbit, incorporating orbital inclination and true anomaly for the first time for an electrostatically charged vehicle. The planetary equations reveal that orbital inclination is a second-order effect on the perturbation, explaining results found in earlier studies through numerical integration. All of the orbital elements are coupled, but the coupling notably does not depend on the magnitude of the electrostatic charge or on the strength of the magnetic field. Analytical expressions that characterize this coupling are tested with a propellantless escape example at Jupiter. A closed-form solution exists that constrains the set of equatorial orbits for which planetary escape is possible, and a sufficient condition is identified for escape from inclined orbits. The analytical solutions agree with results from the numerically integrated equations of motion to within a fraction of a percent.  相似文献   

8.
Time evolution of the interplanetary dust particle under the action of the solar electromagnetic radiation (Poynting-Robertson effect) is investigated. Evolution of the initially circular orbit in terms of the orbital elements present in the standard equations for their secular changes is considered. It is pointed out that the osculating eccentricity is practically constant during the motion in spite of generally accepted opinion that the standard equations for the secular changes of orbital elements represent time evolution of the osculating elements.  相似文献   

9.
A small generalization of the equation of motion for the Poynting-Robertson effect is tested in order to find the significance of new terms. The test is made for dust particles ejected at perihelia of the orbit of the comet Encke. The particles are released at the speed of 40 m s?1. Gravitational perturbations of planets, Poynting-Robertson effect and solar corpuscular radiation (solar wind) are considered. Other nongravitational effects may be represented by new terms in the suggested form of the nongravitational force. Various values of normal and transversal components of the perturbing nongravitational force are used. The final results of numerical integrations are compared with those obtained on the basis of the Poynting-Robertson effect.  相似文献   

10.
A small generalization of the equation of motion for the Poynting-Robertson effect is tested in order to find the significance of new terms. The test is made for dust particles ejected at perihelia of the orbit of the comet Encke. The particles are released at the speed of 40 m s–1. Gravitational perturbations of planets, Poynting-Robertson effect and solar corpuscular radiation (solar wind) are considered. Other nongravitational effects may be represented by new terms in the suggested form of the nongravitational force. Various values of normal and transversal components of the perturbing nongravitational force are used. The final results of numerical integrations are compared with those obtained on the basis of the Poynting-Robertson effect.  相似文献   

11.
Electromagnetic Radiation and Motion of a Particle   总被引:2,自引:2,他引:0  
We consider the motion of uncharged dust grains of arbitrary shape including the effects of electromagnetic radiation and thermal emission. The resulting relativistically covariant equation of motion is expressed in terms of standard optical parameters. Explicit expressions for secular changes of osculating orbital elements are derived in detail for the special case of the Poynting-Robertson effect. Two subcases are considered: (i) central acceleration due to gravity and the radial component of radiation pressure independent of the particle velocity, (ii) central acceleration given by gravity and the radiation force as the disturbing force. The latter case yields results which may be compared with secular orbital evolution in terms of orbital elements for an arbitrarily shaped dust particle. The effects of solar wind are also presented. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
An Exploration of Non-kinematic Effects in Flux Transport Dynamos   总被引:1,自引:0,他引:1  
Recent global magnetohydrodynamical simulations of solar convection producing a large-scale magnetic field undergoing regular, solar-like polarity reversals also present related cyclic modulations of large-scale flows developing in the convecting layers. Examination of these simulations reveal that the meridional flow, a crucial element in flux transport dynamos, is driven at least in part by the Lorentz force associated with the cycling large-scale magnetic field. This suggests that the backreaction of the field onto the flow may have a pronounced influence on the long-term evolution of the dynamo. We explore some of the associated dynamics using a low-order dynamo model that includes this Lorentz force feedback. We identify several characteristic solutions which include single period cycles, period doubling and chaos. To emulate the role of turbulence in the backreaction process we subject the model to stochastic fluctuations in the parameter that controls the Lorentz force amplitude. We find that short term fluctuations produce long-term modulations of the solar cycle and, in some cases, grand minima episodes where the amplitude of the magnetic field decays to near zero. The chain of events that triggers these quiescent phases is identified. A subsequent analysis of the energy transfer between large-scale fields and flows in the global magnetohydrodynamical simulation of solar convection shows that the magnetic field extracts energy from the solar differential rotation and deposits part of that energy into the meridional flow. The potential consequences of this marked departure from the kinematic regime are discussed in the context of current solar cycle modeling efforts based on flux transport dynamos.  相似文献   

13.
Both the Poynting-Robertson drag and resonant orbits appear to be very important for the motion of small grains in the early solar system. While orbital resonances are very often stable and tend to force bodies into noncircular orbits, the Poynting-Robertson drag produces secular variations in the semimajor axis and tends to circularize the orbits. We study numerically the competition between the Poynting-Robertson drag and the gravitational interaction of grains with Jupiter near the 2/1 resonance. Computations are based on the plane-restricted problem. Numerical investigations show that the grains always cross the resonance region without any oscillation, except in the special case where the grains were initially inside the resonance. In both cases the variations of the osculating elements exhibit a drastic step, which can be explained by Greenberg's and Schubart's theories.  相似文献   

14.
We present a new and more accurate expression for the radiation pressure and Poynting-Robertson drag forces; it is more complete than previous ones, which considered only perfectly absorbing particles or artificial scattering laws. Using a simple heuristic derivation, the equation of motion for a particle of mass m and geometrical cross section A, moving with velocity v through a radiation field of energy flux density S, is found to be (to terms of order vc)
mv? = (SAc)Qpr[(1 ? r?c)S? ? vc]
, where ? is a unit vector in the direction of the incident radiation, r? is the particle's radial velocity, and c is the speed of light; the radiation pressure efficiency factor QprQabs + Qsca(1 ? 〈cos α〉), where Qabs and Qsca are the efficiency factors for absorption and scattering, and 〈cos α〉 accounts for the asymmetry of the scattered radiation. This result is confirmed by a new formal derivation applying special relativistic transformations for the incoming and outgoing energy and momentum as seen in the particle and solar frames of reference. Qpr is evaluated from Mie theory for small spherical particles with measured optical properties, irradiated by the actual solar spectrum. Of the eight materials studied, only for iron, magnetite , and graphite grains does the radiation pressure force exceed gravity and then just for sizes around 0.1 μm; very small particles are not easily blown out of the solar system nor are they rapidly dragged into the Sun by the Poynting-Robertson effect. The solar wind counterpart of the Poynting-Robertson drag may be effective, however, for these particles. The orbital consequences of these radiation forces-including ejection from the solar system by relatively small radiation pressures-and of the Poynting-Robertson drag are considered both for heliocentric and planetocentric orbiting particles. We discuss the coupling between the dynamics of particles and their sizes (which diminish due to sputtering and sublimation). A qualitative derivation is given for the differential Doppler effect, which occurs because the light received by an orbiting particle is slightly red-shifted by the solar rotation velocity when coming from the eastern hemisphere of the Sun but blue-shifted when from the western hemisphere; the ratio of this force to the Poynting-Robertson force is (Rr)2[(wn) ? 1], where R and w are the solar radius and spin rate, and n is the particle's mean motion. The Yarkovsky effect, caused by the asymmetry in the reradiated thermal emission of a rotating body, is also developed relying on new physical arguments. Throughout the paper, representative calculations use the physical and orbital properties of interplanetary dust, as known from various recent measurements.  相似文献   

15.
It is the subject of this article to determine diffusion coefficients of charged test particles perpendicular to a mean magnetic field analytically by starting directly from the Newton–Lorentz equation. We employ the so-called standard quasi-linear theory to test the well-known field line random walk limit. It is demonstrated in this article that there is an additional gyroresonant contribution which describes the scattering of the particle away from a single field line. For certain situations, this additional contribution is small and can be neglected. For other cases, we obtain new results such as a rigidity-dependent quasi-linear perpendicular mean free path. The results of this article are relevant for particles in the solar wind which move scatter free or nearly scatter free in the direction parallel to the magnetic field of the Sun.  相似文献   

16.
Yeh  Tyan 《Solar physics》1989,124(2):251-269
A dynamical model of prominence loops is constructed on the basis of the theory of hydromagnetic buoyancy force. A prominence loop is regarded as a flux rope immersed in the solar atmosphere above a bipolar region of the photospheric magnetic field. The motion of a loop is partitioned into a translational motion, which accounts for the displacement of the centroidal axis of the loop, and an expansional motion, which accounts for the displacement of the periphery of the loop relative to the axis. The translational motion is driven by the hydromagnetic buoyancy force exerted by the surrounding medium of the solar atmosphere and the gravitational force exerted by the Sun. The expansional motion is driven by the pressure gradient that sustains the pressure difference between internal and external gas pressures and the self-induced Lorentz force that results from interactions among internal currents. The main constituent of the hydromagnetic buoyancy force on a prominence loop is the diamagnetic force exerted on the internal currents by the external currents that sustain the pre-existing magnetic field. By spatial transformation between magnetic and mechanical stresses, the diamagnetic force is manifested through a mechanical force acting at various mass elements of the prominence. For a prominence loop in equilibrium, the gravitational force is balanced by the hydromagnetic buoyancy force and the Lorentz force of helical magnetic field is balanced by a gradient force of gas pressure.  相似文献   

17.
Francois Mignard 《Icarus》1982,49(3):347-366
The dynamics of small dust grains orbiting a planet are investigated when solar radiation pressure forces are added to the planet's gravitational central field. In the first part a set of differential equations is derived in a reference frame linked to the solar motion. The complete solution of these equations is given for particles lying in the planet's orbital plane, and we show that the orbital eccentricity may undergo considerable variation. At the same time the pericenter longitude librates or circulates according to initial conditions. With this result we establish a criterion for any orbiting particle (because of its highly eccentric orbit) to collide with its planet's atmosphere. The case of inclined orbit is studied through a numerical integration and allows us to draw conclusions related to the stability of the orbital plane. All solutions are periodic, with the period being independent of the initial conditions. This last point permits us to investigate the different time scales involved in that problem. Finally, the Poynting-Robertson drag is included, along with the radial radiation pressure forces, and the secular trend is considered. A coupling effect between the two components is ascertained, yielding a systematic behavior in the eccentricity and thus in the pericenter distance. Our solutions generalize the results of S. J. Peale (1966, J. Geophys. Res.71, 911–933) and J. A. Burns, P. Lamy, and S. Soter (1979, Icarus40, 1–48) by allowing eccentricities to be large (of order 1) and inclinations to be nonzero and by considering Poynting-Robertson drag.  相似文献   

18.
The orbital effects of the Lorentz force on the motion of an electrically charged artificial satellite moving in the Earth's magnetic field are determined. The geomagnetic field is considered as a multipole potential field and the satellite electrical charge is supposed to be constant. The relativistic perturbations of the main geomagnetic field are discussed briefly. The results are concentrated on the determination of the secular changes, and numerical values are computed for the case of the LAGEOS satellite. The results are discussed in the context of a possible detection of the Lense-Thirring effect analyzing the orbital perturbations of the LAGEOS and LAGEOS X satellites.  相似文献   

19.
Plasma irregularities present in the solar wind are plasmoids, i.e. plasma-magnetic field entities. These actual plasmoids differ from ideal magnetohydrodynamic (MHD) filaments. Indeed, (1) their “skin” is not infinitely thin but has a physical thickness which is determined by the gyromotion of the thermal ions and electrons, (2) they are of finite extent and their magnetic flux is interconnected with the interplanetary magnetic flux, (3) when they penetrate into the magnetosphere their magnetic field lines become rooted in the ionosphere (i.e. in a medium with finite transverse conductivity), (4) the external Lorentz force acting on their boundary surface depends on the orientation of their magnetic moment with respect to the external magnetic field, (5) when their mechanical equilibrium is disturbed, hydromagnetic oscillations can be generated. It is also suggested that the front side of all solar wind plasmoids which have penetrated into the magnetosphere is the inner edge of the magnetospheric boundary layer while the magnetopause is considered to be the surface where the magnetospheric plasma ceases to have a trapped pitch angle distribution.  相似文献   

20.
The propagation of energetic particles in the interplanetary space is considered on the basis of kinetic equation describing the scattering of charged particles by magnetic irregularities and the particle focusing by regular magnetic field. Our analysis confirms that angular distribution of solar cosmic rays contains a valuable information about properties of the particle scattering in the interplanetary magnetic field. Steady state solutions of the kinetic equation are applied to the analysis of solar proton events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号