首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
A.W. Harris  J.W. Young  E. Bowell 《Icarus》1980,43(2):181-183
Photoelectric lightcurves of 304 Olga were obtained at Table Mountain Observatory in 1978 near opposition. From these observations, and several observations made from Lowell Observatory a month later, we obtain a rotation period of 18.36 ± 0.02 hr and lightcurve amplitude of 0m·20. The range of solar phase angle covered by the observations is from 2°·0 to 22°. The resulting phase function is well fit by the Bowell and Lumme model (1979, in Asteroids, T. Gehrels, Ed., pp. 132–169, Univ. of Arizona Press, Tucson), with Q = 0.02. This low value of Q is suggestive of a low-albedo object.  相似文献   

2.
Hans Josef Schober 《Icarus》1976,28(3):415-420
The minor planet 79 Eurynome was observed during the 1974 opposition for four nights in November, using a photoelectric photometer attached to the 60 cm telescope at the Observatoire de Haute Provence, France. A synodic period of Psyn = 5h 58m46s ± 6s m.e. was derived. The total amplitude of the lightcurve is only 0.05 mag. The lightcurve shows a double maximum and double minimum. Both minima appear to be at the same level. Observations were carried out in an instrumental filter system (UBV)' Results are shown only for V′, but U′ and B′ measurements supplement the conclusions concerning the rotation. The phase angle α, covered by the observations, ranges from 3 to 5°. The present results for 79 Eurynome rule out the longer period of 0d.49830 derived by F. Scaltriti and V. Zappalà in favor of their possible period of 0d.24915.  相似文献   

3.
Results of UBV photometry and polarimetry of 1580 Betulia during its 1976 apparition are presented. The synodic period of rotation is found to be 6.130 hr. The linear phase coefficient and absolute magnitude of the primary maximum in V are 0.032 mag/deg and 14.88, respectively. No color variations with rotation or solar phase angle detected, the mean colors being B?V = 0.66 and U?B = 0.24. Betulia's lightcurve is unique among asteroids studied to date in that it displays three maxima and three minima within one rotational cycle, indicative of a region of greater roughness and/or a dark spot on one of its broad faces. Polarization results indicate a low albedo and a mean diameter of about 7 km, establishing Betulia as the first C type asteroid to be found among the Mars crossers. A model accounting for most features of Betulia's lightcurve is given by a prolate spheroid rotating about one of its shorter axes having an axis ratio of 1:1.21 with a major topographic feature on one of its broad faces.  相似文献   

4.
We present 26 lightcurves of 16 Psyche from 1975 and 1976. The synodic period during this apparition was 4h.1958. Combining photometric data from this opposition with those from previous apparitions allowed us to derive a mean phase coefficient in V of 0.026 ± 0.002 mag/deg and to establish that Psyche's absolute V0 magnitude and rotational amplitude vary with aspect; at 90° aspect, V0(1, 0) = 6.27 ± 0.05 and the lightcurve amplitude is 0.30 mag, while at 0° or 180° aspect, V0(1, 0) = 6.02 ± 0.02 and the amplitude is ?0.03 mag. This behavior is accounted for if, to first order, Psyche's shape is that of a triaxial ellipsoid with axial ratios near 5:4:3. Colors at zero phase are U-B = 0.26 ± 0.01 and B-V = 0.71 ± 0.01. Color phase coefficients are <0.001 mag/deg in U-B and 0.0010 ± 0.0004 mag/deg in B-V.  相似文献   

5.
Power spectral densities computed from low-latitude horizontal intensity of the Earth's magnetic field over two-year periods of declining phases of solar cycles 16 to 19 show a close relationship with the maximum relative sunspot number of the following solar cycles. The maximum sunspot number shows an exponential rise with the power density near 1/27 cd?1; maximum R z,however, increases linearly with power density near 1/14 cd?1. It is also shown that the rate of decline of sunspot number in a solar cycle is almost exactly related, linearly, to power spectral density for the preceding solar cycle. Power densities near 1/27 and 1/14 cd?1 in declining phase of solar cycle appear to be satisfactory indices for the maximum relative sunspot number of the following cycle and its rate of decline thereafter.  相似文献   

6.
J.L. Dunlap 《Icarus》1976,28(1):69-78
Ten lightcurves and UBV photometry of 433 Eros were obtained between August 1972 and May 1975. The absolute magnitude of the lightcurve maximum is 10.75 and the phase coefficient is 0.025 mag/deg. There may be a small difference in B-V color between the northern and southern hemispheres. The pole of the axis of rotation is directed toward λ0 = 16°, β0 = 12°, ecliptic longitude and latitude, respectively, and the rotation is direct with a sidereal period of 0.d219599 or 5h16m13s4 ± 0.s2. The dimensions derived from the polarimetric albedo and the lightcurve amplitudes are 12km × 12km × 31km for a smooth cylinder with hemispherical ends.  相似文献   

7.
Joseph A. Burns 《Icarus》1975,25(4):545-554
The angular momentum H is plotted versus mass M for the planets and for all asteroids with known rotation rates and shapes, primarily taken from D. C. McAdoo and J. A. Burns [Icarus18, 285–293 (1973)]. An asteroid's angular momentum is derived from its rotation rate as determined by the period of its lightcurve, its shape as indicated by the lightcurve amplitude, and where possible its size as given by polarimetry or radiometry. The asteroid is assumed to be rotating about its axis of maximum moment of inertia. As previously found by F. F. Fish [Icarus7, 251–256 (1967]) and W. K. Hartmann and S. M. Larson [Icarus7, 257–260 (1967)], H is approximately proportional to M53, which shows that the asteroids and most planets spin with nearly the same rate. The very smallest asteroids on the plot deviate from the above reaction, usually containing excess angular momentum. This suggests that collisions have transferred substantial angular momentum to the smallest asteroids, perhaps causing their internal stress states to be substantially modified by centrifugal effects.The forces produced by gravitation are then compared to centrifugal effects for a rotating, triaxial ellipsoid of density 3 g cm?3. For all asteroids with known properties the gravitational attraction is shown to be larger than the centrifugal acceleration of a particle on the surface: thus the observed asteroid regoliths are gravitationally bound. Poisson's equation for the gravitational potential is investigated and it is shown by mathematical and physical arguments that any arbitrarily shaped ellipsoid with the attractive surface force boundary condition found above will have only attractive internal forces. Thus the internal stress states in asteroids are always compressive so that asteroids could be internally fractured without losing their integrity.  相似文献   

8.
UBV observations of asteroid 433 Eros were conducted on 17 nights during the winter of 1974/75. The peak-to-peak amplitude of the lightcurve varied from about 0.3 mag to nearly 1.4mmag. The absolute V mag at maximum light, extrapolated to zero phase, is 10.85. Phase coefficients of 0.0233 mag/degree, 0.0009 mag/degree and 0.0004 mag/degree were derived for V, B-V, and U-B, respectively. The zero-phase color of Eros (B?V = 0.88, U?B = 0.50) is representative of an S (silicaceous) compositional type asteroid. The color does not vary with rotation. The photometric behavior of Eros can be modeled by a cylinder with rounded ends having an axial ratio of about 2.3:1. The asteroid is rotating about a short axis with the north pole at λ0 = 15° and β0 = 9°.  相似文献   

9.
F. Scaltriti  V. Zappalà 《Icarus》1977,31(4):498-502
Photoelectric observations of the minor planet 63 Ausonia were obtained on 12 nights during the 1976 opposition at the Astronomical Observatory of Torino. A complete lightcurve with two maxima and two minima was observed with a maximum amplitude of 0.47 mag. The synodic period of rotation, never before determined photoelectrically, was found to be 9h17m48s ± 5s. The absolute magnitude of the primary maximum, V0(1, 0) = 7.49 mag, and the phase coefficient, βv = 0.035 mag/deg, were deduced by the magnitude-phase relation. Comparison with other observations is briefly discussed and a mean radius is determined from a previous value of the geometric albedo.  相似文献   

10.
J. Veverka  J. Burt  J.L. Elliot  J. Goguen 《Icarus》1978,33(2):301-310
By considering both the orbital lightcurve of Iapetus and data obtained during the March 30, 1974, occultation of the satellite by the Moon, we obtain information about the brightness distribution on the bright face of Iapetus and derive an accurate value for the satellite's radius. From the observed orbital lightcurve we find that the trailing face of Iapetus must consist predominantly of a single bright material with an effective limb-darkening parameter of k = 0.62?0.120.10. Given this result the occultation observations imply a radius of 718?78+87 km. If the patchy albedo model proposed by Morrison et al. represents the surface of Iapetus accurately (as far as the relative albedo distribution is concerned) then the radius of Iapetus is 724 ± 60 km. Both estimates are consistent with the radiometric radius of 835 (+50, ?75) km derived by Morrison et al. Combining our results with the value of 0.60 ± 0.14 for the normal reflectance (in V) of the material at the center of the bright face derived by Elliot et al. we find that the normal reflectance of the dark side material is 0.11?0.03+0.04. These values are higher than the corresponding values of 0.35 and 0.05 quoted by Morrison et al.  相似文献   

11.
Results of photoelectric observations of the asteriods 46 Hestia and 115 Thyra, performed in a cooperative program between the Torino and Table Mountain Observatories, are presented. The rotation periods and the maximum amplitudes are: Psyn = 21h.0.4 ± 0h.01, Amplitude = 0.12 mag and Psyn = 7h.241 ± 0.h.001, Amplitude = 0.20 mag, for Hestia and Thyra, respectively. The multiple-scattering factors, Q, inferred from the phase relation data are 0.054 ± 0.003 and 0.058 ± 0.002 for Hestia and Thyra, respectively. The low value obtained for Thyra disagrees with the mean one given by Bowell and Lumme (1979, in Asteroids (T. Gehrels, Ed.), pp. 132–169. University of Arizona Press, Tucson) for S-type asteroids.  相似文献   

12.
Integral geometry is used to solve a two-dimensional simplification of the three-dimensional lightcurve inversion problem, and a method is introduced for obtaining a convex profile, P, from asteroid lightcurve data. Whenever four ideal conditions are satisfied, P is an estimator for the asteroid's “mean cross section,” C, a convex set defined as the average of all cross sections C cut by planes a distance z above the asteroid's equatorial plane. C is therefore a two-dimensional average of the asteroid's three-dimensional shape. The ideal conditions are that (A) each curve C(z) is convex. (B) the asteroid's scattering law is uniform and geometric, (C) the astrocentric declinations of the Sun and Earth are zero, and (D) the solar phase angle θ ≠ 0. If Condition C is known to hold, the extend to which the lightcurve can be accounted for by a geometrically scattering convex object can be quantified in terms of an appropriate “goodness-of-fit” static. If the solar phase angle is zero, as for radar “lightcurve,” then (i) method yields a profile Ps the symmetrization Cs of C; (ii) Condition A need not hold and if it does not, then the inversion yields the symmetrization of the asteroid's mean convex hull; and (iii) Fourier analysis of the lightcurve can reveal violation of Condition B. Doppler-frequency resolution of radar echoes at several rotational phases adds information by constraining the convex hull Hp of the asteroid's (not necessarily convex) polar silhouette. Estimation of a convex profile from a photoelectric or radar lightcurve is a problem in weighted-least-squares optimization subject to inequality constraints. The solution uses a recursive quadratic programming algorithm to derive a Fourier parameterization for P from the coefficients in the lightcurve's Fourier expansion. The method has been tested by inverting analytically generated lightcurves for geometrically scattering ellipsoids with semiaxes a ? b ? c, and the inversion yields P = Ps ? C = Cs = Hp when the viewing geometry (Condition C) is close to ideal. For situations when the asteroid's pole direction is unknown, a test is offered of the hyphothesis that a given lightcurve can be due to a geometrically scattering ellipsoid with ac ? ?, where ? is an priori upper bound on the maximum axis ratio. Convex profiles are presented for 15 Eunomia, 118 Peitho, 246 Asporina, 281 Lucretia. 790 Pretoria, 1685 Toro, and 1978 CA.  相似文献   

13.
Results of broad-band photoelectric photometry of 139 Juewa during 5 consecutive nights in March 1974 are presented. The synodic period found is 20.9 hr. A linear phase coefficient, β = 0.080 ± 0.004, is determined between phase angles of 0.9° to 1.5°. This value is similar to that for the lunar highlands and for three other asteroids (4 Vesta, 20 Massalia, 110 Lydia) at similar phase angles, indicating that these surfaces have comparable porosities. The composite lightcurve presented covers 80% of the rotational period; short timescale features in the lightcurve are seen which correspond to topography a few kilometers in size.  相似文献   

14.
P. Rousselot  J.-M. Petit  A. Sergeev 《Icarus》2005,176(2):478-491
We present photometric observations of Centaur (60558) 2000 EC98 and trans-neptunian object (55637) 2002 UX25 at different phase angles and with different filters (mainly R but also V and B for some data). Results for 2000 EC98 are: (i) a rotation period of 26.802±0.042 h if a double-peaked lightcurve is assumed, (ii) a lightcurve amplitude of 0.24±0.06 for the R band, (iii) a phase curve with H=9.03±0.01 and G=−0.39±0.08 (R filter) and H=9.55±0.04 and G=−0.50±0.35 (V filter) or a slope of (R filter) and 0.22±0.06 (V filter), (iv) the color indices B-V=0.76±0.15 and V-R=0.51±0.09 (for α=0.1-0.5°) and 0.55±0.08 (for α=1.4-1.5°). The rotation period is amongst the longest ever measured for Centaurs and TNOs. We also show that our photometry was not contaminated by any cometary activity down to magnitude ?27/arcsec2. For 2002 UX25 the results are: (i) a rotation period of 14.382±0.001 h or 16.782±0.003 h (if a double-peaked lightcurve is assumed) (ii) a lightcurve amplitude of 0.21±0.06 for the R band (and the 16.782 h period), (iii) a phase curve with H=3.32±0.01 and G=+0.16±0.18 or a slope of (R filter), (iv) the color indices B-V=1.12±0.26 and V-R=0.61±0.12. The phase curve reveals also a possible very narrow and bright opposition surge. Because such a narrow surge appears only for one point it needs to be confirmed.  相似文献   

15.
Spectrophotometric observations of the RS CVn binary system V711 Tau (HR 1099), convering the wavelength interval 3300–7100 Å, have been presented. A comparison of the standard spectral scans of V711 Tau with the spectral scans of the stars of known spectral types and luminosity classes taken from the Breger (1976) catalogue shows that, at all phases shown in the diagram, the spectral-luminosity type of the star is K0IV or K0III. The magnitude of the system fluctuates from 5 m .71 to 5 m .79 average being 5 m .75 approximately, the faintest being near 0 p .43 and the brightest near 0 p .78. The region around Balmer jump and near H region is apparently variable.  相似文献   

16.
The results of photoelectricUBV observations of asteroid 77 Frigga during the 1982 opposition are presented. From eight nights of observations at phase angles smaller than 2 o . 8 a synodic period of 0 d . 3755±0 d . 0006 is derived. The light curve appears very symmetric with two maxima per period and an amplitude of 0 m . 19. The primary maximum corresponds toV(0o)=8 m . 58, and the colour indices are:B–V = 0 . m 738 ± 0 . m 003 andU–B = 0 . m 200 ± 0 . m 002.  相似文献   

17.
B. Buratti  J. Veverka 《Icarus》1984,58(2):254-264
Voyager imaging observations provide new photometric data on Saturn's satellites at large phase angles (up to 133° in the case of Mimas) not observable from Earth. Significant new results include the determination of phase integrals ranging from 0.7 in the case of Rhea to 0.9 for Enceladus. For Enceladus we find an average geometric albedo pv = 1.04 ± 0.15 and Bond albedo of 0.9 ± 0.1. The data indicate an orbital lightcurve with an amplitude of 0.2 mag, the trailing side being the brighter. For Mimas, the lightcurve amplitude is probably less than 0.1 mag. The value of the geometric albedo of Mimas reported here, pv = 0.77 ± 0.15 (corresponding to a mean opposition magnitude V0 = +12.5) is definitely higher than the currently accepted value of about 0.5. For Dione, the Voyager data show a well-defined orbital lightcurve of amplitude about 0.6 mag, with the leading hemisphere brighter than the trailing one.  相似文献   

18.
V.S. Safronov  E.L. Ruskol 《Icarus》1982,49(2):284-296
A two-stage growth of the giant planets, Jupiter and Saturn, is considered, which is different from the model of contraction of large gaseous protoplanets. In the first stage, within a time of ~3 × 107 years in Jupiter's zone and ~2 × 108 years in Saturn's zone, a nucleus forms from condensed (solid) material having the mass, ~1028 g, necessary for the beginning of acceleration. The second stage may gravitating body, and a relatively slow accretion begins until the mass of the planet reaches ~10 m. Then a rapid accretion begins with the critical radius less than the radius of the Hill lobe, so that the classical formulae for the rate of accretion may be applied. At a mass m > m1 ≈ 50 m accretion proceeds slower than it would according to these formulae. When the planet sweeps out all the gas from its nearest zone of feeding (m = m2 ≈ 130 m), the width of the exhausted zone being built13 of the whole zone of the planet) growth is provided the slow diffusion of gas from the rest of the zone (time scale increases to 105?106 years and more). The process is terminated by the dissipation of the remnants of gas. In Saturn's zone m1 > m2 ≈ 30 m. The initial mass of the gas in Jupiter's zone is estimated. Before the beginning of the rapid accretion about 90% of the gas should have been lost from the solar system, and in the planet's zone less than two Jupiter masses remain. The highest temperature of Jupiter's surface, ≈5000°K, is reached at the stage of rapid accretion, m < 100 m, when the luminosity of the planet reaches 3 × 10?3 L. This favors an effective heating of the inner parts of the accretionary disk and the dissipation of gas from the disk. The accretion of Saturn produced a temperature rise up to 2000?2400° K (at m ≈ 20?25 m) and a luminosity up to 10?4 L.  相似文献   

19.
B andV observations of the suspected variable BV 690 = NSV 04298 are reported. The star shows light variations with a period of ld.2400 and with amplitudes of 0m.27, 0m.36 and 0m.11 inV, B, andB-V respectively. The light curves show steeper rise than decline, and there is evidence for the presence of a bump in the descending branch around the phase of 0.35. From considerations of the period, spectral type, presence of the bump and high tangential velocity we conclude that BV 690 belongs to the BL Herculis class of Typen Cepheids  相似文献   

20.
We present the results of our UBV and JHKLM photometry for the semiregular pulsating variable V1027 Cyg, a supergiant with an infrared excess, over the period from 1997 to 2015 (UBV) and in 2009–2015 (JHKLM). Together with the new data, we analyze the photometric observations of V1027 Cyg that we have obtained and published previously. Our search for a periodicity in the UBV brightness variations has led to several periods from P = 212d to 320d in different time intervals. We have found the period P = 237d based on our infrared photometry. The variability amplitude, the lightcurve shape, and themagnitude of V1027 Cyg atmaximum light change noticeably from cycle to cycle. The deepest minimum was observed in 2011, when the amplitudes of brightness variations in the star reached the following values: ΔU = 1 . m 28, ΔB = 1 . m 10, ΔV = 1 . m 05, ΔJ = 0 . m 30, ΔH = 0 . m 35, ΔK = 0 . m 32, ΔL = 0 . m 26, and ΔM = 0 . m 10. An ambiguous correlation of the B ? V and U ? B colors with the brightness has been revealed. For example, a noticeable bluing of the star was observed during the deep 1992, 2008, and 2011 minima, while the variations with smaller amplitudes show an increase in B ? V at the photometric minima. The spectral energy distribution for V1027 Cyg from our photometry in the range 0.36 (U)–5.0 (M) μm corresponds to spectral types from G8I to K3I at different phases of the pulsation cycle. Low-resolution spectra of V1027 Cyg in the range λ4400–9200 ?A were taken during 16 nights over the period 1995–2015. At the 1995 and 2011 photometric minima the star’s spectrum exhibited molecular TiO bands whose intensity corresponded to spectral types M0–M1, while the photometric data point to a considerably earlier spectral type. We hypothesize that the TiO bands are formed in the upper layers of the extended stellar atmosphere. We have measured the equivalent widths of the strongest absorption lines, in particular, the infrared Ca II triplet in the spectrum of V1027 Cyg. The calcium triplet (Ca T) with W λ(Ca T) = 20.3 ± 1.8 ?A as a luminosity indicator for supergiants places V1027 Cyg in the region of the brightest G–K supergiants. V1027 Cyg has been identified with the infrared source IRAS 20004+2955 and is currently believed to be a candidate for post-AGB stars. The evolutionary status of the star and its difference from other post-AGB objects are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号