首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present observations of a local dust storm performed by the OMEGA and PFS instruments aboard Mars Express. OMEGA observations are used to retrieve the dust single-scattering albedo in the spectral range 0.4-4.0 μm. The single-scattering albedo shows fairly constant values between 0.6 and 2.6 μm, and a sharp decrease at wavelengths shorter than 0.6 μm, in agreement with previous studies. It presents a small absorption feature due to ferric oxide at 0.9 μm, and a strong absorption feature due to hydrated minerals between 2.7 and 3.6 μm. We use a statistical method, the Independent Component Analysis, to determine that the dust spectral signature is decoupled from the surface albedo, proving that the retrieval of the single-scattering albedo is reliable, and we map the dust optical thickness with a conventional radiative transfer model. The effect of the dust storm on the atmospheric thermal structure is measured using PFS observations. We also simulate the thermal impact of the dust storm using a one-dimensional atmospheric model. A comparison of the retrieved and modeled temperature structures suggests that the dust in the storm should be confined to the 1-2 lowest scale heights of the atmosphere. However, the observed OMEGA reflectance in the CO2 absorption bands does not support this suggestion.  相似文献   

2.
Limb-darkening curves are derived from Pioneer 10 imaging data for Jupiter's STrZ (?18 to ?21° latitude) and SEBn (?5 to ?8° latitude) in red and blue light at phase angles of 12, 23, 34, 109, 120, 127, and 150°. Inhomogeneous scattering models are computed and compared with the data to constrain the vertical structure and the single-scattering phase functions of the belt and the zone in each color. The very high brightness observed at a 150° phase angle seems to require the presence of at lleast a thin layer of reasonably bright and strongly forward-scattering haze particles at pressure levelsof about 100 mbar or less above both belts and zones. Marginally successful models have been constructed in which a moderate optical thickness (τ ≥ 0.5) of haze particles was uniformly distributed in the upper 25 km-amagats of H2. Excellent fits to the data were obtained with models having a thin (optical depths of a few tenths) haze conentraated above most of the gas. Following recent spectrospcopicanalyses, we have placed the main “cloud” layer or layers beneath about 25 km-amagats of H2, although successful fits to our continuum data probably could be achieved also if the clouds were permitted to extend all the way up to the thin haze layer. Similarly, below the haze level our data cannot distinguish between models having two clouds separated by a clear space as suggested by R. E. Danielson and M. G. Tomasko and models with a single extensive diffuse cloud having an H2 abundance of a few kilometer-amagats per scattering mean free path as described by W. D. Cochran. In either case, the relative brightness of the planet at each phase angle primarily serves to constrain the single-scattering phase functions of the Jovian clouds at the corresponding scattering angles. The clouds in these models are characterized by single-scattering phase functions having strong forward peaks and modest backward-scattering peaks, indicating cloud particles with dimensions larger than about 0.6 μm. In our models, a lower single-scattering albedo of the cloud particles in the belt relative to the zone accounts for the contrast between these regions. If an increased abundance of absorbing dust above uniformly bright clouds is used to explain the contrast between belts and zones at visible wavelengths, the limb darkening is steeper than that observed for the SEBn in blue light at small phase angles. The phase integral for the planet calculated for either the belt or the zone model in either color lies in the range 1.2 to 1.3. If a value of 1.25 is used with D.J. Taylor's bolometric geometric albedo of 0.28, the planet emits 2.25 or 1.7 times the energy it absorbs from the Sun if it effective temperature is 134 or 125°K, respectively—roughly as expected from current theories of the cooling of Jupiter's interior.  相似文献   

3.
Observations of Neptune were made in September 2009 with the Gemini-North Telescope in Hawaii, using the NIFS instrument in the H-band covering the wavelength range 1.477–1.803 μm. Observations were acquired in adaptive optics mode and have a spatial resolution of approximately 0.15–0.25″.The observations were analysed with a multiple-scattering retrieval algorithm to determine the opacity of clouds at different levels in Neptune’s atmosphere. We find that the observed spectra at all locations are very well fit with a model that has two thin cloud layers, one at a pressure level of ∼2 bar all over the planet and an upper cloud whose pressure level varies from 0.02 to 0.08 bar in the bright mid-latitude region at 20–40°S to as deep as 0.2 bar near the equator. The opacity of the upper cloud is found to vary greatly with position, but the opacity of the lower cloud deck appears remarkably uniform, except for localised bright spots near 60°S and a possible slight clearing near the equator.A limb-darkening analysis of the observations suggests that the single-scattering albedo of the upper cloud particles varies from ∼0.4 in regions of low overall albedo to close to 1.0 in bright regions, while the lower cloud is consistent with particles that have a single-scattering albedo of ∼0.75 at this wavelength, similar to the value determined for the main cloud deck in Uranus’ atmosphere. The Henyey-Greenstein scattering particle asymmetry of particles in the upper cloud deck are found to be in the range g ∼ 0.6–0.7 (i.e. reasonably strongly forward scattering).Numerous bright clouds are seen near Neptune’s south pole at a range of pressure levels and at latitudes between 60 and 70°S. Discrete clouds were seen at the pressure level of the main cloud deck (∼2 bar) at 60°S on three of the six nights observed. Assuming they are the same feature we estimate the rotation rate at this latitude and pressure to be 13.2 ± 0.1 h. However, the observations are not entirely consistent with a single non-evolving cloud feature, which suggests that the cloud opacity or albedo may vary very rapidly at this level at a rate not seen in any other giant-planet atmosphere.  相似文献   

4.
Interstellar extinction curves obtained from the ‘extinction without standard’ method were used to constrain the dust characteristics in the mean ISM (R V = 3.1), along the lines of sight through a high latitude diffuse molecular cloud towards HD 210121 (R V = 2.1) and in a dense interstellar environment towards the cluster NGC 1977 (R V = 6.42). We have used three-component dust models comprising silicate, graphite and very small carbonaceous grains (polycyclic aromatic hydrocarbons) following the grain size distributions introduced by Li & Draine in 2001. It is shown that oxygen, carbon and silicon abundances derived from our models are closer with the available elemental abundances for the dust grains in the ISM if F & G type stars atmospheric abundances are taken for the ISM than the solar. The importance of very small grains in modelling the variation of interstellar extinction curves has been investigated. Grain size distributions and elemental abundances locked up in dust are studied and compared at different interstellar environments using these three extinction curves. We present the albedo and the scattering asymmetry parameter evaluated from optical to extreme-UV wavelengths for the proposed dust models.  相似文献   

5.
The Aeolian Dust Experiment on Climate Impact (ADEC) was initiated in April 2000 as a joint five-year Japan–China project. The goal was to understand the impact of aeolian dust on climate via radiative forcing (RF). Field experiments and numerical simulations were conducted from the source regions in northwestern China to the downwind region in Japan in order to understand wind erosion processes temporal and spatial distribution of dust during their long-range transportation chemical, physical, and optical properties of dust and the direct effect of radiative forcing due to dust. For this, three intensive observation periods (IOP) were conducted from April 2002 to April 2004.The in situ and network observation results are summarized as follows: (1) In situ observations of the wind erosion process revealed that the vertical profile of moving sand has a clear size dependency with height and saltation flux and that threshold wind velocity is dependent on soil moisture. Results also demonstrated that saltation flux is strongly dependent on the parent soil size distribution of the desert surface. (2) Both lidar observations and model simulations revealed a multiple dust layer in East Asia. A numerical simulation of a chemical transport model, CFORS, illustrated the elevated dust layer from the Taklimakan Desert and the lower dust layer from the Gobi Desert. The global-scale dust model, MASINGAR, also simulated the dust layer in the middle to upper free troposphere in East Asia, which originated from North Africa and the Middle East during a dust storm in March 2003. Raman lidar observations at Tsukuba, Japan, found the ice cloud associated with the dust layer at an altitude of 6 to 9 km. Analysis from lidar and the radio-sonde observation suggested that the Asian dust acted as ice nuclei at the ice-saturated region. These results suggest the importance of dust's climate impact via the indirect effect of radiative forcing due to the activation of dust into ice nuclei. (3) Studies on the aerosol concentration indicated that size distributions of aerosols in downwind regions have bimodal peaks. One peak was in the submicron range and the other in the supermicron range. The main soluble components of the supermicron peak were Na+, Ca2+, NO3, and Cl. In the downwind region in Japan, the dust, sea salt, and a mixture of the two were found to be dominant in coarse particles in the mixed boundary layer. (4) Observation of the optical properties of dust by sky-radiometer, particle shoot absorption photometer (PSAP), and Nephelometer indicated that unpolluted dust at source region has a weaker absorption than originally believed.A sensitivity experiment of direct RF by dust indicated that single scattering albedo is the most important of the optical properties of dust and that the sensitivity of instantaneous RF in the shortwave region at the top of the atmosphere to the refractive index strongly depends on surface albedo. A global scale dust model, MASINGAR, was used for evaluation of direct RF due to dust. The results indicated the global mean RF at the top and the bottom of the atmosphere were − 0.46 and − 2.13 W m− 2 with cloud and were almost half of the RF with cloud-free condition.  相似文献   

6.
We have constructed an experiment to perform bidirectional reflectance distribution function (BRDF) measurements of laboratory samples, and have used the experiment to characterize a sample of JSC-1 lunar regolith simulant. Characterizations relied on in-plane BRDF measurements in visible and near-infrared (NIR) bandpasses. The optical properties of the simulant sample were found to be similar to those observed for bright, lunar highland regions. Reflectance models (Hapke 1981. Bidirectional reflectance spectroscopy 1. Theory. J. Geophys. Res. 86(B4), 3,039−3,054; 1984. Bidirectional reflectance spectroscopy 3. Correction for macroscopic roughness. Icarus 59, 41−59; 1986. Bidirectional reflectance spectroscopy 4. The extinction coefficient and the opposition effect. Icarus 67, 264−280; 2002. Bidirectional reflectance spectroscopy 5. The coherent backscatter opposition effect and anisotropic scattering. Icarus 157, 523−534) made excellent fits to fixed incidence angle, variable emission angle data sets. However, the models were not found to extrapolate well to fixed, near-zero phase angle data at varying incidence angles, and no solutions were found that provided simultaneous, high quality fits to the two types of data sets. Except for the single-scattering albedo, the best-fit parameters of the fixed incidence angle data were statistically the same in the visible and NIR. Correlations between the reflectance model parameters were systematically examined, and strong correlations were found between single-scattering albedo and the two two-stream Henyey-Greenstein scattering parameters and, to a lesser extent, the small-scale mean surface roughness.  相似文献   

7.
There are reasons to expect that Mars is surrounded by a region of dust, similar to rings, originating from the bombardment of Phobos and Deimos by meteroids. Using a simple radiative transfer model, we have investigated the angular distribution and the absolute values of the solar radiance scattered by such a dust region, to the purpose of assessing the possibilities and limitations of future photometric searches after the circummartian dust. Our model values of the number density of the dust grains in the space around Mars and of their size distribution have been derived from the results obtained by other authors. The single-scattering albedo of the dust grains has been deduced from the reflectance spectra of Phobos, taken by the spacecraft Phobos 2. Calculations, carried out for a few phenomenological phase functions, have shown that in the visible the radiance scattered by the rings is well within the detectability range of a modern sensible photometer, so that the prospectives for photometric search for the Martian dust rings are optimistic. Furthermore, our results confirm that the dust region could not be observed by the Viking cameras and this supports o our assumptions regarding the optical properties of the circummartian grains.  相似文献   

8.
Brightness and linear polarization measurements at 678.5 nm for four south-north strips of Jupiter are studied. These measurements were obtained in 1997 by the Galileo photopolarimeter/radiometer. The observed brightness exhibits latitudinal variations consistent with the belt/zone structure of Jupiter. The observed degree of linear polarization is small at low latitudes and increases steeply toward higher latitudes. No clear correlations were observed between the degree of linear polarization and the brightness. The observed direction of polarization changes from approximately parallel to the local scattering plane at low latitudes to perpendicular at higher latitudes. For our studies, we used atmospheric models that include a haze layer above a cloud layer. Parameterized scattering matrices were employed for the haze and cloud particles. On a pixel-wise basis, the haze optical thickness and the single-scattering albedo of the cloud particles were derived from the observed brightness and degree of linear polarization; results were accepted only if they were compatible with the observed direction of polarization. Using atmospheric parameter values obtained from Pioneer 10 and 11 photopolarimetry for the South Tropical Zone and the north component of the South Equatorial Belt, this analysis yielded acceptable results for very few pixels, particularly at small phase angles. However, for almost all pixels, acceptable results were found when the parameterized scattering matrix of the cloud particles was adjusted to produce more negative polarization for single scattering of unpolarized light, especially at large scattering angles, similar to some laboratory measurements of ammonia ice crystals. Using this adjusted model, it was found that the derived latitudinal variation of the single-scattering albedo of the cloud particles is consistent with the belt/zone structure, and that the haze optical thickness steeply increases toward higher latitudes.  相似文献   

9.
By observing the transit of various cloud features across the Jovian disk, Terrile and Westphal (1977) have constructed limb-darkening curves for three regions in the 4.6 to 5.1 μm band. Several models currently employed in describing the radiative or dynamical properties of planetary atmospheres are here examined to understand their implications for limb-darkening. The statistical problem of fitting these models to the observed data is reviewed and methods for applying multiple regression analysis are discussed. Analysis of variance techniques are introduced to test the viability of a given physical process as a cause of the observed limb-darkening. The intermediate flux region of the North Equatorial Belt appears to be in only modest departure from radiative equilibrium. The limb-darkening curve for the South Temperate Belt is rich in structure and cannot be satisfactorily ascribed to any single physical mechanism; a combination of several, as yet unidentified, processes is likely involved. The hottest areas of the North and South Equatorial Belts exhibit limb-darkening curves that are typical of atmospheres in convective equilibrium. In this case, we derive a measure of the departure of the lapse rate from the dry adiabatic value (η?1.68), which furnishes strong evidence for a phase transition at unit optical depth in the NEB and SEB. Although the system NH3H2S cannot be entirely ruled out, the freezing of an aqueous ammonia solution is shown to be consistent with the parameter fit and solar abundance data, while being in close agreement with Lewis' (1969a) cloud models.  相似文献   

10.
A time-sequential set of bolometric albedo maps for Mars has been constructed from Viking Infrared Thermal Mapper data. The maps provide global coverage in longitude for latitudes -60° to +60° at 1° by 1° spatial resolution. Individual maps are constructed under strict geometric constraints for a narrow range of Ls. The set of albedo maps spans a Martian year and includes maps before, during, and after the global dust storms of 1977. Transient brightenings associated with local dust storms or condensate clouds are apparent in some of the maps. During dust-free periods, bolometric albedo maps are generally similar to classical, visual albedo map of Mars. The distribution of bolometric surface albedos is bimodal with typical, clear-sky, Lambert albedos of 0.27 and 0.16 for bright and dark areas, respectively. Atmospheric effects strongly influence apparent surface albedos, especially for dark areas. Neither bright nor dark regions show measurable, long-term variations of bolometric albedos during clear periods.  相似文献   

11.
Kari Lumme  H.J. Reitsema 《Icarus》1978,33(2):288-300
Analysis of 206 high-quality plates from three recent apparitions taken in five colors has yielded several photometric parameters for Saturn and its A and B rings. Phase curves and geometric albedos are derived for two regions of Saturn and for each ring. The phase coefficients of the rings are found to be independent of the ring-plane inclination angle. A comparison of the phase curves shows that the particles of ring A exhibit a larger phase coefficient than do those of ring B. When examined with a multiple-scattering model using Henyey-Greenstein phase functions, the observations of the ring tilt effect indicate that the particles of ring A may also have lower single-scattering and geometric albedos. The color dependence of the geometric albedo of the particles in ring B is shown to be very similar to that of Europa (J II). We find for ring A an optical thickness of 0.50 (0.45 ≤ τA ≤ 0.57) and for the Cassini division, 0.018 ± 0.004.  相似文献   

12.
We present cloud structure models for Jupiter's Great Red Spot, Equatorial Zone, North Tropical Zone, North and South Temperate Zones, North and South Polar Regions, and North and South Polar Hoods. The models are based on images of Jupiter in three methane bands (between 6190 and 8900 Å) and nearby continuum. Radiative transfer calculations include multiple scattering and absorption from three aerosol layers, the topmost of which is a high thin haze and the lower two are called clouds. All models are computed relative to a similar model for the South Tropical Zone which fits methane absorption data and Pioneer photometry data well. Outstanding features suggested by the model results are the transition in the upper-cloud altitude to about 3 km lower altitude from the tropical zones to temperate zones and polar regions, a N/S asymmetry in cloud thickness in the tropical and temperate zones, the presence of aerosols up to about 0.3 bar in the Great Red Spot and Equatorial Zone, the need for a significant (τ ~ 0.75 to 1.0) aerosol content in this region in the Equatorial Zone, and perhaps an even higher and thicker cloud in the South Polar Hood. The haze layer above both polar hoods may exhibit different scattering properties than the haze which covers lower latitudes. In comparing the present results with models derived from polarization and infrared observations we conclude that polarization data are sensitive to aerosols in and above the upper cloud layer but insensitive to deeper cloud structure, and the converse is true for infrared data.  相似文献   

13.
Earth-based UBV photometry, high-quality photographs from the Lowell Observatory collection, and Mariner 9 data have been combined with a new radiative transfer theory to derive physical parameters for the Martian surface and atmosphere, both before and during the 1971 dust storm. We find that the dust particles of the storm had a single-scattering albedo of 0.84 ± 0.02 and an asymmetry factor of 0.35 ± 0.10 in green (V) light. The geometric albedo of Mars was 0.15 and the phase integral 1.83, which yield 0.27 for the Bond albedo. The mean optical thickness of the “clear” atmosphere averaged over the whole planet was 0.15 ± 0.05 and was not detectably dependent on wavelength. Geometric albedos for the surface are 0.25 (light areas) and 0.17 (dark areas) in V, 0.095 in B (both areas), and 0.060 in U (both areas). The soil particles are moderately backward scattering with an asymmetry factor of ?0.20, indicating them to be rather opaque. The mean surface roughness, on a scale larger than that of individual dust particles and therefore large compared with the wavelength, is 0.57. This represents the depth/radius ratio of an average hole and it is only one-half as large as values typical for the Moon and asteroids.  相似文献   

14.
From published ground-base, spacecraft, and rocket photometry and polarimetry of the zodiacal light, a number of optical and physical parameters have been derived. It was assumed that the number density, mean particle size, and albedo vary with heliocentric distance, and shown that average individual interplanetary particles have a small but definite opposition effect, a mean single-scattering albedo in the V band at 1-AU heliocentric distance of 0.09 ± 0.01, and a zero-phase geometric albedo of 0.04. Modeled by a power law, both albedos decrease with increasing heliocentric distance as r?0.54. The corresponding exponents for changes in mean particle size and number density are related in a simple way. The median orbital inclination of zodiacal light particles with respect to the ecliptic is 12°, close to the observed median value for faint asteroids and short-period comets. Furthermore, the color of dust particles and its variation with solar phase angle closely resemble those of C asteroids. These findings are, at least, consistent with the zodiacal cloud originating primarily from collisions among asteroids. Finally, a value of ?1018?ErmE g was derived for the mass of the zodiacal cloud, where ?E is the mean particle radius (in micrometers) at 1-AU-heliocentric distance. For extinction in the ecliptic, Δm = 10?5??12mag was obtained, where ? is the solar elongation in degrees.  相似文献   

15.
We examine the effects of NH3 ice particle clouds in the atmosphere of Jupiter on outgoing thermal radiances. The cloud models are characterized by a number density at the cloud base, by the ratio of the scale height of the vertical distribution of particles (Hp) to the gas scale height (Hg), and by an effective particle radius. NH3 ice particle-scattering properties are scaled from laboratory measurements. The number density for the various particle radius and scale height models is inferred from the observed disk average radiance at 246 cm?1, and preliminary lower limits on particle sizes are inferred from the lack of apparent NH3 absorption features in the observed spectral radiances as well as the observed minimum flux near 2100 cm?1. We find lower limits on the particle size of 3 μm if Hp/Hg = 0.15, or 10μmif Hp/Hg = 0.50 or 0.05. NH3 ice particles are relatively dark near the far-infrared and 8.5-μm atmospheric windows, and the outgoing thermal radiances are not very sensitive to various assumptions about the particle-scattering function as opposed to radiances at 5 μm, where particles are relatively brighter. We examined observations in these three different spectral window regions which provide, in principle, complementary constraints on cloud parameters. Characterization of the cloud scale height is difficult, but a promising approach is the examination of radiances and their center-to-limb variation in spectral regions where there is significant opacity provided by gases of known vertical distribution. A blackbody cloud top model can reduce systematic errors due to clouds in temperature sounding to the level of 1K or less. The NH3 clouds provide a substantial influence on the internal infrared flux field near the 600-mbar level.  相似文献   

16.
This work is devoted to the analysis of the variation of albedo measured by orbiting instruments with atmospheric opacity on Mars. The study has been conduced by analysing Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) data from martian regions with different surface albedo.In support of these data, synthetic spectra with different surface albedo and atmospheric opacities have been computed, so that a comparison has been performed. The synthetic spectra have been retrieved by using two different grain sizes for suspended dust (0.5 and 1.2 μm), allowing a comparison between the two models and the observations.Using the DCI, a parameter describing the quantity of dust deposited on the surface, the effectiveness of the single scattering approximation has been tested for low atmospheric opacity by analysing the quality of the linear fit up to different atmospheric opacity.For more opaque conditions two kinds of fits have been applied to the data, linear and second-order degree polynomial. In this case, we found that the polynomial fit better describes the observations.The analysis of these data made it possible to notice a peculiar trend, already reported by Christensen (1988), of the albedo over Syrtis Major after the occurrence of dust storms, but, differently from that work, now the study of DCI together with atmospheric opacity and albedo allowed us to robustly confirm the hypothesis made by Christensen.Finally, the comparison between observations and synthetic spectra computed with models with different particles grain sizes indicates that dust particles of 0.5 μm diameter are the most effective to change the aerosol atmospheric opacity on Mars.  相似文献   

17.
Atmospheric water vapor abundances in Mars’ north polar region (NPR, from 60° to 90°N) are mapped as function of latitude and longitude for spring and summer seasons, and their spatial, seasonal, and interannual variability is discussed. Water vapor data are from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) and the Viking Orbiter (VO) Mars Atmospheric Water Detector (MAWD). The data cover three complete northern spring-summer seasons in 1977-1978, 2000-2001 and 2002-2003, and shorter periods of spring-summer seasons during 1975, 1999 and 2004. Long term interannual variability in the averaged NPR abundances may exist, with Viking MAWD observations showing twice as much water vapor during summer as the MGS TES observations more than 10 martian years (MY) later. While the averaged abundances are very similar in TES observations for the same season in different years, the spatial distributions in the early summer season do vary significantly year over year. Spatial and temporal variabilities increase between Ls ∼ 80-140°, which may be related to vapor sublimation from the North Polar Residual Cap (NPRC), or to changes in circulation. Spatial variability is observed on scales of ∼100 km and temporal variability is observed on scales of <10 sols during summer. During late spring the TES water vapor spatial distribution is seen to correlate with the low topography/low albedo region of northern Acidalia Planitia (270-360°E), and with the dust spatial distribution across the NPR during late spring-early summer. Non-uniform vertical distribution of water vapor, a regolith source or atmospheric circulation ‘pooling’ of water vapor from the NPRC into the topographic depression may be behind the correlation with low topography/low albedo. Sublimation winds carrying water vapor off the NPRC and lifting surface dust in the areas surrounding the NPRC may explain the correlation between the water vapor and dust spatial distributions. Correlation between water vapor and dust in MAWD data are only observed over low topography/low albedo area. Maximum water vapor abundances are observed at Ls = 105-115° and outside of the NPRC at 75-80°N; the TES data, however, do not extend over the NPRC and thus, this conclusion may be biased. Some water vapor appears to be released in plumes or ‘outbursts’ in the MAWD and TES datasets during late spring and early summer. We propose that the sublimation rate of ice varies across the NPRC with varying surface winds, giving rise to the observed ‘outbursts’ at some seasons.  相似文献   

18.
To try to define specific physical properties of the dust of Jupiter-family comets (JFCs), we compare the light scattered by them. Amongst the more than 1000 JFCs, less than 200 are numbered, 40 of them being rather bright. In the present work we use data from the latter. In situ observations of three nuclei show low albedo surfaces. The albedo of the dust particles in the coma is low, with generally a red colour. The A(α) product is a measure of cometary activity and secular changes. Images of different regions (jets and fans) give indications on the nucleus rotation and position of the emitting areas, as compared to the position of the rotation axis. Differences in physical properties between the particles in different regions are pointed out by differences in the linear polarization of the scattered light and by spectral variations in brightness and polarization. Jupiter family comets are considered as dust-poor comets. Tails and trails’ studies give an estimation of the size distribution of the particles. However the dust production rates depend on the largest particles (up to centimetre size), which are mainly observed in the trails where large dark compact particles are found. These dark particles are also responsible for the high polarization in the inner most coma of some comets. The meaning, in terms of physical properties, of the linear polarization is discussed through different examples such as 2P/Encke, 9P/Tempel 1 or the fragments of 73P/Schwassmann-Wachmann 3. Cometary outbursts and splitting events show that the properties of the dust ejected from the interior of the nucleus are similar to the ones of more active comets (new or with larger semi-major axis).  相似文献   

19.
W.J. Wiscombe  J.H. Joseph 《Icarus》1977,32(3):362-377
The Eddington approximation is often assumed to be useful only for optically thick media having a single-scattering albedo near unity. We present detailed evidence in this paper that, for homogeneous layers illuminated by a beam of radiation, the Eddington approximation predicts albedo and absorptivity reasonably well for all values of optical depth and single-scattering albedo, for several scattering phase functions (Rayleigh, Henyey-Greenstein, and Mie) having asymmetry factors less than or equal to 12. The worst errors are in the neighborhood of optical depth unity and single-scattering albedo 0.5. The Eddington approximation is further found to maintain good accuracy over almost the full range of incident beam directions and surface albedos. It is least accurate for the Mie phase function example, where one can obtain a dramatic improvement in accuracy by going over to the δ-Eddington approximation; this shows that the forward peak of the Mie phase function, and not its detailed shape, is the primary cause of diminished accuracy in the Eddington approximation.  相似文献   

20.
The vertical dust distribution of dust clouds around planets, resulting from electrostatic forces, is calculated as a function of dust and plasma parameters. Photoelectric charging is included and differences between clouds on the illuminated side and in the shadow zone are examined. We compute ring structures for conditions which may apply in the spoke-forming regions and study at what dust and plasma conditions the shadow has a significant effect on the vertical dust cloud structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号