首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— It was suggested that multilayered accretionary rims composed of ferrous olivine, andradite, wollastonite, salite‐hedenbergitic pyroxenes, nepheline, and Ni‐rich sulfides around Allende calcium‐aluminum‐rich inclusions (CAIs) are aggregates of gas‐solid condensates which reflect significant fluctuations in physico‐chemical conditions in the slowly cooling solar nebula and grain/gas separation processes. In order to test this model, we studied the mineralogy of accretionary rims around one type A CAI (E104) and one type B CAI (E48) from the reduced CV3 chondrite Efremovka, which is less altered than Allende. In contrast to the Allende accretionary rims, those in Efremovka consist of coarse‐grained (20–40 μm), anhedral forsterite (Fa1–8), Fe, Ni‐metal nodules, amoeboid olivine aggregates (AOAs) and fine‐grained CAIs composed of Al‐diopside, anorthite, and spinel, ± forsterite. Although the fine‐grained CAIs, AOAs and host CAIs are virtually unaltered, a hibonite‐spinel‐perovskite CAI in the E48 accretionary rim experienced extensive alteration, which resulted in the formation of Fe‐rich, Zn‐bearing spinel, and a Ca, Al, Si‐hydrous mineral. Forsterites in the accretionary rims typically show an aggregational nature and consist of small olivine grains with numerous pores and tiny inclusions of Al‐rich minerals. No evidence for the replacement of forsterite by enstatite was found; no chondrule fragments were identified in the accretionary rims. We infer that accretionary rims in Efremovka are more primitive than those in Allende and formed by aggregation of high‐temperature condensates around host CAIs in the CAI‐forming regions. The rimmed CAIs were removed from these regions prior to condensation of enstatite and alkalies. The absence of andradite, wollastonite, and hedenbergite from the Efremovka rims may indicate that these rims sampled different nebular regions than the Allende rims. Alternatively, the Ca, Fe‐rich silicates rimming Allende CAIs may have resulted from late‐stage metasomatic alteration, under oxidizing conditions, of original Efremovka‐like accretionary rims. The observed differences in O‐isotope composition between forsterite and Ca, Fe‐rich minerals in the Allende accretionary rims (Hiyagon, 1998) suggest that the oxidizing fluid had an 16O‐poor oxygen isotopic composition.  相似文献   

2.
The Allende matrix is dominated by micron‐sized lath‐shaped fayalitic olivine grains with a narrow compositional range (Fa40–50). Fayalitic olivines also occur as rims around forsterite grains in chondrules and isolated forsterite fragments in the matrix or as veins cross‐cutting the grains. Allende is a type 3 CV carbonaceous chondrite having experienced a moderate thermal metamorphism. There is therefore a strong chemical disequilibrium between the large forsterite grains and the fayalite‐rich fine‐grained matrix. Chemical gradients at interfaces are poorly developed and thus not accessible using conventional techniques. Here, we used analytical transmission electron microscopy to study the microstructure of the fayalite‐rich matrix grains and interfaces with forsterite fragments. We confirm that fayalitic grains in the matrix and fayalitic rims around forsterite fragments have the same properties, suggesting a common origin after the accretion of the parent body of Allende. Composition profiles at the rim/forsterite interfaces exhibit a plateau in the rim (typically Fa45), a compositional jump of 10 Fa% at the interface, and a concentration gradient in the forsterite grain. Whatever the studied forsterite grain or whatever the nature of the interface, the Fe‐Mg profiles in forsterite grains have the same length of about 1.5 μm. This strongly suggests that the composition profiles were formed by solid‐state diffusion during the thermal metamorphism episode. Time–temperature couples associated with the diffusion process during thermal metamorphism are deduced from profile modeling. Considering the uncertainties on the diffusion coefficient value, we found that the peak temperature in Allende is ranging from 425 to 505 °C.  相似文献   

3.
We have conducted scanning electron microscope (SEM) and transmission electron microscope (TEM) studies of a variety of occurrences of matrix in the reduced CV3 chondrite breccia Vigarano. Matrix, which occurs as clastic interchondrule material and finer‐grained rims, is dominated by morphologically variable olivines that host submicron, hercynitic spinel, and carbonaceous inclusions. Clastic matrix and fine‐grained rims show significant differences in their olivine morphologies, abundance, and composition of olivine inclusions, and characteristics of the carbonaceous matter. We suggest that these differences are the result of different degrees of alteration of clastic matrix and rims and are not due to variability in their precursor materials. Textural and compositional characteristics of olivine in the matrix are consistent with formation by growth, possibly from an amorphous precursor material during asteroidal metamorphism, in the presence of limited quantities of aqueous fluids. Spinel inclusions in olivine may be nebular condensates that acted as seeds for nucleation of olivine or may have formed during metamorphism and were subsequently overgrown by olivine. Carbonaceous material occurs as nanometer‐sized inclusions within olivine in both fine‐grained rims and clastic matrix, but is most abundant as 100–200 nm grains, interstitial to matrix olivines. Most carbonaceous material is amorphous, but poorly graphitized carbon (PGC) also occurs as a minor component in both olivine inclusions and interstitial C. The widespread occurrence of fine‐grained amorphous carbon grains in the interstitial regions between olivine grains may preserve the distribution and grain size of nebular organic material. No clear textural relationships exist between carbonaceous grains and the other mineralogical components of Vigarano matrix that could help constrain the origin of the organic grains (i.e., evidence for Fischer‐Tropsch‐type reactions). Finally, there are considerable differences between matrix olivines in Vigarano in comparison with those in oxidized CV3 chondrites. In particular, the mineralogy and morphology of the matrix olivines and the nature, composition, and distribution of inclusions in the olivine grains are distinct. Based on these differences, we conclude that matrix in the oxidized CV3 chondrites could not have formed by thermal processing of Vigarano‐like material.  相似文献   

4.
Evidence of impact-induced compaction in the carbonaceous chondrites, specifically CMs and CVs, has been widely investigated utilizing microscopy techniques and impact experiments. Here, we use high-resolution photography and large area and high-resolution electron backscattered diffraction (EBSD) mapping analyses in tandem, to explore the effects of impact-induced compaction at both the meso- and micro-scales in the Allende CV3.6 carbonaceous chondrite. Macro-scale photography images of a ~25 cm slab of Allende captured meso-scale features including calcium-aluminum inclusions (CAIs) and chondrules. CAIs have a long-axis shape-preferred orientation (SPO). Examination of such meso-scale features in thin section revealed the same trend. Matrix grains from this section display a large amount of heterogeneity in petrofabric orientation; microscale, high-resolution, large area EBSD mapping of ~300,000 olivine matrix grains; high-resolution large area EBSD map across an elongate CAI; and a series of high-resolution EBSD maps around two chondrules and around the CAI revealed crystallographic preferred orientations (CPOs) in different directions. Finally, internal grains of the CAI were found to demonstrate a weak lineation CPO, the first crystallographic detection of possible CAI “flow.” All results are consistent with multiple, gentle impacts on the Allende parent body causing hemispheric compaction. The larger, more resistant components are likely to have been compressed and oriented by earlier impacts, and the matrix region petrofabrics and CAI “flow” likely occurred during subsequent impacts. Meteoritic components respond differently to impact events, and consequently, it is likely that different components would retain evidence of different impact events and angles.  相似文献   

5.
Abstract— We have studied an Allende dark inclusion by optical microscopy, scanning electron microscopy, electron microprobe analysis and transmission electron microscopy. The inclusion consists of chondrules, isolated olivines and matrix, which, as in the Allende host, is mainly composed of 5–20 μm long lath-shaped fayalitic grains with a narrow compositional range (Fa42 ± 2) and nepheline. Olivine phenocrysts in chondrules and isolated olivine grains show various degrees of replacement by 5–10 μm wide fayalitic rims (Fa39 ± 2) and 100–1000 μm wide translucent zones, which consist of 5–20 μm long lath-shaped fayalitic grains (Fa41 ± 1) intergrown with nepheline. These fayalitic olivines, like those in the matrix of the dark inclusion, contain 10–20 nm sized inclusions of chromite, hercynite, and Fe-Ni sulfides. The fayalitic rims around remnant olivines are texturally and compositionally identical to those in Allende host, suggesting that they have similar origins. Chondrules are surrounded by opaque rims consisting of tiny lath-shaped fayalitic olivines (<1–3 μm long) intergrown with nepheline. As in the Allende host, fayalitic olivine veins may crosscut altered chondrules, fine-grained chondrule rims and extend into the matrix, indicating that alteration occurred after accretion. We infer that fayalitic olivine rims and lath-shaped fayalites in Allende and its dark inclusions formed from phyllosilicate intermediate phases. This explanation accounts for (1) the similarity of the replacement textures observed in the dark inclusion and Allende host to aqueous alteration textures in CM chondrites; (2) the anomalously high abundances of Al and Cr and the presence of tiny inclusions of spinels and sulfides in fayalitic olivines in Allende and Allende dark inclusions; (3) abundant voids and defects in lath-shaped fayalites in the Allende dark inclusion, which may be analogous to those in partly dehydrated phyllosilicates in metamorphosed CM/CI chondrites. We conclude that the matrix and chondrule rims in Allende were largely converted to phyllosilicates and then completely dehydrated. The Allende dark inclusions experienced diverse degrees of aqueous/hydrothermal alteration prior to complete dehydration. The absence of low-Ca pyroxene in the dark inclusion and its significant replacement by fayalitic olivine in Allende is consistent with the lower resistance of low-Ca pyroxene to aqueous alteration relative to forsteritic olivine. Hydro-thermal processing of Allende probably also accounts for the low abundance of planetary noble gases and interstellar grains, and the formation of nepheline, sodalite, salite-hedenbergite pyroxenes, wollastonite, kirschsteinite and andradite in chondrules and Ca,Al-rich inclusions.  相似文献   

6.
Abstract— The low temperature fine‐grained material in unequilibrated chondrites, which occurs as matrix, rims, and dark inclusions, carries information about the solar nebula and the earliest stages of planetesimal accretion. The microdistribution of primordial noble gases among these components helps to reveal their accretionary and alteration histories. We measured the Ne and Ar isotopic ratios and concentrations of small samples of matrix, rims, and dark inclusions from the unequilibrated carbonaceous chondrites Allende (CV3), Leoville (CV3), and Renazzo (CR2) and from the ordinary chondrites Semarkona (LL3.0), Bishunpur (LL3.1), and Krymka (LL3.1) to decipher their genetic relationships. The primordial noble gas concentrations of Semarkona, and—with certain restrictions—also of Leoville, Bishunpur, and Allende decrease from rims to matrices. This indicates a progressive accretion of nebular dust from regions with decreasing noble gas contents and cannot be explained by a formation of the rims on parent bodies. The decrease is probably due to dilution of the noble‐gas‐carrying phases with noble‐gas‐poor material in the nebula. Krymka and Renazzo both show an increase of primordial noble gas concentrations from rims to matrices. In the case of Krymka, this indicates the admixture of noble gas‐rich dust to the nebular region from which first rims and then matrix accreted. This also explains the increase of the primordial elemental ratio 36Ar/ 20Ne from rims to matrix. Larger clasts of the noble‐gas‐rich dust form macroscopic dark inclusions in this meteorite, which seem to represent unusually pristine material. The interpretation of the Renazzo data is ambiguous. Rims could have formed by aqueous alteration of matrix or—as in the case of Krymka—by progressive admixture of noble gas‐rich dust to the reservoir from which the Renazzo constituents accreted. The Leoville and Krymka dark inclusions, as well as one dark inclusion of Allende, show noble gas signatures different from those of the respective host meteorites. The Allende dark inclusion probably accreted from the same region as Allende rims and matrix but suffered a higher degree of alteration. The Leoville and Krymka dark inclusions must have accreted from regions different from those of their respective rims and matrices and were later incorporated into their host meteorites. The noble gas data imply a heterogeneous reservoir with respect to its primordial noble gas content in the accretion region of the studied meteorites. Further studies will have to decide whether these differences are primary or evolved from an originally uniform reservoir.  相似文献   

7.
Abstract— Wark‐Lovering rims of six calcium‐aluminum‐rich inclusions (CAIs) representing the main CAI types and groups in Allende, Efremovka and Vigarano were microsurgically separated and analysed by neutron activation analysis (NAA). All the rims have similar ~4x enrichments, relative to the interiors, of highly refractory lithophile and siderophile elements. The NAA results are confirmed by ion microprobe and scanning electron microscope (SEM) analyses of rim perovskites and rim metal grains. Less refractory Eu, Yb, V, Sr, Ca and Ni are less enriched in the rims. The refractory element patterns in the rims parallel the patterns in the outer parts of the CAIs. In particular, the rims on type B1 CAIs have the igneously fractionated rare earth element (REE) pattern of the melilite mantle below the rim and not the REE pattern of the bulk CAI, proving that the refractory elements in the rims were derived from the outer mantle and were not condensates onto the CAIs. The refractory elements were enriched in an Al2O3‐rich residue <50 μm thick after the most volatile ~80% of the outermost 200 μm of each CAI had been volatilized, including much Mg, Si and Ca. Some volatilization occurred below the rim, and created refractory partial melts that crystallized hibonite and gehlenitic melilite. The required “flash heating” probably exceeded 2000 °C, but for only a few seconds, in order to melt only the outer CAI and to unselectively volatilize slow‐diffusing O isotopes which show no mass fractionation in the rim. The volatilization did, however, produce “heavy” mass‐fractionated Mg in rims. In some CAIs this was later obscured when “normal” Mg diffused in from accreted olivine grains at relatively high temperature (not the lower temperature meteorite metamorphism) and created the ~50 μm set of monomineralic rim layers of pyroxene, melilite and spinel.  相似文献   

8.
Abstract— –The presence of apparently unaltered, micron‐sized Fe,Ni metal grains, juxtaposed against hydrated fine‐grained rim materials in the CM2 chondrite Yamato (Y‐) 791198 has been cited as unequivocal evidence of preaccretionary alteration. We have examined the occurrence, composition, and textural characteristics of 60 Fe,Ni metal grains located in fine‐grained rims in Y‐791198 using scanning electron microscopy (SEM) and electron microprobe analysis. In addition, three metal grains, prepared by focused ion beam (FIB) sample preparation techniques were studied by transmission electron microscopy (TEM). The metal grains are heterogeneously distributed within the rims. Electron microprobe analyses show that all the metal grains are kamacite with minor element contents (P, Cr, and Co) that lie either within or close to the range for other CM2 metal grains. X‐ray maps obtained by electron microprobe show S, P, and/or Ca enrichments on the outermost parts of many of the metal grains. Z‐contrast STEM imaging of FIB‐prepared Fe,Ni metal grains show the presence of a small amount of a lower Z secondary phase on the surface of the grains and within indentations on the grain surfaces. Energy‐filtered TEM (EFTEM) compositional mapping shows that these pits are enriched in oxygen and depleted in Fe relative to the metal. These observations are consistent with pitting corrosion of the metal on the edges of the grains and we suggest may be the result of the formation of Fe(OH)2, a common oxidation product of Fe metal. The presence of such a layer could have inhibited further alteration of the metal grains. These findings are consistent with alteration by an alkaline fluid as suggested by Zolensky et al. (1989), but the location of this alteration remains unconstrained, because Y‐791198 was recovered from Antarctica and therefore may have experienced incipient terrestrial alteration. However, we infer that the extremely low degree of oxidation of the metal is inconsistent with weathering in Antarctica and that alteration in an extraterrestrial environment is more probable. Although the presence of unaltered or incipiently altered metal grains in these fine‐grained rims could be interpreted as evidence for preaccretionary alteration, we suggest an alternative model in which metal alteration was inhibited by alkaline fluids on the asteroidal parent body.  相似文献   

9.
Abstract— Fassaite is a major component of Ca‐Al‐rich inclusions (CAIs) of Types B and C that crystallized from liquids. In contrast, this mineral is rarely reported in Type A inclusions and has been much less studied. In this paper, we report highly Ti‐, Al‐enriched fassaite that occurs as rims on perovskite in two compact Type A inclusions from the Ningqiang meteorite. In addition, one of the inclusions contains an euhedral grain of Sc‐fassaite (16.4 wt% Sc2O3) isolated in melilite. The occurrence and mineral chemistry of the fassaite rims can be explained by a reaction of pre‐existing perovskite with CAI melts. Hence, such rims may serve as an indicator for partial melting of Type A inclusions. The Sc‐fassaite is probably a relict grain. A third spherical CAI contains several euhedral grains of V‐fassaite (4.8–5.4 wt% V2O3) enclosed in a melilite fragment. The high V content of fassaite cannot be related to any Fremdlinge, magnetite, or metallic Fe‐Ni, because these phases are absent in the inclusion. In the same CAI, other fassaites intergrow with spinel and minor perovskite, filling voids inside of the melilite and space adjacent to the Wark‐Lovering rim. The fassaite intergrown with spinel is almost V‐free. The coexistence of two types of fassaite suggests that this CAI has not been completely melted.  相似文献   

10.
Ti valence measurements in MgAl2O4 spinel from calcium‐aluminum‐rich inclusions (CAIs) by X‐ray absorption near‐edge structure (XANES) spectroscopy show that many spinels have predominantly tetravalent Ti, regardless of host phases. The average spinel in Allende type B1 inclusion TS34 has 87% Ti+4. Most spinels in fluffy type A (FTA) inclusions also have high Ti valence. In contrast, the rims of some spinels in TS34 and spinel grain cores in two Vigarano type B inclusions have larger amounts of trivalent titanium. Spinels from TS34 have approximately equal amounts of divalent and trivalent vanadium. Based on experiments conducted on CAI‐like compositions over a range of redox conditions, both clinopyroxene and spinel should be Ti+3‐rich if they equilibrated with CAI liquids under near‐solar oxygen fugacities. In igneous inclusions, the seeming paradox of high‐valence spinels coexisting with low‐valence clinopyroxene can be explained either by transient oxidizing conditions accompanying low‐pressure evaporation or by equilibration of spinel with relict Ti+4‐rich phases (e.g., perovskite) prior to or during melting. Ion probe analyses of large spinel grains in TS34 show that they are enriched in heavy Mg, with an average Δ25Mg of 4.25 ± 0.028‰, consistent with formation of the spinel from an evaporating liquid. Δ25Mg shows small, but significant, variation, both within individual spinels and between spinel and adjacent melilite hosts. The Δ25Mg data are most simply explained by the low‐pressure evaporation model, but this model has difficulty explaining the high Ti+4 concentrations in spinel.  相似文献   

11.
We investigated the inventory of presolar silicate, oxide, and silicon carbide (SiC) grains of fine‐grained chondrule rims in six Mighei‐type (CM) carbonaceous chondrites (Banten, Jbilet Winselwan, Maribo, Murchison, Murray and Yamato 791198), and the CM‐related carbonaceous chondrite Sutter's Mill. Sixteen O‐anomalous grains (nine silicates, six oxides) were detected, corresponding to a combined matrix‐normalized abundance of ~18 ppm, together with 21 presolar SiC grains (~42 ppm). Twelve of the O‐rich grains are enriched in 17O, and could originate from low‐mass asymptotic giant branch stars. One grain is enriched in 17O and significantly depleted in 18O, indicative of additional cool bottom processing or hot bottom burning in its stellar parent, and three grains are of likely core‐collapse supernova origin showing enhanced 18O/16O ratios relative to the solar system ratio. We find a presolar silicate/oxide ratio of 1.5, significantly lower than the ratios typically observed for chondritic meteorites. This may indicate a higher degree of aqueous alteration in the studied meteorites, or hint at a heterogeneous distribution of presolar silicates and oxides in the solar nebula. Nevertheless, the low O‐anomalous grain abundance is consistent with aqueous alteration occurring in the protosolar nebula and/or on the respective parent bodies. Six O‐rich presolar grains were studied by Auger Electron Spectroscopy, revealing two Fe‐rich silicates, one forsterite‐like Mg‐rich silicate, two Al‐oxides with spinel‐like compositions, and one Fe‐(Mg‐)oxide. Scanning electron and transmission electron microscopic investigation of a relatively large silicate grain (490 nm × 735 nm) revealed that it was crystalline åkermanite (Ca2Mg[Si2O7]) or a an åkermanite‐diopside (MgCaSi2O6) intergrowth.  相似文献   

12.
Abstract— The carbonaceous chondrite MacAlpine Hills (MAC) 88107 has bulk composition and mineralogy that are intermediate between those of CO and CM chondrites. This meteorite experienced minor alteration and a low degree of thermal metamorphism (petrologic type 3.1) and escaped post‐accretional brecciation. The alteration resulted in the formation of fayalite (Fa90–100). Al‐free hedenbergite (~Fs50Wo50), phyllosilicates (saponite‐serpentine intergrowths), magnetite, and Ni‐bearing sulfides (pyrrhotite and pentlandite). Fayalite and hedenbergite typically occur as veins, which start at the opaque nodules in the chondrule peripheries, crosscut fine‐grained rims and either terminate at the boundaries with the neighboring fine‐grained rims or continue as layers between these rims. These observations suggest that fayalite and hedenbergite crystallized after accretion and compaction of the fine‐grained rims. Fayalite also overgrows isolated forsteritic (Fa1–5) and fayalitic (Fa20–40) olivine grains without any evidence for Fe‐Mg interdiffusion; it also replaces massive magnetite‐sulfide grains. The initial 53Mn/55Mn ratio of (1.58 ± 0.26) × 10?6 in the MAC 88107 fayalite corresponds to an age difference between the formation of fayalite and refractory inclusions in Allende of either ~9 or 18 Ma, depending upon the value of the solar system initial abundance of 53Mn used in age calculations. Formation of secondary fayalite and hedenbergite requires mobilization and transport of Ca, Si, and Fe either through a high‐temperature gaseous phase (Hua and Buseck, 1995) or low‐temperature aqueous solution (Krot et al., 1998a, b). The high‐temperature nebular model for the origin of fayalite (Hua and Buseck, 1995) fails to explain (a) formation of fayalite‐hedenbergite assemblages after accretion of fine‐grained rims that lack any evidence for high‐temperature processing; (b) extreme fractionation of refractory lithophile elements of similar volatility, Ca and Al, in hedenbergite; and (c) absence of Fe‐Mg interdiffusion along fayalite‐forsterite boundaries. We conclude that fayalite and hedenbergite in MAC 88107 formed during late‐stage, low‐temperature (approximately 150–200 °C) aqueous alteration. The data for MAC 88107 extend the evidence for an early onset of aqueous activity on chondrite parent bodies and reinforce the conclusion that liquid water played an important role in the chemical and mineralogical evolution of the first chondritic planetesimals.  相似文献   

13.
Palisade bodies, mineral assemblages with spinel shells, in coarse‐grained Ca‐, Al‐rich inclusions (CAIs) have been considered either as exotic “mini‐CAIs” captured by their host inclusions (Wark and Lovering 1982 ) or as in situ crystallization products of a bubble‐rich melt (Simon and Grossman 1997 ). In order to clarify their origins, we conducted a comprehensive study of palisade bodies in an Allende Type B CAI (BBA‐7), using electron backscatter diffraction (EBSD), micro‐computed tomography (Micro‐CT), electron probe microanalysis (EPMA), and secondary ion mass spectrometry (SIMS). New observations support the in situ crystallization mechanism: early/residual melt infiltrated into spinel‐shelled bubbles and crystallized inside. Evidence includes (1) continuous crystallography of anorthite from the interior of the palisade body to the surrounding host; (2) partial consolidation of two individual palisade bodies revealed by micro‐CT; (3) a palisade body was entirely enclosed in a large anorthite crystal, and the anorthite within the palisade body shows the same crystallographic orientation as the anorthite host; and (4) identical chemical and oxygen isotopic compositions of the constituent minerals between the palisade bodies and the surrounding host. Oxygen isotopic compositions of the major minerals in BBA‐7 are bimodal‐distributed. Spinel and fassaite are uniformly 16O‐rich with ?17O = ?23.3 ± 1.5‰ (2SD), and melilite and anorthite are homogeneously 16O‐poor with ?17O = ?3.2 ± 0.7‰ (2SD). The latter ?17O value overlaps with that of the Allende matrix (?17O ~ ?2.87‰) (Clayton and Mayeda 1999 ), which could be explained by secondary alteration with a 16O‐poor fluid in the parent body. The mobility of fluid could be facilitated by the high porosity (1.56–2.56 vol%) and connectivity (~0.17–0.55 vol%) of this inclusion.  相似文献   

14.
Abstract— Fabric analysis of the interstitial matrix material in primitive meteorites offers a novel window on asteroid formation and evolution. Electron backscatter diffraction (EBSD) has allowed fabrics in these fine‐grained materials to be visualized in detail for the first time. Our data reveal that Allende, a CV3 chondrite, possesses a uniform, planar, short‐axis alignment fabric that is pervasive on a broad scale and is probably the result of deformational shortening related to impact or gravitational compaction. Interference between this matrix fabric and the larger, more rigid components, such as dark inclusions (DIs) and calcium‐aluminium‐rich inclusions (CAIs), has lead to the development of locally oriented and intensified matrix fabrics. In addition, DIs possess fabrics that are conformable with the broader matrix fabric. These results suggest that DIs were in situ prior to the deformational shortening event responsible for these fabrics, thus providing an argument against dark inclusions being fragments from another lithified part of the asteroid (Kojima and Tomeoka 1996; Fruland et al. 1978). Moreover, both DIs and Allende matrix are highly porous (?25%) (Corrigan et al. 1997). Mobilizing a highly porous DI during impact‐induced brecciation without imposing a fabric and incorporating it into a highly porous matrix without significantly compacting these materials is improbable. We favor a model that involves Allende DIs, CAIs, and matrix accreting together and experiencing the same deformation events.  相似文献   

15.
During impact events, zircons develop a wide range of shock metamorphic features that depend on the pressure and temperature conditions experienced by the zircon. These conditions vary with original distance from impact center and whether the zircon grains are incorporated into ejecta or remain within the target crust. We have employed the range of shock metamorphic features preserved in >4 Ga lunar zircons separated from Apollo 14 and 15 breccias and soils in order to gain insights into the impact shock histories of these areas of the Moon. We report microstructural characteristics of 31 zircons analyzed using electron beam methods including electron backscatter pattern (EBSP) and diffraction (EBSD). The major results of this survey are as follows. (1) The abundance of curviplanar features hosting secondary impact melt inclusions suggests that most of the zircons have experienced shock pressures between 3 and 20 GPa; (2) the scarcity of recrystallization or decomposition textures and the absence of the high‐pressure polymorph, reidite, suggests that few grains have been shocked to over 40 GPa or heated above 1000 °C in ejecta settings; (3) one grain exhibits narrow, arc‐shaped bands of twinned zircon, which map out as spherical shells, and represent a novel shock microstructure. Overall, most of the Apollo 14 and 15 zircons exhibit shock features similar to those of terrestrial zircon grains originating from continental crust below large (~200 km) impact craters (e.g., Vredefort impact basin), suggesting derivation from central uplifts or uplifted rims of large basins or craters on the Moon and not high‐temperature and ‐pressure ejecta deposits.  相似文献   

16.
Abstract– We report on mineralogy, petrography, and whole‐rock 26Al‐26Mg systematics of eight amoeboid olivine aggregates (AOAs) from the oxidized CV chondrite Allende. The AOAs consist of forsteritic olivine, opaque nodules, and variable amounts of Ca,Al‐rich inclusions (CAIs) of different types, and show evidence for alteration to varying degrees. Melilite and anorthite are replaced by nepheline, sodalite, and grossular; spinel is enriched in FeO; opaque nodules are replaced by Fe,Ni‐sulfides, ferroan olivine and Ca,Fe‐rich pyroxenes; forsteritic olivine is enriched in FeO and often overgrown by ferroan olivine. The AOAs are surrounded by fine‐grained, matrix‐like rims composed mainly of ferroan olivine and by a discontinuous layer of Ca,Fe‐rich silicates. These observations indicate that AOAs experienced in situ elemental open‐system iron‐alkali‐halogen metasomatic alteration during which Fe, Na, Cl, and Si were introduced, whereas Ca was removed from AOAs and used to form the Ca,Fe‐rich silicate rims around AOAs. The whole‐rock 26Al‐26Mg systematics of the Allende AOAs plot above the isochron of the whole‐rock Allende CAIs with a slope of (5.23 ± 0.13) × 10?5 reported by Jacobsen et al. (2008) . In contrast, whole‐rock 26Al‐26Mg isotope systematics of CAIs and AOAs from the reduced CV chondrite Efremovka define a single isochron with a slope of (5.25± 0.01) × 10?5 ( Larsen et al. 2011 ). We infer that the excesses in 26Mg* present in Allende AOAs are due to their late‐stage open‐system metasomatic alteration. Thus, the 26Al‐26Mg isotope systematics of Allende CAIs and AOAs are disturbed by parent body alteration processes, and may not be suitable for high‐precision chronology of the early solar system events and processes.  相似文献   

17.
Abstract— Forsteritic olivine grains in the Allende meteorite are commonly rimmed by FeO-rich olivine. New evidence is presented in this paper that the fayalitic rims formed by condensation from a gas and not by thermal equilibration of forsterite with FeO-rich metal or FeO-rich olivine in the interior of a parent body. A similar origin is inferred for fayalitic veins within forsterite crystals. A good correlation of FeO with MnO was observed along profiles from forsteritic cores to fayalite-rich rims, excluding oxidation of metal as a source of rim FeO. The fayalite content of the rim is generally lower than that of the adjacent matrix olivines excluding formation of FeO-rich rims by equilibration with present matrix. This is also supported by systematic differences in Cr between rim and matrix olivines. Chromites, associated with FeO-rich olivine, were found at the boundary between forsterite and fayalite-rich rim, within the rim itself and in fayalitic veins. Condensation of chromite from a gas phase is likely for the latter two occurrences since no other suitable source of Cr is available. Chromite at the forsterite-fayalite interface was formed by diffusion of Cr from forsterite. Increasingly oxidizing conditions, apparently enabled formation of chromite. The steep compositional gradient between forsterite and fayalite provides severe constraints on the thermal history of forsterite grains. The width of oxidized zones (halos) around metal inclusions in the interior of forsterite grains are not compatible with this steep gradient. Their development requires longer diffusion times than would be allowed by the rims, indicating that these forsterite grains must have had an independent history of oxidation prior to formation of the rim. Condensation calculations indicate that FeO-rich olivine can be formed by condensation from a gas with enhanced oxygen fugacity. Increasing the oxygen fugacity would provide conditions allowing the thermodynamic stability of chromite. High temperatures and oxidizing conditions must have prevailed for some time in that part of the solar nebula where the Allende meteorite formed.  相似文献   

18.
A silicious impact melt rock from polymict impact breccia of the northern part of the alkali granite core of the Araguainha impact structure, central Brazil, has been investigated. The melt rock is thought to represent a large mass of impact‐generated melt in suevite. In particular, a diverse population of zircon grains, with different impact‐induced microstructures, has been analyzed for U‐Pb isotopic systematics. Backscattered electron and cathodoluminescence images reveal heterogeneous intragrain domains with vesicular, granular, vesicular plus granular, and vesicular plus (presumably) baddeleyite textures, among others. The small likely baddeleyite inclusions are not only preferentially located along grain margins but also occur locally within grain interiors. LA‐ICP‐MS U‐Pb data from different domains yield lower intercept ages of 220, 240, and 260 Ma, a result difficult to reconcile with the previous “best age” estimate for the impact event at 254.7 ± 2.7 Ma. SIMS U‐Pb data, too, show a relatively large range of ages from 245 to 262 Ma. A subset of granular grains that yielded concordant SIMS ages were analyzed for crystallographic orientation by EBSD. Orientation mapping shows that this population consists of approximately micrometer‐sized neoblasts that preserve systematic orientation evidence for the former presence of the high‐pressure polymorph reidite. In one partially granular grain (#36), the neoblasts occur in linear arrays that likely represent former reidite lamellae. Such grains are referred to as FRIGN zircon. The best estimate for the age of the Araguainha impact event from our data set from a previously not analyzed type of impact melt rock is based on concordant SIMS data from FRIGN zircon grains. This age is 251.5 ± 2.9 Ma (2σ, MSWD = 0.45, p = 0.50, n = 4 analyses on three grains), indistinguishable from previous estimates based on zircon and monazite from other impact melt lithologies at Araguainha. Our work provides a new example of how FRIGN zircon can be combined with in situ U‐Pb geochronology to extract an accurate age for an impact event.  相似文献   

19.
Abstract— High‐precision Mg isotopic compositions of Ca‐Al‐rich inclusions (CAIs) from both Ningqiang (ungrouped) and Allende (CV3) carbonaceous chondrites and amoeboid olivine aggregations (AOAs) from Allende were analyzed by multicollector inductively coupled plasma mass spectrometry (MC‐ICP‐MS). The CAIs from Allende plot on a line, with an inferred initial 26Al/27Al ratio of (4.77 ± 0.39) × 10?5 close to the canonical value. This indicates a relatively closed Al‐Mg system in the CAIs and no significant Mg isotope exchange with ambient materials, although two of the CAIs are severely altered. The AOAs contain excess 26Mg and plot close to the CAI regression line, which is suggestive of their contemporary formation. The CAIs from Ningqiang define a different line with a lower inferred (26Al/27Al)0 ratio of (3.56 ± 0.08) × 10?5. None of the CAIs and AOAs studied in this work shows significant mass fractionation with enrichment of the heavier Mg isotopes, arguing against an evaporation origin.  相似文献   

20.
Abstract— Fine‐grained, spinel‐rich inclusions in the reduced CV chondrites Efremovka and Leoville consist of spinel, melilite, anorthite, Al‐diopside, and minor hibonite and perovskite; forsterite is very rare. Several CAIs are surrounded by forsterite‐rich accretionary rims. In contrast to heavily altered fine‐grained CAIs in the oxidized CV chondrite Allende, those in the reduced CVs experienced very little alteration (secondary nepheline and sodalite are rare). The Efremovka and Leoville fine‐grained CAIs are 16O‐enriched and, like their Allende counterparts, generally have volatility fractionated group II rare earth element patterns. Three out of 13 fine‐grained CAIs we studied are structurally uniform and consist of small concentrically zoned nodules having spinel ± hibonite ± perovskite cores surrounded by layers of melilite and Al‐diopside. Other fine‐grained CAIs show an overall structural zonation defined by modal mineralogy differences between the inclusion cores and mantles. The cores are melilite‐free and consist of tiny spinel ± hibonite ± perovskite grains surrounded by layers of anorthite and Al‐diopside. The mantles are calcium‐enriched, magnesium‐depleted and coarsergrained relative to the cores; they generally contain abundant melilite but have less spinel and anorthite than the cores. The bulk compositions of fine‐grained CAIs generally show significant fractionation of Al from Ca and Ti, with Ca and Ti being depleted relative to Al; they are similar to those of coarsegrained, type C igneous CAIs, and thus are reasonable candidate precursors for the latter. The finegrained CAIs originally formed as aggregates of spinel‐perovskite‐melilite ± hibonite gas‐solid condensates from a reservoir that was 16O‐enriched but depleted in the most refractory REEs. These aggregates later experienced low‐temperature gas‐solid nebular reactions with gaseous SiO and Mg to form Al‐diopside and ±anorthite. The zoned structures of many of the fine‐grained inclusions may be the result of subsequent reheating that resulted in the evaporative loss of SiO and Mg and the formation of melilite. The inferred multi‐stage formation history of fine‐grained inclusions in Efremovka and Leoville is consistent with a complex formation history of coarse‐grained CAIs in CV chondrites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号