首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Planetary and Space Science》1999,47(3-4):327-330
The asteroid 85 Io has been observed using CCD and photoelectric photometry on 18 nights during its 1995–96 and 1997 apparitions. We present the observed lightcurves, determined colour indices and modelling of the asteroid spin vector and shape. The colour indices (U-B = 0.35±0.02, B-V = 0.66±0.02, V-R = 0.34±0.02, R-I = 0.36±0.02) are as expected for a C-type asteroid. The allowed spin vector solutions have the pole co-ordinates λ0 = 285±4°, β0 = −52±9° or λ0 = 108±10°, β0 = −46±10° and λ0 = 290±10°, β0 = −16±10° with a retrograde sense of rotation and a sidereal period Psid = 0d.286463±0d.000001. During the 1995–96 apparition the International Occultation Time Association (IOTA) observed an occultation event by 85 Io. The observations and modelling presented here were analysed together with the occultation data to develop improved constraints on the size of the asteroid. The derived value of 164 km is about 5% larger than the IRAS diameter. © 1999 Elsevier Science Ltd. All rights reserved.  相似文献   

2.
By means of new photoelectric observations made in 1974 an attempt to determine the poles of asteroids 9 and 44 was made. Following a method based upon the magnitude-aspect and amplitude-aspect relations, the coordinates of the poles for 9 and 44 were found to be, respectively, λ0 = 191° ± 5°, β0 = 56° ± 6° and λ0 = 100° ± 10°, β0 = 50° ± 10°. The previously published pole for asteroid 22, λ0 = 215° ± 10°, β0 = 45° ± 15°, was confirmed. From its phase relation we determined the phase coefficient of 44 Nysa, a very high albedo object (pv = 0.377). The very low phase coefficient obtained (βv = 0.018 mag/deg) agrees very well with an inverse relation between geometrical albedo and phase coefficient. The results are summarized in a table.  相似文献   

3.
The statistical parallax technique is applied to a sample of 262 RRab Lyrae variables with published photoelectric photometry, metallicities, and radial velocities and with measured absolute proper motions. Hipparcos, PPM, NPM, and the Four-Million Star Catalog (Volchkov et al. 1992) were used as the sources of proper motions; the proper motions from the last three catalogs were reduced to the Hipparcos system. We determine parameters of the velocity distribution for halo [(U 0, V 0, W 0) = (?9±12, ?214 ±10, ? 10, ?16±7) km s ?1 and (σ U , σ V , σ W ) = (164±11, 105±7, 95±7) km s ?1] and thick-disk [(U 0, V 0, W 0) = (?16±8, ?41±7, ?18±5) km s ?1], and [(σ U , σ V , σ W ) = (53±9, 42±8, 26±5) km s ?1] RR Lyrae, as well as the intensity-averaged absolute magnitude for RR Lyrae of these populations: 〈M V 〉 = 0.77 ± 0.10 and 〈M V 〉 = +1.11 ± 0.25 for the halo and thickdisk objects, respectively. The metallicity dependence of the absolute magnitude of RR Lyrae is analyzed (〈M V 〉 = (0.76 ± 0.12) + (0.26 ± 0.26) · ([Fe/H]+1.6)=1.17+0.26 · [Fe/H]). Our results are in satisfactory agreement with the ?M V ?(RR)?[Fe/H]relation from Carney et al. (1992) (〈M V 〉(RR)=1.01+0.15·[Fe/H]) obtained by Baade-Wesselink's method. They provide evidence for a short distance scale: the LMC distance modulus and the distance to the Galactic center are 18.22±0.11 and 7.4±0.5 kpc, respectively. The zero point of the distance scale and the kinematic parameters of the RR Lyrae populations are shown to be virtually independent of the source of absolute proper motions used and of whether they are reduced to the Hipparcos system or not.  相似文献   

4.
Open star clusters from the MWSC (Milky Way Star Clusters) catalogue have been used to determine the Galactic rotation parameters. The circular rotation velocity of the solar neighborhood around the Galactic center has been found from data on more than 2000 clusters of various ages to be V 0 = 236 ± 6 km s?1 for the adopted Galactocentric distance of the Sun R 0 = 8.3 ± 0.2 kpc. The derived angular velocity parameters are Ω 0 = 28.48 ± 0.36 km s?1 kpc?1, Ω0 = ?3.50 ± 0.08 km s?1 kpc?2, and Ω0 = 0.331 ± 0.037 km s?1 kpc?3. The influence of the spiral density wave has been detected only in the sample of clusters younger than 50 Myr. For these clusters the amplitudes of the tangential and radial velocity perturbations are f θ = 5.6 ± 1.6 km s?1 and f R = 7.7 ± 1.4 km s?1, respectively; the perturbation wavelengths are λ θ = 2.6 ± 0.5 kpc (i θ = ?11? ± 2?) and λ R = 2.1 ± 0.5 kpc (i R = ?9? ± 2?) for the adopted four-armed model (m = 4). The Sun’s phase in the spiral density wave is (χ)θ = ?62? ± 9? and (χ)R = ?85? ± 10? from the residual tangential and radial velocities, respectively.  相似文献   

5.
To study the peculiarities of the Galactic spiral density wave, we have analyzed the space velocities of Galactic Cepheids with propermotions from the Hipparcos catalog and line-of-sight velocities from various sources. First, based on the entire sample of 185 stars and taking R 0 = 8 kpc, we have found the components of the peculiar solar velocity (u , v ) = (7.6, 11.6) ± (0.8, 1.1) km s?1, the angular velocity of Galactic rotation Ω0 = 27.5 ± 0.5 km s?1 kpc?1 and its derivatives Ω′0 = ?4.12 ± 0.10 km s?1 kpc?2 and Ω″0 = 0.85 ± 0.07 km s?1 kpc?3, the amplitudes of the velocity perturbations in the spiral density wave f R = ?6.8 ± 0.7 and f θ = 3.3 ± 0.5 km s?1, the pitch angle of a two-armed spiral pattern (m = 2) i = ?4.6° ± 0.1° (which corresponds to a wavelength λ = 2.0 ± 0.1 kpc), and the phase of the Sun in the spiral density wave χ = ?193° ± 5°. The phase χ has been found to change noticeably with the mean age of the sample. Having analyzed these phase shifts, we have determined the mean value of the angular velocity difference Ω p ? Ω, which depends significantly on the calibrations used to estimate the individual ages of Cepheids. When estimating the ages of Cepheids based on Efremov’s calibration, we have found |Ω p ? Ω0| = 10 ± 1stat ± 3syst km s?1 kpc?1. The ratio of the radial component of the gravitational force produced by the spiral arms to the total gravitational force of the Galaxy has been estimated to be f r0 = 0.04 ± 0.01.  相似文献   

6.
Based on kinematic data on masers with known trigonometric parallaxes and measurements of the velocities of HI clouds at tangential points in the inner Galaxy, we have refined the parameters of the Allen-Santillan model Galactic potential and constructed the Galactic rotation curve in a wide range of Galactocentric distances, from 0 to 20 kpc. The circular rotation velocity of the Sun for the adopted Galactocentric distance R 0 = 8 kpc is V 0 = 239 ± 16 km s?1. We have obtained the series of residual tangential, ΔV θ , and radial, V R , velocities for 73 masers. Based on these series, we have determined the parameters of the Galactic spiral density wave satisfying the linear Lin-Shu model using the method of periodogram analysis that we proposed previously. The tangential and radial perturbation amplitudes are f θ = 7.0±1.2 km s?1 and f R = 7.8±0.7 km s?1, respectively, the perturbation wave length is λ = 2.3±0.4 kpc, and the pitch angle of the spiral pattern in a two-armed model is i = ?5.2° ±0.7°. The phase of the Sun ζ in the spiral density wave is ?50° ± 15° and ?160° ± 15° from the residual tangential and radial velocities, respectively.  相似文献   

7.
Interferometric observations of Saturn and its rings made at the Owens Valley Radio Observatory at a wavelength of 3.71 cm ar fit to models of the Saturn brightness structure. The models have allowed us to estimate the brightness temperatures and optical thicknesses of the A, B, and C rings as well as the brightness temperature of the planetary disk. The most accurate results are the ratios of the ring temperatures to the planet temperature of 0.030 ± 0.012, 0.050 ± 0.010, and 0.040 ± 0.014 for the A, B, and C rings, respectively. The best estimates of the ring optical thicknesses are τA = 0.2 ± 0.1, τB = 0.9 ± 0.2, and τC = 0.1 ± 0.1. The actual brightness temperatures, which are affected by the absolute calibration errors, are Tplanet = 178 ± 8, TA = 5.2 ± 2.0, TB = 9.1 ± 1.8, and TC = 7.1 ± 2.6°K. The particle single-scattering albedo that would be most consistent with the observations is slightly less than one, but probably greater than 0.95. The observations are consistent with particles which conservatively scatter the thermal emission from Saturn to the Earth and emit no thermal emission of their own. The 3.71-cm optical depths which we have estimated are very close to the visible wavelength optical depths. This similarity indicates that the ring particles must be at least a few centimeters in size, although we feel that the particles may well be much larger than this in view of the closeness of the visible and microwave optical depths. Particles which are nearly conservative scatterers at our wavelength and at least a few centimeters in size must be composed of a material which is either a very good reflector of microwaves or a very poor absorber of them. At this time, water ice seems to be the most likely candidate since it is a very poor absorber of microwaves and has been detected in the rings spectroscopically.  相似文献   

8.
Speckle interferometric binary system HD375; Is it a sub-giant binary?   总被引:1,自引:0,他引:1  
Atmospheric modeling is used to build synthetic spectral energy distributions (SEDs) for the individual components of the speckle interferometric binary system HD375. These synthetic SEDs are combined together for the entire system and compared with its observed SED in an iterative procedure to achieve the best fit. Kurucz blanketed models and the measurements of magnitude differences were used to build these SEDs. The input physical parameters for building these best fitted synthetic SEDs represent adequately enough properties of the system. These parameters are: T eff a = 6100 ± 50 K, T eff b = 5940 ± 50 K, log g a = 4.01 ± 0.10, log g b = 3.98 ± 0.10, R a = 1.93 ± 0.20R , R b = 1.83 ± 0.20R , M v a = 3 · m 26 ± 0.40, M v b = 3 · m 51 ± 0.50, L a = 4.63 ± 0.80 L , and L b = 3.74 ± 0.70 L , in accordance with the new estimated parallax π = 12.02 ± 0.60 mas. A modified orbit of the system is built and compared with earlier orbits, and the masses of the two components are calculated as M a = 1.35M and M b = 1.25M . Based on the estimated physical and geometrical parameters of the system, which are confirmed by synthetic photometry, we suggest that the two components are evolved subgiant (F8.5 IV and G0 IV) stars with the age of 3.5 Gyr, formed by fragmentation.  相似文献   

9.
We have selected and analyzed a sample of OB stars with known line-of-sight velocities determined through ground-based observations and with trigonometric parallaxes and propermotions from the Gaia DR2 catalogue. Some of the stars in our sample have distance estimates made from calcium lines. A direct comparison with the trigonometric distance scale has shown that the calcium distance scale should be reduced by 13%. The following parameters of the Galactic rotation curve have been determined from 495 OB stars with relative parallax errors less than 30%: (U, V,W) = (8.16, 11.19, 8.55)± (0.48, 0.56, 0.48) km s?1, Ω0 = 28.92 ± 0.39 km s?1 kpc?1, Ω'0 = ?4.087 ± 0.083 km s?1 kpc?2, and Ω″ 0 = 0.703 ± 0.067 km s?1 kpc?3, where the circular velocity of the local standard of rest is V0 = 231 ± 5 km s?1 (for the adopted R0 = 8.0 ± 0.15 kpc). The parameters of the Galactic spiral density wave have been found from the series of radial, VR, residual tangential, ΔVcirc, and vertical, W, velocities of OB stars by applying a periodogram analysis. The amplitudes of the radial, tangential, and vertical velocity perturbations are fR = 7.1± 0.3 km s?1, fθ = 6.5 ± 0.4 km s?1, and fW = 4.8± 0.8 km s?1, respectively; the perturbation wavelengths are λR = 3.3 ± 0.1 kpc, λθ = 2.3 ± 0.2 kpc, and λW = 2.6 ± 0.5 kpc; and the Sun’s radial phase in the spiral density wave is (χ)R = ?135? ± 5?, (χ)θ = ?123? ± 8?, and (χ)W = ?132? ± 21? for the adopted four-armed spiral pattern.  相似文献   

10.
Based on published sources, we have created a kinematic database on 220 massive (> 10 M ) young Galactic star systems located within ≤3 kpc of the Sun. Out of them, ≈100 objects are spectroscopic binary and multiple star systems whose components are massive OB stars; the remaining objects are massive Hipparcos B stars with parallax errors of no more than 10%. Based on the entire sample, we have constructed the Galactic rotation curve, determined the circular rotation velocity of the solar neighborhood around the Galactic center at R 0 = 8kpc, V 0 = 259±16 km s?1, and obtained the following spiral density wave parameters: the amplitudes of the radial and azimuthal velocity perturbations f R = ?10.8 ± 1.2 km s?1 and f θ = 7.9 ± 1.3 km s?1, respectively; the pitch angle for a two-armed spiral pattern i = ?6.0° ± 0.4°, with the wavelength of the spiral density wave near the Sun being λ = 2.6 ± 0.2 kpc; and the radial phase of the Sun in χ = ?120° ± 4°. We show that such peculiarities of the Gould Belt as the local expansion of the system, the velocity ellipsoid vertex deviation, and the significant additional rotation can be explained in terms of the density wave theory. All these effects decrease noticeably once the influence of the spiral density wave on the velocities of nearby stars has been taken into account. The influence of Gould Belt stars on the Galactic parameter estimates has also been revealed. Eliminating them from the kinematic equations has led to the following new values of the spiral density wave parameters: f θ = 2.9 ± 2.1 km s?1 and χ = ?104° ± 6°.  相似文献   

11.
Results of a harmonic analysis of the arrival directions for primary cosmic-ray particles with energies E 0 ? 1017 eV and zenith angles θ ? 45° recorded on the Yakutsk array over 29 years of its continuous operation (1983–2012) are presented. These events are shown to have different global anisotropies in different time intervals: the phase of the first harmonic φ 1 = 119° ± 18° and its amplitude A 1 = 0.030 ± 0.014 in the 1983–1994 samples changed into φ 1 = 284° ± 13° and A 1 = 0.033 ± 0.010 in 1998–2010. All of this could be caused by a considerably increased flux of heavy nuclei from the exit of the Galaxy’s local arm after 1996.  相似文献   

12.
By directly comparing the photometric distances of Blaha and Humphreys (1989) (BH) to OB associations and field stars with the corresponding Hipparcos trigonometric parallaxes, we show that the BH distance scale is overestimated, on average, by 10–20%. This result is independently corroborated by applying the rigorous statistical-parallax method and its simplified analog (finding a kinematically adjusted rotation-curve solution from radial velocities and proper motions) to a sample of OB associations. These two methods lead us to conclude that the BH distance scale for OB associations should be shrunk, on average, by 11±6 and 24±10%, respectively. Kinematical parameters have been determined for the system of OB associations: u 0 = 8.2 ± 1.3 km s?1, v 0 = 11.9 ± 1.1 km s?1, w 0 = 9.5 ± 0.9 km s?1, σ u = 8.2 ± 1.1 km s?1, σ v = 5.8 ± 0.8 km s?1, σ w = 5.0 ± 0.8 km s?1, Ω0 = 29.1 ± 1.0 km s?1 kpc?1, Ω0′ = ?4.57 ± 0.20 km s?1 kpc?2, and Ω0″ = 1.32 ± 0.14 km s?1 kpc?3. The distance scale for OB associations reduced by 20% matches the short Cepheid distance scale (Berdnikov and Efremov 1985; Sitnik and Mel’nik 1996). Our results are a further argument for the short distance scale in the Universe.  相似文献   

13.
M. Noland  J. Veverka 《Icarus》1976,28(3):405-414
We have used the integrated brightnesses from Mariner 9 high-resolution images to determine the large phase angle (20° to 80°) phase curves of Phobos and Deimos. The derived phase coefficients are β = 0.032 ± 0.001 mag/deg for Phobos and β = 0.030 ± 0.001 mag/deg for Deimos, while the corresponding phase integrals are qPhobos = 0.52 and qDeimos = 0.57. The predicted intrinsic phase coefficients of the surface material are βi = 0.019 mag/deg and βi = 0.017 mag/deg for Phobos and Deimos, respectively. The phase curves, phase coefficients and phase integrals are typical of objects whose surface layers are dark and intricate in texture, and are consistent with the presence of a regolith on both satellites. The relative reflectance of Deimos to Phobos is 1.15±0.10. The presence of several bright patches on Deimos could account for this slight difference in average reflectance.  相似文献   

14.
Based on published data, we have collected information about Galactic maser sources with measured distances. In particular, 44 Galactic maser sources located in star-forming regions have trigonometric parallaxes, proper motions, and radial velocities. In addition, ten more radio sources with incomplete information are known, but their parallaxes have been measured with a high accuracy. For all 54 sources, we have calculated the corrections for the well-known Lutz-Kelker bias. Based on a sample of 44 sources, we have refined the parameters of the Galactic rotation curve. Thus, at R 0 = 8kpc, the peculiar velocity components for the Sun are (U , V , W ) = (7.5, 17.6, 8.4) ± (1.2, 1.2, 1.2) km s?1 and the angular velocity components are ω 0 = ?28.7 ± 0.5 km s?1 kpc?1, ω 0′ = +4.17 ± 0.10 km s?1 kpc?2, and ω0″ = ?0.87 ± 0.06 km s?1 kpc?3. The corresponding Oort constants are A = 16.7 ± 0.6 km s?1 kpc?1 and B = ?12.0 ± 1.0 km s?1 kpc?1; the circular rotation velocity of the solar neighborhood around the Galactic center is V 0 = 230 ± 16 km s?1. We have found that the corrections for the Lutz-Kelker bias affect the determination of the angular velocity ω 0 most strongly; their effect on the remaining parameters is statistically insignificant. Within themodel of a two-armed spiral pattern, we have determined the pattern pitch angle $i = - 6_.^ \circ 5$ and the phase of the Sun in the spiral wave χ 0 = 150°.  相似文献   

15.
Currently available data on the field of velocities V r , V l , V b for open star clusters are used to perform a kinematic analysis of various samples that differ by heliocentric distance, age, and membership in individual structures (the Orion, Carina-Sagittarius, and Perseus arms). Based on 375 clusters located within 5 kpc of the Sun with ages up to 1 Gyr, we have determined the Galactic rotation parameters ω 0 = ?26.0 ± 0.3 km s?1 kpc?1, ω0 = 4.18 ± 0.17 km s?1 kpc?2, ω0 = ?0.45 ± 0.06 km s?1 kpc?3, the system contraction parameter K = ?2.4 ± 0.1 km s?1 kpc?1, and the parameters of the kinematic center R 0 = 7.4 ± 0.3 kpc and l 0 = 0° ± 1°. The Galactocentric distance R 0 in the model used has been found to depend significantly on the sample age. Thus, for example, it is 9.5 ± 0.7 and 5.6 ± 0.3 kpc for the samples of young (≤50 Myr) and old (>50 Myr) clusters, respectively. Our study of the kinematics of young open star clusters in various spiral arms has shown that the kinematic parameters are similar to the parameters obtained from the entire sample for the Carina-Sagittarius and Perseus arms and differ significantly from them for the Orion arm. The contraction effect is shown to be typical of star clusters with various ages. It is most pronounced for clusters with a mean age of ≈100 Myr, with the contraction velocity being Kr = ?4.3 ± 1.0 km s?1.  相似文献   

16.
We present 26 lightcurves of 16 Psyche from 1975 and 1976. The synodic period during this apparition was 4h.1958. Combining photometric data from this opposition with those from previous apparitions allowed us to derive a mean phase coefficient in V of 0.026 ± 0.002 mag/deg and to establish that Psyche's absolute V0 magnitude and rotational amplitude vary with aspect; at 90° aspect, V0(1, 0) = 6.27 ± 0.05 and the lightcurve amplitude is 0.30 mag, while at 0° or 180° aspect, V0(1, 0) = 6.02 ± 0.02 and the amplitude is ?0.03 mag. This behavior is accounted for if, to first order, Psyche's shape is that of a triaxial ellipsoid with axial ratios near 5:4:3. Colors at zero phase are U-B = 0.26 ± 0.01 and B-V = 0.71 ± 0.01. Color phase coefficients are <0.001 mag/deg in U-B and 0.0010 ± 0.0004 mag/deg in B-V.  相似文献   

17.
The speckle interferometric binary system Gl 150.2 (HIP17491) is analyzed using atmosphere modeling and dynamical analysis simultaneously. A synthetic spectral energy distribution (SED) for each of the two components of the system is built using Kurucz blanketed models. These SEDs are combined together to form the total flux, which is compared with the observed one in an iterative method to get the best fit. The parameters of the individual components which lead to the best fit are: T eff A = 5350 ± 50 K, T eff B = 4400 ± 50 K, log g A = 4.40 ± 0.05, log g B = 4.68 ± 0.05, R A = 0.95 ± 0.06R , R B = 0.58 ± 0.06R , and π = 38.63 ± 0.79 mas, as given by the modified Hipparcos measurement. A modified orbit of the system is introduced and compared with earlier orbits. Hence, the masses of the two components are derived from the coincidence between the atmosphere modeling and dynamical analysis. Based on the estimated physical and geometrical parameters of the system, which are confirmed by synthetic photometry, the spectral types and luminosity classes of the two components are found to be G9.5V and K7V for the primary and secondary stars respectively, with an age of about 8 Gyr. Finally, the positions of both components on the H-R diagram are plotted, and the formation and evolution of the system are discussed.  相似文献   

18.
19.
Results of photometric and spectroscopic studies for the new eclipsing cataclysmic variable star HBHA 4705-03 with an orbital period of 0.1718 days are presented. Its spectrum exhibits hydrogen and helium emission lines. The Doppler maps constructed from hydrogen lines and the He II λ 4686 line show that the regions near the inner Lagrangian point are the main source of emission in these lines, while the maps constructed from He I lines suggest the presence of an accretion disk around the primary. The masses of the components (M WD = 0.54 ± 0.10M andM RD = 0.45 ± 0.05 M ) and the orbital inclination of the system (i = 71.8° ± 0.7°) have been determined from observational data using well-known relations for close binaries and cataclysmic variable stars.  相似文献   

20.
We have tested the method of determining the solar Galactocentric distance R 0 and Galactic rotation velocity V 0 modified by Sofue et al. using near-solar-circle objects. The motion of objects relative to the local standard of rest has been properly taken into account. We show that when such young objects as star-forming regions or Cepheids are analyzed, allowance for the perturbations produced by the Galactic spiral density wave improves the statistical significance of the estimates. The estimate of R 0 = 7.25 ± 0.32 kpc has been obtained from 19 star-forming regions. The following estimates have been obtained from a sample of 14 Cepheids (with pulsation periods P > 5 d ): R 0 = 7.66 ± 0.36 kpc and V 0 = 267 ± 17 km s?1. We consider the influence of the adopted Oort constant A and the character of stellar proper motions (Hipparcos or UCAC4). The following estimates have been obtained from a sample of 18 Cepheids with stellar proper motions from the UCAC4 catalog: R 0 = 7.64 ± 0.32 kpc and V 0 = 217 ± 11 km s?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号