首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Alba Patera main graben zone is radial to the Tharsis bulge, indicating the importance of the Tharsis bulge-related peripheral rift tectonics. The concentric grabens around the Alba Patera area are also partly caused by crustal bending due to the central load of the Alba Patera volcano. These two graben sets partly coincide forming composite structures. Both tectonic systems were still active after the last major volcanic lava extrusions took place. After this, the crater chain grabens, radial to the northernmost part of the Tharsis bulge were formed. These collapse craters were evidently caused by the late-tectonic forces due to the northern Tharsis and adjoining lava loads, resulting in flexural tension and activating previous faults.  相似文献   

2.
The Tharsis region is an 8000-km-wide structural dome that incorporates a concentration of the main volcanic and tectonic activity on the Planet Mars. The area of structural doming is characterised by giant radial graben-dike systems. Nested on a set of these giant dikes to the northern side of Tharsis, is Alba Patera, one of the largest volcanoes in the planetary system. The regional dikes there are in arcuate arrangement and imply an E-W to NW-SE regional extension at Alba Patera. To assess the influence of regional and local tectonics, we studied the dike orientations on the volcano with Viking mosaic data and simulated plausible stress fields with finite element modelling. We found that the influence of a NW-SE regional extension was strong near the volcano centre but decreased rapidly in importance towards the northern pole, i.e., far from the Tharsis centre. By combining this regional stress with a broad uplift that is due to a buoyancy zone of about 1400 km in lateral extent and centred under Alba Patera, we reproduced the radial pattern of dike swarms that diverge from the Tharsis trend. Regional tectonics may have dominated the early stages of dike injection. During the evolution of Alba Patera, however, local updoming controlled the dike pattern, supporting the idea of a hotspot under Alba Patera. The well-expressed dike geometry and characteristics of Alba Patera provide an ideal example for comparative study with analogue hotspots on Earth where plate tectonics and active erosion may complicate the reconstruction of volcanic and tectonic history and the understanding of involved geodynamic processes.  相似文献   

3.
The Tharsis rise on Mars with a diameter of about 8000 km and an elevation up to 10 km shows extensive volcanism and an extensional fracture system. Other authors explained this structure by (I) an uplift due to mantle processes and by (II) volcanic construction. Gravity models of four profiles are in accordance with a total Airy isostatic compensation of the whole rise with mean crustal thicknesses of 50 km and 100 km. But two regions exhibit significant mass deficits: (i) the area between Olympus Mons and the three large Tharsis volcanoes and (ii) central Tharsis. This can be explained by (1) a heated upper mantle, (2) a chemically modified upper mantle, (3) a crustal thickening, or (4) a combination of these three processes. Crustal thickening is mainly a constructional process, but the mass deficit should contribute to a certain degree of uplift causing the extensional area of Labyrinthus Noctis. Gravity modelling results in a different isostatic state of the three Tharsis volcanoes. Pavonis Mons is not compensated, Ascraeus Mons is highly or totally compensated, and Arsia Mons is medium or not compensated. The large, flat volcanic structure Alba Patera has been explained by a hot spot with an evolution of a mantle diapir.The results have shown that the Tharsis rise is a very complex structure. The central and eastern part of the rise is characterized by extensional features and a mass deficit (Extensional Province). The western part is dominated by many volcanic features and a central elongated mass deficit (Volcanic Province). The northern part consists of Alba Patera. It seems unlikely that the whole rise has been generated by one stationary large axisymmetric plume or hot spot. There could have been one or more active hot spots with an evolution in space and time.Contribution Nr. 421, Institut für Geophysik der Universität Kiel, Germany.  相似文献   

4.
The tectonics of the Tharsis and adjoining areas is considered to be associated with the convection in the Martian mantle. Convection and mantle plume have been responsible for the primary uplift and volcanism of the Tharsis area. The radial compressional forces generated by the tendency for downslope movement of surface strata, vertical volcanic intrusions and traction of mantle spreading beneath Tharsis were transmitted through the lithosphere to form peripheral mare ridge zones. The locations of mare ridges were thus mainly controlled by the Tharsis-radial compression. The load-induced stresses then contributed on further ridge formation over an extended period of time by the isostatic readjustment which was reponsible for long-term stresses in the adjoining areas. Extrusions, changes in internal temperature and possible phase changes may also have caused changes in mantle volume giving rise to additional compressional forces and crustal deformations.On leave from Dept. of Astronomy, University of Oulu, Oulu, Finland  相似文献   

5.
Global data sets of images, topography and gravity are available for Mars from several orbiter missions. At the eve of new global data from Mars Global Surveyor (MGS), the capabilities of 3D geophysical modelling based on areal topography and gravity data combined with geologic-tectonic image interpretation is demonstrated here. A unique structure is chosen for the model calculations: the Alba Patera volcanic complex at the northern border of the Tharsis rise. Five groups of graben are discriminated: Ceraunius Fossae, Catenae, Tantalus Fossae (radial group) radial to the Tharsis rise, mainly associated to the formation of Tharsis, and Alba and Tantalus Fossae (circular group), younger than the other graben and circular around Alba Patera. Combining 3D elastic flexure of the lithosphere due to a 3D topographic surface load with 3D gravity models results in a rather thick lithosphere (150–200 km) and thick crust (60–100 km). In another model estimate it has been assumed that the circular grabens are induced by the stresses from the surface load of Alba Patera. In a first order calculation the surface stresses under a point load have been determined resulting in a good correlation of the stress maximum with the location of the circular grabens for a 50-km thick lithosphere. This is in accordance with earlier results from this method, but in contradiction with the thick lithosphere derived from flexure-gravity models. One possibility for this contradiction may be that the different models represent two evolutionary points of Alba Patera. (1) The correlation of stresses with the circular grabens may represent an older stage of evolution with a thinner lithosphere. (2) The flexure-gravity models represent a younger to present stage with a thick lithosphere. The results of the lithosphere thicknesses are compared with an admittance calculation and different thermal evolution models which determine comparable thicknesses (150 km). More detailed models including 3D stress models should wait for new data sets from MGS. The results from the lineament analysis and geophysical modelling are summarized in an evolution model for Alba Patera.  相似文献   

6.
The concept of block tectonics provides a framework for understanding many aspects of Tharsis and adjoining structures. This Tharsis block tectonics on Mars is manifested partly by mantle-related doming and partly by response to loading by subsequent volcanic construction. Although the origin of the volcanism from beneath Tharsis is a subject of controversy explanations have to include inhomogenities in Martian internal structure, energy distribution, magma accumulation and motion below the lithosphere. Thermal convection can be seen as a necessary consequence for transient initial phase of Martian cooling. This produced part of the elevated topography with tensional stresses and graben systems radial to the main bulge. The linear grabens, radial to the Tharsis center, can be interpreted to indicate rift zones that define the crustal block boundaries. The load-induced stresses may then have contributed on further graben and ridge formation over an extended period of time.On leave from Dept. of Astronomy University of Oulu, Oulu, Finland.  相似文献   

7.
Abstract— The age, structure, composition, and petrogenesis of the martian lithosphere have been constrained by spacecraft imagery and remote sensing. How well do martian meteorites conform to expectations derived from this geologic context? Both data sets indicate a thick, extensive igneous crust formed very early in the planet's history. The composition of the ancient crust is predominantly basaltic, possibly andesitic in part, with sediments derived from volcanic rocks. Later plume eruptions produced igneous centers like Tharsis, the composition of which cannot be determined because of spectral obscuration by dust. Martian meteorites (except Allan Hills 84001) are inferred to have come from volcanic flows in Tharsis or Elysium, and thus are not petrologically representative of most of the martian surface. Remote‐sensing measurements cannot verify the fractional crystallization and assimilation that have been documented in meteorites, but subsurface magmatic processes are consistent with orbital imagery indicating thick crust and large, complex magma chambers beneath Tharsis volcanoes. Meteorite ejection ages are difficult to reconcile with plausible impact histories for Mars, and oversampling of young terrains suggests either that only coherent igneous rocks can survive the ejection process or that older surfaces cannot transmit the required shock waves. The mean density and moment of inertia calculated from spacecraft data are roughly consistent with the proportions and compositions of mantle and core estimated from martian meteorites. Thermal models predicting the absence of crustal recycling, and the chronology of the planetary magnetic field agree with conclusions from radiogenic isotopes and paleomagnetism in martian meteorites. However, lack of vigorous mantle convection, as inferred from meteorite geochemistry, seems inconsistent with their derivation from the Tharsis or Elysium plumes. Geological and meteoritic data provide conflicting information on the planet's volatile inventory and degassing history, but are apparently being reconciled in favor of a periodically wet Mars. Spacecraft measurements suggesting that rocks have been chemically weathered and have interacted with recycled saline groundwater are confirmed by weathering products and stable isotope fractionations in martian meteorites.  相似文献   

8.
Observations of ridge-fault crosscutting relationships on the ridged plains units surrounding the Tharsis region of Mars have led to the development of a classification scheme involving three distinct types of intersections. Ridges crosscut by faults are designated Type C and account for 81% of the observed intersections. Ridges terminated at one end by a fault (Type T), as well as those superposed on grabens (Type S), are less numerous. Interpretation of the morphology of these intersections and the angles of intersection between ridges and faults with radial trends to major topographic features in the Tharsis region have led to the following conclusions: (1) the major ridge forming events in the Tharsis region were roughly coincident with, and in some cases possibly prior to, the extensional events that produced the faulting of the Tempe and Mareotis regions, the Coprates and Memnonia regions, and the rifting of Valles Marinrris; (2) the compressional events that formed most of the ridges are restricted in time both by the irrelationship to regional extensional events and by the age of the units on which they formed. The suggestion that compressional ridges are a result of a single long term viscoelastic response of the lithosphere to loading of the crust is not supported by this study. A model involving one or more isostatically compensated uplifts and subsequent relaxation of the crust after the emplacement of the ridged plains volcanic units is favored.  相似文献   

9.
Global recharge of the martian hydrologic system has traditionally been viewed as occurring through basal melting of the south polar cap. We conclude that regional recharge of a groundwater system at the large volcanic provinces, Elysium and Tharsis, is also very plausible and has several advantages over a south polar recharge source in providing a more direct, efficient supply of water to the outflow channel source regions surrounding these areas. This recharge scenario is proposed to have operated concurrently with and within the context of a global cryosphere–hydrosphere system of the subsurface characteristic of post-Noachian periods. To complement existing groundwater flow modeling studies, we examine geologic evidence and possible mechanisms for accumulation of water at high elevations on the volcanic rises, such as melting snow, infiltration, and increased effective permeability of the subsurface between the recharge zone and outflow source. Evidence for the presence of large Amazonian-aged cold-based piedmont glaciers on the Tharsis Montes has been well documented. Climate modeling predicts snow accumulation on high volcanic rises at obliquities thought to be typical over much of martian history. Thermal gradients causing basal melting of snowpack over 1 km thick could provide several kg m−2 yr−1 of water, charging a volume equivalent to the pore space in a square meter column of subsurface in less than 1.5×105 yr. In order to account for estimated outflow channel volumes, the subsurface volume above the elevation of the outflow channels must be charged several times over the area of Tharsis. Complete aquifer recharge can be accomplished in ∼0.3–2 My through the snowpack melting mechanism at Tharsis and in ∼5×104 years for channel requirements at Elysium. Abundant radial dikes emanating from large martian volcanic rises can crack and/or melt the cryosphere, initiating water outflow and creating anisotropies that can channel subsurface water from a high-elevation groundwater reservoir to outflow sources. In this model, snow accumulation, infiltration of meltwater, and increased effective permeabilities are a consequence of the geologic, thermal, and climatic environment at Elysium and Tharsis, and may have had a genetic influence on the preferential distribution of outflow channels around volcanic rises on Mars.  相似文献   

10.
The global martian volcanic evolutionary history   总被引:1,自引:0,他引:1  
Viking mission image data revealed the total spatial extent of preserved volcanic surface on Mars. One of the dominating surface expressions is Olympus Mons and the surrounding volcanic province Tharsis. Earlier studies of the global volcanic sequence of events based on stratigraphic relationships and crater count statistics were limited to the image resolution of the Viking orbiter camera. Here, a global investigation based on high-resolution image data gathered by the High-Resolution Stereo Camera (HRSC) during the first years of Mars Express orbiting around Mars is presented. Additionally, Mars Orbiter Camera (MOC) and Thermal Emission Imaging System (THEMIS) images were used for more detailed and complementary information. The results reveal global volcanism during the Noachian period (>3.7 Ga) followed by more focused vent volcanism in three (Tharsis, Elysium, and Circum-Hellas) and later two (Tharsis and Elysium) volcanic provinces. Finally, the volcanic activity became localized to the Tharsis region (about 1.6 Ga ago), where volcanism was active until very recently (200-100 Ma). These age results were expected from radiometric dating of martian meteorites but now verified for extended geological units, mainly found in the Tharsis Montes surroundings, showing prolonged volcanism for more than 3.5 billions years. The volcanic activity on Mars appears episodic, but decaying in intensity and localizing in space. The spatial and temporal extent of martian volcanism based on crater count statistics now provides a much better database for modelling the thermodynamic evolution of Mars.  相似文献   

11.
Syria Planum and Alba Patera are two of the most prominent features of magmatic-driven activity identified for the Tharsis region and perhaps for all of Mars. In this study, we have performed a Geographic Information System-based comparative investigation of their tectonic histories using published geologic map information and Mars Orbiter Laser Altimetry (MOLA) data. Our primary objective is to assess their evolutional histories by focusing on their extent of deformation in space and time through stratigraphic, paleotectonic, topographic, and geomorphologic analyses. Though there are similarities among the two prominent features, there are several distinct differences, including timing deformational extent, and tectonic intensity of formation. Whereas Alba Patera displays a major pulse of activity during the Late Hesperian/Early Amazonian, Syria Planum is a long-lived center that displays a more uniform distribution of simple graben densities ranging from the Noachian to the Amazonian, many of which occur at greater distances away from the primary center of activity. The histories of the two features presented here are representative of the complex, long-lived evolutional history of Tharsis.  相似文献   

12.
The origin of the ancient martian crustal dichotomy and the massive magmatic province of Tharsis remains an open problem. Here, we explore numerically a hypothesis for the origin of these two features involving both exogenic and endogenic processes. We propose a giant impact event during the late stage of planetary formation as the source of the southern highland crust. In a second stage, the extraction of excess heat by vigorous mantle convection on the impacted hemisphere leads to massive magmatism, forming a distinct Tharsis-like volcanic region. By coupling short-term and long-term numerical simulations, we are able to investigate both the early formation as well as the 4.5 Gyr evolution of the martian crust. We demonstrate numerically that this exogenic-endogenic hypothesis is in agreement with observational data from Mars.  相似文献   

13.
Jafar Arkani-Hamed 《Icarus》2009,204(2):489-498
We investigate the polar wander of Mars in the last ∼4.2 Ga. We identify two sets of basins from the 20 giant impact basins reported by Frey [Frey, H., 2008. Geophys. Res. Lett. 35, L13203] which trace great circles on Mars, and propose that the great circles were the prevailing equators of Mars at the impact times. Monte Carlo tests are conducted to demonstrate that the two sets of basins are most likely not created by random impacts. Also, fitting 63,771 planes to randomly selected sets of 5, 6, or 7 basins indicated that the identified two sets are unique. We propose three different positions for the rotation pole of Mars, besides the present one. Accordingly, Tharsis bulge was initially formed at ∼50 N and moved toward the equator while rotating counterclockwise due to the influence of the two newly forming volcanic constructs, Alba Patera and Elysium Rise. The formation of the giant impact basins, subsequent mass concentrations (mascons) in Argyre, Isidis, and Utopia basins, and surface masses of volcanic mountains such as Ascraeus, Pavonis, Arsia and Olympus, caused further polar wander which rotated Tharsis bulge clockwise to arrive at its present location. The extensive polar motion of Mars during 4.2-3.9 Ga implies a weak lithosphere on a global scale, deduced from a total of 72,000 polar wander models driven by Tharsis bulge, Alba Patera and Elysium Rise as the major mass perturbations. Different compensation states, 0-100%, are examined for each of the surface loads, and nine different thicknesses are considered for an elastic lithosphere. The lithosphere must have been very weak, with an elastic thickness of less than 5 km, if the polar wander was driven by these mass perturbations.  相似文献   

14.
In order to explain the development of Central Valles Marineris, a new morphostructural model is proposed. This model involves three major phases, including (i) initiation of graben patterns and pit crater chains under an early extensional phase, (ii) formation of wide grabens during major faulting, local rifting, and erosional phase, (iii) late faulting and secondary volcanic activity, possibly related to renewed updoming of East Tharsis. Based on detailed morphologic studies presented in a companion paper (Peulvast and Masson, this issue), the role of erosional processes in Central Valles Marineris landforming is discussed.  相似文献   

15.
16.
H.J. Melosh 《Icarus》1980,44(3):745-751
Both geologic and free-air-gravity data suggest that the positive mass anomaly associated with the Tharsis volcanoes may have reoriented Mars' lithosphere by as much as 25°. Since Mars is oblate (with flattening ? ?0.005), rotation of the lithosphere over the equatorial bulge by 25° produces membrane stresses of several kilobars, large enough to initiate faulting. These stresses were first evaluated by F.A. Vening-Meinesz (1947, Trans. Amer. Geophys. Union28, 1–61) who treated the lithosphere as a thin elastic shell. The fracture patterns which result from these stresses are determined by the relation between stress and faulting proposed by E.M. Anderson (1951, The Dynamics of Faulting, Oliver & Boyd, Edinburgh). Plots of the magnitude and direction of stresses in a reoriented planet show that near Tharsis the dominant fault type should be north-south- trending normal faults. This normal fault province is centered about 30°N latitude and extends about 45° east and west in longitude. Similar faults should occur at the antipodes, north of Hellas Planitia. The polar regions should be occupied by roughly north-south-trending thrust faults which extend close to the equator south of Tharsis and north of Hellas. The regions between Tharsis and Hellas are subject to compression on a NE-trending axis and extension along a NW axis east of Tharsis (west of Tharsis the directions are NW compression and NE extension), thus predicting a zone of NNW and ENE strike slip faults east of Tharsis (NNE and WNW west of Tharsis). Although these patterns, except for the north-south normal faults north of Tharsis, have not yet been recognized, the discovery of such a tectonic system of the same age as Tharsis would provide strong support for the reorientation idea. Stresses due to reorientation appear to have little to do with Valles Marineris, since the stress normal to the axis of the Valles is predicted to be compressive, whereas geologic evidence suggests extension.  相似文献   

17.
J.B Plescia 《Icarus》2003,165(2):223-241
Tharsis Tholus is unusual martian shield volcano in that the edifice is cut by a series of large normal faults that appear to penetrate the entire volcano. Northeast-trending narrow graben also cut the flank. The large normal faults may be caused by loading of a ductile subsurface layer allowing failure of the edifice; the narrow graben are typical tensional faults. The flank is heavily mantled by aeolian material. Despite the bulbous appearance, the overall morphology of Tharsis Tholus suggests it is a basaltic shield. Crater counts indicate an age of early Hesperian placing Tharsis Tholus in the middle of the period of activity that built the other small Tharsis volcanoes.  相似文献   

18.
Geological analysis of Mars imagery supports the hypothesis that the planet has been the site of recent (<?10 Ma) volcanic and tectonic processes and glacier flow, and makes most likely previous suggestions of continuing endogenic and exogenic activity. Tectonic structures which deform very slightly cratered (at MOC scales) surfaces of Tharsis Montes and surrounding regions seem to attest to active tectonism (both extensional and transcurrent) on Mars. Exogenic processes in this region, such as a glacial origin for the aureole deposits on the northwestern flanks of the Tharsis Montes shield volcanoes, are supported by new data. The very recent age of these structures could be the first direct confirmation that drastic changes in obliquity are modulating the martian climate, such that an increase in obliquity would result in equatorial glaciers taking the place of the receding polar ice caps. If this and other concurring research is extended and confirmed, the ‘alive Mars’ which would emerge would constitute a most appealing place for exobiology and comparative planetology.  相似文献   

19.
Mareta West 《Icarus》1974,21(1):1-11
Inspection of the Mariner 9 B-camera (resolution 100–200m) and A-camera (resolution 1–2km) photographs of Mars reveals numerous analogs of terrestrial and lunar volcanic features. In addition to the exceptionally large constructional features in the Tharsis region, many other large and small landforms present probably are related to endogenic processes.  相似文献   

20.
The paradigm of an ancient warm, wet, and dynamically active Mars, which transitioned into a cold, dry, and internally dead planet, has persisted up until recently despite published Viking-based geologic maps that indicate geologic and hydrologic activity extending into the Late Amazonian epoch. This paradigm is shifting to a water-enriched planet, which may still exhibit internal activity, based on a collection of geologic, hydrologic, topographic, chemical, and elemental evidences obtained by the Viking, Mars Global Surveyor (MGS), Mars Odyssey (MO), Mars Exploration Rovers (MER), and Mars Express (MEx) missions. The evidence includes: (1) stratigraphically young rock materials such as pristine lava flows with few, if any, superposed impact craters; (2) tectonic features that cut stratigraphically young materials; (3) features with possible aqueous origin such as structurally controlled channels that dissect stratigraphically young materials and anastomosing-patterned slope streaks on hillslopes; (4) spatially varying elemental abundances for such elements as hydrogen (H) and chlorine (Cl) recorded in rock materials up to 0.33 m depth; and (5) regions of elevated atmospheric methane. This evidence is pronounced in parts of Tharsis, Elysium, and the region that straddles the two volcanic provinces, collectively referred to here as the Tharsis/Elysium corridor. Based in part on field investigations of Solfatara Crater, Italy, recommended as a suitable terrestrial analog, the Tharsis/Elysium corridor should be considered a prime target for Mars Reconnaissance Orbiter (MRO) investigations and future science-driven exploration to investigate whether Mars is internally and hydrologically active at the present time, and whether the persistence of this activity has resulted in biologic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号