首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Abstract— The osmium isotope ratios and platinum‐group element (PGE) concentrations of impact‐melt rocks in the Chesapeake Bay impact structure were determined. The impact‐melt rocks come from the cored part of a lower‐crater section of suevitic crystalline‐clast breccia in an 823 m scientific test hole over the central uplift at Cape Charles, Virginia. The 187Os/188Os ratios of impact‐melt rocks range from 0.151 to 0.518. The rhenium and platinum‐group element (PGE) concentrations of these rocks are 30–270x higher than concentrations in basement gneiss, and together with the osmium isotopes indicate a substantial meteoritic component in some impact‐melt rocks. Because the PGE abundances in the impact‐melt rocks are dominated by the target materials, interelemental ratios of the impact‐melt rocks are highly variable and nonchondritic. The chemical nature of the projectile for the Chesapeake Bay impact structure cannot be constrained at this time. Model mixing calculations between chondritic and crustal components suggest that most impact‐melt rocks include a bulk meteoritic component of 0.01–0.1% by mass. Several impact‐melt rocks with lowest initial 187Os/188Os ratios and the highest osmium concentrations could have been produced by additions of 0.1%–0.2% of a meteoritic component. In these samples, as much as 70% of the total Os may be of meteoritic origin. At the calculated proportions of a meteoritic component (0.01–0.1% by mass), no mixtures of the investigated target rocks and sediments can reproduce the observed PGE abundances of the impact‐melt rocks, suggesting that other PGE enrichment processes operated along with the meteoritic contamination. Possible explanations are 1) participation of unsampled target materials with high PGE abundances in the impact‐melt rocks, and 2) variable fractionations of PGE during syn‐ to post‐impact events.  相似文献   

2.
Abstract— The Lonar crater, India, is the only well‐preserved simple crater on Earth in continental flood basalts; it is excavated in the Deccan trap basalts of Cretaceous‐Tertiary age. A representative set of target basalts, including the basalt flows excavated by the crater, and a variety of impact breccias and impact glasses, were analyzed for their major and trace element compositions. Impact glasses and breccias were found inside and outside the crater rim in a variety of morphological forms and shapes. Comparable geochemical patterns of immobile elements (e.g., REEs) for glass, melt rock and basalt indicates minimal fractionation between the target rocks and the impactites. We found only little indication of post‐impact hydrothermal alteration in terms of volatile trace element changes. No clear indication of an extraterrestrial component was found in any of our breccias and impact glasses, indicating either a low level of contamination, or a non‐chondritic or otherwise iridium‐poor impactor.  相似文献   

3.
Abstract– Aubrites exhibit a wide range of highly siderophile element (HSE—Re, Os, Ir, Ru, Rh, Pt, Pd, Au) concentrations and 187Os/188Os compositions. Their HSE concentrations are one to three orders of magnitude less than chondrites, with the exception of the Shallowater and Mt. Egerton samples. While most aubrites show chondritic HSE abundance ratios, significant enrichments of Pd and Re relative to Os, Ir, and Ru are observed in 12 of 16 samples. Present‐day 187Os/188Os ratios range from subchondritic values of 0.1174 to superchondritic values of up to 0.2263. Half of the samples have 187Os/188Os ratios of 0.127 to 0.130, which is in the range of enstatite chondrites. Along with the brecciated nature of aubrites, the HSE and Re‐Os isotope systematics support a history of extensive postaccretion processing, including core formation, late addition of chondritic material and/or core material and potential breakup and reassembly. Highly siderophile element signatures for some aubrites are consistent with a mixing of HSE‐rich chondritic fragments with a HSE‐free aubrite matrix. The enrichments in incompatible HSE such as Pd and Re observed in some aubrites, reminiscent of terrestrial basalts, suggest an extensive magmatic and impact history, which is supported by both the 187Re‐187Os isotope system and silicate‐hosted isotope systems (Rb‐Sr, K‐Ar) yielding young formation ages of 1.3–3.9 Ga for a subset of samples. Compared with other differentiated achondrites derived from small planetary bodies, aubrites show a wide range in HSE concentrations and 187Os/188Os, most similar to angrites. While similarities exist between the diverse groups of achondrites formed early in solar system history, the aubrite parent body(ies) clearly underwent a distinct evolution, different from angrites, brachinites, ureilites, howardites, eucrites, and diogenites.  相似文献   

4.
Archean spherule layers represent the only currently known remnants of the early impact record on Earth. Based on the lunar cratering record, the small number of spherule layers identified so far contrasts to the high impact flux that can be expected for the Earth at that time. The recent discovery of several Paleoarchean spherule layers in the BARB5 and CT3 drill cores from the Barberton area, South Africa, drastically increases the number of known Archean impact spherule layers and may provide a unique opportunity to improve our knowledge of the impact record on the early Earth. This study is focused on the spherule layers in the CT3 drill core from the northeastern Barberton Greenstone Belt. We present highly siderophile element (HSE: Re, Os, Ir, Pt, Ru, and Pd) concentrations and Re‐Os isotope signatures for spherule layer samples and their host rocks in order to unravel the potential presence of extraterrestrial fingerprints within them. Most spherule layer samples exhibit extreme enrichments in HSE concentrations of up to superchondritic abundances in conjunction with, in some cases, subchondritic present‐day 187Os/188Os isotope ratios. This indicates a significant meteoritic contribution to the spherule layers. In contrast to some of the data reported earlier for other Archean spherule layers from the Barberton area, the CT3 core is significantly overprinted by secondary events. However, HSE and Re‐Os isotope signatures presented in this study indicate chondritic admixtures of up to (and even above) 100% chondrite component in some of the analyzed spherule layers. There is no significant correlation between HSE abundances and respective spherule contents. Although strongly supporting the impact origin of these layers and the presence of significant meteoritic admixtures, peak HSE concentrations are difficult to explain without postdepositional enrichment processes.  相似文献   

5.
The Lonar impact crater, India, is one of the few known terrestrial impact craters excavated in continental basaltic target rocks (Deccan Traps, ~65 Ma). The impactites reported from the crater to date mainly include centimeter‐ to decimeter‐sized impact‐melt bombs, and aerodynamically shaped millimeter‐ and submillimeter‐sized impact spherules. They occur in situ within the ejecta around the crater rim and show schlieren structure. In contrast, non–in situ glassy objects, loosely strewn around the crater lake and in the ejecta around the crater rim do not show any schlieren structure. These non–in situ fragments appear to be similar to ancient bricks from the Daityasudan temple in the Lonar village. Synthesis of existing and new major and trace element data on the Lonar impact spherules show that (1) the target Lonar basalts incorporated into the spherules had undergone minimal preimpact alteration. Also, the paleosol layer as preserved between the top‐most target basalt flow and the ejecta blanket, even after the impact, was not a source component for the Lonar impactites, (2) the Archean basement below the Deccan traps were unlikely to have contributed material to the impactite parental melts, and (3) the impactor asteroid components (Cr, Co, Ni) were concentrated only within the submillimeter‐sized spherules. Two component mixing calculations using major oxides and Cr, Co, and Ni suggest that the Lonar impactor was a EH‐type chondrite with the submillimeter‐sized spherules containing ~6 wt% impactor components.  相似文献   

6.
The Paleoproterozoic Dhala structure with an estimated diameter of ~11 km is a confirmed complex impact structure located in the central Indian state of Madhya Pradesh in predominantly granitic basement (2.65 Ga), in the northwestern part of the Archean Bundelkhand craton. The target lithology is granitic in composition but includes a variety of meta‐supracrustal rock types. The impactites and target rocks are overlain by ~1.7 Ga sediments of the Dhala Group and the Vindhyan Supergroup. The area was cored in more than 70 locations and the subsurface lithology shows pseudotachylitic breccia, impact melt breccia, suevite, lithic breccias, and postimpact sediments. Despite extensive erosion, the Dhala structure is well preserved and displays nearly all the diagnostic microscopic shock metamorphic features. This study is aimed at identifying the presence of an impactor component in impact melt rock by analyzing the siderophile element concentrations and rhenium‐osmium isotopic compositions of four samples of impactites (three melt breccias and one lithic breccia) and two samples of target rock (a biotite granite and a mafic intrusive rock). The impact melt breccias are of granitic composition. In some samples, the siderophile elements and HREE enrichment observed are comparable to the target rock abundances. The Cr versus Ir concentrations indicate the probable admixture of approximately 0.3 wt.% of an extraterrestrial component to the impact melt breccia. The Re and Os abundances and the 187Os/188Os ratio of 0.133 of one melt breccia specimen confirm the presence of an extraterrestrial component, although the impactor type characterization still remains inconclusive.  相似文献   

7.
The abundances of highly siderophile elements (HSE; including Re, Os, Ir, Ru, Pt, and Pd) and 187Re‐187Os isotopic systematics were determined for two fragments from ungrouped achondrite NWA 7325. Rhenium‐Os systematics are consistent with closed‐system behavior since formation or soon after. The abundances of the HSE were therefore largely unaffected by late‐stage secondary processes such as shock or terrestrial weathering. As an olivine gabbro cumulate, this meteorite has a bulk composition consistent with derivation from a body that produced a core, mantle, and crust. Also consistent with derivation from a body that produced a core, both fragments of NWA 7325 have HSE abundances that are highly depleted compared to bulk chondrites. One fragment has ~0.002× CI chondrite Ir and relative HSE abundances similar to bulk chondrites. The other fragment has ~0.0002× CI chondrite Ir and relative HSE abundances that are fractionated compared to bulk chondrites. The chondritic relative HSE abundances of the fragment characterized by higher HSE abundances most likely reflect the addition of exogenous chondritic material during or after crystallization by surface impacts. The HSE in the other fragment is likely more representative of the parent body crust. One formation model that can broadly account for the HSE abundances in this fragment is multiple episodes of low‐pressure metal‐silicate equilibration, followed by limited late accretion and mantle homogenization. Given the different HSE compositions of the two adjoining fragments, this meteorite provides an example of the overprint of global processes (differentiation and late accretion) by localized impact contamination.  相似文献   

8.
Abstract— The spatial distribution and amount of material transferred from the bolide involved in the Cretaceous/Tertiary (K/T) event to the target rocks at Chicxulub is still poorly constrained. In this study, Re‐Os isotopic analyses of impact melt breccias and lithic clasts from the Yaxcopoil‐1 (Yax‐1) borehole were used to determine the distribution and proportion of the bolide component in the target rocks. Because of the much greater concentration of Os in chondritic meteorites compared to the target rocks, little addition of the bolide component would be necessary to greatly perturb the Os concentration and isotopic composition of target rocks. Hence, this is a very sensitive means of examining bolide contributions to the target rocks. For the examined suite of samples, the initial 187Os/188Os ratios vary from 0.19 to 2.3. Conservative mixing calculations suggest that the bolide component comprised as much as approximately 0.1%, by mass, of some samples. Most samples, however, have negligible contributions from the bolide. No samples have Os that is dominated by the bolide component, so for this suite of samples, it is impossible to fingerprint the chemical nature of the bolide using relative abundances of siderophile elements. These results suggest that the bolide did not contribute a significant amount of material to the target rocks. This may, in turn, indicate that most of the bolide was vaporized upon impact or otherwise ejected without mixing with the melt from the target.  相似文献   

9.
The 187Re-187Os isotopic systematics of many bulk chondrites plot well beyond analytical uncertainties of a primordial isochron. Limited variations in 187Os/188Os, coupled with large variations in Re/Os ratios among chondrites, suggest that this apparently open-system behavior is a result of the comparatively recent gain or loss of Re and/or Os. In order to assess whether or not rapid alteration in the terrestrial environment could be responsible for open-system behavior in chondrites, four pieces of the Sutter's Mill meteorite were examined for Os isotopic systematics and abundances of highly siderophile elements. Pieces SM1 and SM2 were collected prior to a rain event, within 2 days of the fall. Pieces SM51 and SM53 were collected after a rain event. There are significant but minor relative and absolute variations in the abundances of the highly siderophile elements, as well as 187Os/188Os among the four pieces. Rhenium-Os isotopic data for SM1 and SM2 plot within analytical uncertainties of a primordial isochron, while powders made from SM51 and SM53 do not. These results suggest that interactions with rain caused some redistribution of Re, and to a lesser extent Os, within small pieces of the meteorite. Thus, Re-Os isotopic systematics of <dm-size pieces of chondrites must be considered susceptible to modification after only a short time on the surface, where exposed to rain.  相似文献   

10.
The existence of mass‐independent chromium isotope variability of nucleosynthetic origin in meteorites and their components provides a means to investigate potential genetic relationship between meteorites and planetary bodies. Moreover, chromium abundances are depleted in most surficial terrestrial rocks relative to chondrites such that Cr isotopes are a powerful tool to detect the contribution of various types of extra‐terrestrial material in terrestrial impactites. This approach can thus be used to constrain the nature of the bolide resulting in breccia and melt rocks in terrestrial impact structures. Here, we report the Cr isotope composition of impact rocks from the ~0.57 Ma Lonar crater (India), which is the best‐preserved impact structure excavated in basaltic target rocks. Results confirm the presence of a chondritic component in several bulk rock samples of up to 3%. The impactor that created the Lonar crater had a composition that was most likely similar to that of carbonaceous chondrites, possibly a CM‐type chondrite.  相似文献   

11.
Abstract— The St‐Robert H5 chondrite yields a mineral/whole‐rock Pb‐Pb age of 4565 ± 23 Ma (2σ) comparable to the accepted age of most chondrites. The regression of chondrule data give a similar age of 4566 ± 7 Ma (2σ). These results imply that no major perturbation affected the Pb‐Pb systematics of this meteorite's parent body within the first few billion years following its accretion. Re and Os concentrations along with Os isotopic compositions of whole‐rock fragments, surface fusion crusts and metal phases are also reported. The whole rock measurements for this ordinary chondrite are characterized by high Re/Os ratio coupled with relatively high 187Os/188Os (compared to average ordinary chondrites), that we interpret as a long term Re enrichment. As for most chondrites, no precise geochronological information could be extracted from the Re/Os systematics, although most data plot near the IIIAB reference isochron (Smoliar et al. 1996). From the fusion crust results, we rule out the possibility that atmospheric entry caused the perturbations in the Re‐Os system, since melted crust analysis yields among the most concordant data points. Evidence from metal phases suggests that a very recent process perturbed the isochron, relocating Re from kamacite toward troilite.  相似文献   

12.
187Re‐187Os systematics, abundances of highly siderophile elements (HSE: Re, PGE, and Au), chalcogen elements (Te, Se, and S), and some major and minor elements were determined in physically separated components of the Allende (CV3) and Murchison (CM2) carbonaceous chondrites. Substantial differences exist in the absolute and relative abundances of elements in the components, but the similarity of calculated and literature bulk rock abundances of HSE and chalcogens indicate that chemical complementarity exists among the components, with CI chondrite‐like ratios for many elements. Despite subsequent alteration and oxidation, the overall cosmochemical behavior of most moderately to highly siderophile elements during high‐temperature processing has been preserved in components of Allende at the sampling scale of the present study. The 187Re‐187Os systematics and element variations of Allende are less disturbed compared with Murchison, which reflects different degrees of oxidation and alteration of these meteorites. The HSE systematics (with the exception of Au) is controlled by two types of materials: Pd‐depleted condensates and CI chondrite‐like material. Enrichment and heterogeneous distribution of Au among the components is likely the result of hydrothermal alteration. Chalcogen elements are depleted compared with HSE in all components, presumably due to their higher volatility. Small systematic variations of S, Se, and Te in components bear the signature of fractional condensation/partial evaporation and metal–sulfide–silicate partitioning.  相似文献   

13.
The complex impact structure El'gygytgyn (age 3.6 Ma, diameter 18 km) in northeastern Russia was formed in ~88 Ma old volcanic target rocks of the Ochotsk‐Chukotsky Volcanic Belt (OCVB). In 2009, El'gygytgyn was the target of a drilling project of the International Continental Scientific Drilling Program (ICDP), and in summer 2011 it was investigated further by a Russian–German expedition. Drill core material and surface samples, including volcanic target rocks and impactites, have been investigated by various geochemical techniques in order to improve the record of trace element characteristics for these lithologies and to attempt to detect and constrain a possible meteoritic component. The bedrock units of the ICDP drill core reflect the felsic volcanics that are predominant in the crater vicinity. The overlying suevites comprise a mixture of all currently known target lithologies, dominated by felsic rocks but lacking a discernable meteoritic component based on platinum group element abundances. The reworked suevite, directly overlain by lake sediments, is not only comparatively enriched in shocked minerals and impact glass spherules, but also contains the highest concentrations of Os, Ir, Ru, and Rh compared to other El'gygytgyn impactites. This is—to a lesser extent—the result of admixture of a mafic component, but more likely the signature of a chondritic meteoritic component. However, the highly siderophile element contribution from target material akin to the mafic blocks of the ICDP drill core to the impactites remains poorly constrained.  相似文献   

14.
Abstract— Major and trace element data, including platinum group element abundances, of representative impactites and target rocks from the crater rim and environs of the Bosumtwi impact structure, Ghana, have been investigated for the possible presence of a meteoritic component in impact‐related rocks. A comparison of chemical data for Bosumtwi target rocks and impactites with those for Ivory Coast tektites and microtektites supports the interpretation that the Bosumtwi structure and Ivory Coast tektites formed during the same impact event. High siderophile element contents (compared to average upper crustal abundances) were determined for target rocks as well as for impactites. Chondrite‐normalized (and iron meteorite‐normalized) abundances for target rocks and impactites are similar. They do not, however, allow the unambiguous detection of the presence, or identification of the type, of a meteoritic component in the impactites. The indigenous siderophile element contents are high and possibly related to regional gold mineralization, although mineralized samples from the general region show somewhat different platinum‐group element abundance patterns compared to the rocks at Bosumtwi. The present data underline the necessity of extensive target rock analyses at Bosumtwi, and at impact structures in general, before making any conclusions regarding the presence of a meteoritic component in impactites.  相似文献   

15.
We report Os isotope compositions of metal grains in two CBa chondrites (Bencubbin and Gujba) determined using a micromilling sampling coupled with thermal ionization mass spectrometry, together with the abundances of major and trace siderophile elements obtained by electron probe microanalysis and femtosecond laser ablation inductively coupled plasma–mass spectrometry. The CBa metal grains presented 187Os/188Os ratios akin to carbonaceous chondrites with limited variations (0.1257–0.1270). Most of the CBa metal grains were scattered along a 187Re-187Os reference isochron of IIIAB iron meteorites, indicating that the CBa metals experienced limited Re-Os fractionation at the time of their formation. The Re/Os ratios of sampling spots for the CBa metals, recast from the observed 187Os/188Os ratios, had a positive correlation with their Os/Ir ratios. In addition, the metal grains showed a positive correlation in a Pd/Fe versus Ni/Fe diagram. These correlations suggest that the CBa metal grains have formed via equilibrium condensation or evaporation from a gaseous reservoir at ~10−4 bar with enhanced metal abundances. Compared to the Bencubbin metals, the Gujba metals are characterized by having systematically lower Pd/Fe and Ni/Fe ratios that span subchondritic values. Such a difference was most likely induced by the compositionally heterogeneous impact plume from which the metals were condensed.  相似文献   

16.
The Tissint meteorite fell on July 18, 2011 in Morocco and was quickly recovered, allowing the investigation of a new unaltered sample from Mars. We report new high‐field strength and highly siderophile element (HSE) data, Sr‐Nd‐Hf‐W‐Os isotope analyses, and data for cosmogenic nuclides in order to examine the history of the Tissint meteorite, from its source composition and crystallization to its irradiation history. We present high‐field strength element compositions that are typical for depleted Martian basalts (0.174 ppm Nb, 17.4 ppm Zr, 0.7352 ppm Hf, and 0.0444 ppm W), and, together with an extended literature data set for shergottites, help to reevaluate Mars’ tectonic evolution in comparison to that of the early Earth. HSE contents (0.07 ppb Re, 0.92 ppb Os, 2.55 ppb Ir, and 7.87 ppb Pt) vary significantly in comparison to literature data, reflecting significant sample inhomogeneity. Isotope data for Os and W (187Os/188Os = 0.1289 ± 15 and an ε182W = +1.41 ± 0.46) are both indistinguishable from literature data. An internal Lu‐Hf isochron for Tissint defines a crystallization age of 665 ± 74 Ma. Considering only Sm‐Nd and Lu‐Hf chronometry, we obtain, using our and literature values, a best estimate for the age of Tissint of 582 ± 18 Ma (MSWD = 3.2). Cosmogenic radionuclides analyzed in the Tissint meteorite are typical for a recent fall. Tissint's pre‐atmospheric radius was estimated to be 22 ± 2 cm, resulting in an estimated total mass of 130 ± 40 kg. Our cosmic‐ray exposure age of 0.9 ± 0.2 Ma is consistent with earlier estimations and exposure ages for other shergottites in general.  相似文献   

17.
Abstract— The only well‐known terrestrial analogue of impact craters in basaltic crusts of the rocky planets is the Lonar crater, India. For the first time, evidence of the impactor that formed the crater has been identified within the impact spherules, which are ?0.3 to 1 mm in size and of different aerodynamic shapes including spheres, teardrops, cylinders, dumbbells and spindles. They were found in ejecta on the rim of the crater. The spherules have high magnetic susceptibility (from 0.31 to 0.02 SI‐mass) and natural remanent magnetization (NRM) intensity. Both NRM and saturation isothermal remanent magnetization (SIRM) intensity are ?2 Am2/Kg. Demagnetization response by the NRM suggests a complicated history of remanence acquisition. The spherules show schlieren structure described by chains of tiny dendritic and octahedral‐shaped magnetite crystals indicating their quenching from liquid droplets. Microprobe analyses show that, relative to the target basalt compositions, the spherules have relatively high average Fe2O3 (by ?1.5 wt%), MgO (?1 wt%), Mn (?200 ppm), Cr (?200 ppm), Co (?50 ppm), Ni (?1000 ppm) and Zn (?70 ppm), and low Na2O (?1 wt%) and P2O5 (?0.2 wt%). Very high Ni contents, up to 14 times the average content of Lonar basalt, require the presence of a meteoritic component in these spherules. We interpret the high Ni, Cr, and Co abundances in these spherules to indicate that the impactor of the Lonar crater was a chondrite, which is present in abundances of 12 to 20 percent by weight in these impact spherules. Relatively high Zn yet low Na2O and P2O5 contents of these spherules indicate exchange of volatiles between the quenching spherule droplets and the impact plume.  相似文献   

18.
Abstract— Paleomagnetic, rock magnetic, and petrophysical results are presented for impactites and target rocks from the Lake Jänisjärvi impact structure, Russian Karelia. The impactites (tagamites, suevites, and lithic breccias) are characterized by increased porosity and magnetization, which is in agreement with observations performed at other impact structures. Thermomagnetic, hysteresis, and scanning electron microscope (SEM) analysis document the presence of primary multidomain titanomagnetite with additional secondary titanomaghemite and ilmenohematite. The characteristic impact‐related remanent magnetization (ChRM) direction (D = 101.5°, I = 73.1°, α95 = 6.2°) yields a pole (Lat. = 45.0°N, Long. = 76.9°E, dp = 9.9°, dm = 11.0°). Additionally, the same component is observed as an overprint on some rocks located in the vicinity of the structure, which provides proofs of its primary origin. An attempt was made to determine the ancient geomagnetic field intensity. Seven reliable results were obtained, yielding an ancient intensity of 68.7 ± 7.6 μT (corresponding to VDM of 10.3 ± 1.1 times 1022 Am2). The intensity, however, appears to be biased toward high values mainly because of the concave shape of the Arai diagrams. The new paleomagnetic data and published isotopic ages for the structure are in disagreement. According to well‐defined paleomagnetic data, two possible ages for magnetization of Jänisjärvi rocks exist: 1) Late Sveconorwegian age (900–850 Myr) or 2) Late Cambrian age (?500 Myr). However, published isotopic ages are 718 ± 5 Myr (K‐Ar) and 698 ± 22 Myr (39Ar‐40Ar), but such isotopic dating methods are often ambiguous for the impactites.  相似文献   

19.
Abstract— We present major and trace element data as well as petrographic observations for impactites (suevitic groundmass, bulk suevite, and melt rock particles) and target lithologies, including Cretaceous anhydrite, dolomite, argillaceous limestone, and oil shale, from the Yaxcopoil‐1 borehole, Chixculub impact structure. The suevitic groundmass and bulk suevite have similar compositions, largely representing mixtures of carbonate and silicate components. The latter are dominated by melt rock particles. Trace element data indicate that dolomitic rocks represented a significant target component that became incorporated into the suevites; in contrast, major elements indicate a strong calcitic component in the impactites. The siliceous end‐member requires a mafic component in order to explain the low SiO2 content. Multicomponent mixing of various target rocks, the high alteration state, and dilution by carbonate complicate the determination of primary melt particle compositions. However, two overlapping compositional groups can be discerned—a high‐Ba, low‐Ta group and a high‐Fe, high‐Zn, and high‐Hf group. Cretaceous dolomitic rocks, argillaceous limestone, and shale are typically enriched in U, As, Br, and Sb, whereas anhydrite contains high Sr contents. The oil shale samples have abundances that are similar to the North American Shale Composite (NASC), but with a comparatively high U content. Clastic sedimentary rocks are characterized by relatively high Th, Hf, Zr, As, and Sb abundances. Petrographic observations indicate that the Cretaceous rocks in the Yaxcopoil‐1 drill core likely register a multistage deformation history that spans the period from pre‐ to post‐impact. Contrary to previous studies that claimed evidence for the presence of impact melt breccia injection veins, we have found no evidence in our samples from a depth of 1347–1348 m for the presence of melt breccia. We favor that clastic veinlets occur in a sheared and altered zone that underwent intense diagenetic overprint prior to the impact event.  相似文献   

20.
Abstract— The El'gygytgyn impact structure is about 18 km in diameter and is located in the central part of Chukotka, arctic Russia. The crater was formed in volcanic rock strata of Cretaceous age, which include lava and tuffs of rhyolites, dacites, and andesites. A mid‐Pliocene age of the crater was previously determined by fission track (3.45 ± 0.15 Ma) and 40Ar/39Ar dating (3.58 ± 0.04 Ma). The ejecta layer around the crater is completely eroded. Shock‐metamorphosed volcanic rocks, impact melt rocks, and bomb‐shaped impact glasses occur in lacustrine terraces but have been redeposited after the impact event. Clasts of volcanic rocks, which range in composition from rhyolite to dacite, represent all stages of shock metamorphism, including selective melting and formation of homogeneous impact melt. Four stages of shocked volcanic rocks were identified: stage I (≤35 GPa; lava and tuff contain weakly to strongly shocked quartz and feldspar clasts with abundant PFs and PDFs; coesite and stishovite occur as well), stage II (35–45 GPa; quartz and feldspar are converted to diaplectic glass; coesite but no stishovite), stage III (45–55 GPa; partly melted volcanic rocks; common diaplectic quartz glass; feldspar is melted), and stage IV (>55 GPa; melt rocks and glasses). Two main types of impact melt rocks occur in the crater: 1) impact melt rocks and impact melt breccias (containing abundant fragments of shocked volcanic rocks) that were probably derived from (now eroded) impact melt flows on the crater walls, and 2) aerodynamically shaped impact melt glass “bombs” composed of homogeneous glass. The composition of the glasses is almost identical to that of rhyolites from the uppermost part of the target. Cobalt, Ni, and Ir abundances in the impact glasses and melt rocks are not or only slightly enriched compared to the volcanic target rocks; only the Cr abundances show a distinct enrichment, which points toward an achondritic projectile. However, the present data do not allow one to unambiguously identify a meteoritic component in the El'gygytgyn impact melt rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号