首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
One of the most productive and well‐sampled dense collection areas for meteorites on Earth is the “Franconia strewn field” in Mohave County, Arizona, which since 2002 has yielded hundreds of meteorites in an ellipsoidal area approximately 5 × 16 km across. Based on petrographic, mineral‐chemical, and terrestrial age data, we conclude that among 14 meteorites examined, there are at least 6 and possibly 8 distinct meteorites represented, which fell over a period of approximately 0–20 kyr ago. These include equilibrated H‐chondrites such as Franconia (H5) and Buck Mountains (BM) 001 (H6); H3–6 breccias such as Buck Mountains Wash and BM 004; and L6 chondrites such as BM 002 and BM 003 (which may be paired), Palo Verde Mine, and BM 005. To confidently pair such meteorites often requires thorough petrographic examination, mineral‐chemical analyses, and terrestrial ages. We estimate that 50 ± 10% of the larger specimens in this area are paired, yielding a relatively high value of approximately 2.3–2.9 distinct meteorites km?2. The meteorite flux estimated for Franconia area is higher than the flux inferred from contemporary fireball data for larger masses. We suggest that one large H3–6 meteoroid fell in the area, most likely that of Buck Mountains Wash approximately 4 kyr ago, which produced an elliptical strewn field with masses generally increasing toward one end, and which raised the meteorite productivity in the recovery area.  相似文献   

2.
On February 15, 2013, after the observation of a brilliant fireball and a spectacular airburst over the southern Ural region (Russia), thousands of stones fell and were rapidly recovered, bringing some extremely fresh material for scientific investigations. We undertook a multidisciplinary study of a dozen stones of the Chelyabinsk meteorite, including petrographic and microprobe investigations to unravel intrinsic characteristics of this meteorite. We also study the short and long‐lived cosmogenic radionuclides to characterize the initial meteoroid size and exposure age. Petrographic observations, as well as the mineral compositions obtained by electron microprobe analyses, allow us to confirm the classification of the Chelyabinsk meteorite as an LL5 chondrite. The fragments studied, a few of which are impact melt rocks, contain abundant shock melt veins and melt pockets. It is likely that the catastrophic explosion and fragmentation of the Chelyabinsk meteoroid into thousands of stones was in part determined by the initial state of the meteoroid. The radionuclide results obtained show a wide range of concentrations of 14C, 22Na, 26Al, 54Mn, 57Co, 58Co, and 60Co, which indicate that the pre‐atmospheric object had a radius >5 m, consistent with other size estimates based on the magnitude of the airburst caused by the atmospheric entry and breakup of the Chelyabinsk meteoroid. Considering the observed 26Al activities of the investigated samples, Monte Carlo simulations, and taking into account the 26Al half‐life (0.717 Myr), the cosmic‐ray exposure age of the Chelyabinsk meteorite is estimated to be 1.2 ± 0.2 Myr. In contrast to the other radionuclides, 14C showed a very large range only consistent with most samples having been exposed to anthropogenic sources of 14C, which we associate with radioactive contamination of the Chelyabinsk region by past nuclear accidents and waste disposal, which has also been confirmed by elevated levels of anthropogenic 137Cs and primordial 40K in some of the Chelyabinsk fragments.  相似文献   

3.
The Ko?ice meteorite fall occurred in eastern Slovakia on February 28, 2010, 22:25 UT. The very bright bolide was imaged by three security video cameras from Hungary. Detailed bolide light curves were obtained through clouds by radiometers on seven cameras of the European Fireball Network. Records of sonic waves were found on six seismic and four infrasonic stations. An atmospheric dust cloud was observed the next morning before sunrise. After careful calibration, the video records were used to compute the bolide trajectory and velocity. The meteoroid, of estimated mass of 3500 kg, entered the atmosphere with a velocity of 15 km s?1 on a trajectory with a slope of 60° to the horizontal. The largest fragment ceased to be visible at a height of 17 km, where it was decelerated to 4.5 km s?1. A maximum brightness of absolute stellar magnitude about ?18 was reached at a height of 36 km. We developed a detailed model of meteoroid atmospheric fragmentation to fit the observed light curve and deceleration. We found that Ko?ice was a weak meteoroid, which started to fragment under the dynamic pressure of only 0.1 MPa and fragmented heavily under 1 MPa. In total, 78 meteorites were recovered in the predicted fall area during official searches. Other meteorites were found by private collectors. Known meteorite masses ranged from 0.56 g to 2.37 kg. The meteorites were classified as ordinary chondrites of type H5 and shock stage S3. The heliocentric orbit had a relatively large semimajor axis of 2.7 AU and aphelion distance of 4.5 ± 0.5 AU. Backward numerical integration of the preimpact orbit indicates possible large variations of the orbital elements in the past due to resonances with Jupiter.  相似文献   

4.
We propose that the Taurid meteor shower may contain bodies able to survive and be recovered as meteorites. We review the expected properties of meteorite‐producing fireballs, and suggest that end heights below 35 km and terminal speeds below 10 km s?1 are necessary conditions for fireballs expected to produce meteorites. Applying the meteoroid strength index (PE criteria) of Ceplecha and McCrosky (1976) to a suite of 33 photographically recorded Taurid fireballs, we find a large spread in the apparent meteoroid strengths within the stream, including some very strong meteoroids. We also examine in detail the flight behavior of a Taurid fireball (SOMN 101031) and show that it has the potential to be a (small) meteorite‐producing event. Similarly, photographic observations of a bright, potential Taurid fireball recorded in November of 1995 in Spain show that it also had meteorite‐producing characteristics, despite a very high entry velocity (33 km s?1). Finally, we note that the recent Maribo meteorite fall may have had a very high entry velocity (28 km s?1), further suggesting that survival of meteorites at Taurid‐like velocities is possible. Application of a numerical entry model also shows plausible survival of meteorites at Taurid‐like velocities, provided the initial meteoroids are fairly strong and large, both of which are characteristics found in the Taurid stream.  相似文献   

5.
The Park Forest (L5) meteorite fell in a suburb of Chicago, Illinois (USA) on March 26, 2003. It is one of the currently 25 meteorites for which photographic documentation of the fireball enabled the reconstruction of the meteoroid orbit. The combination of orbits with pre‐atmospheric sizes, cosmic‐ray exposure (CRE), and radiogenic gas retention ages (“cosmic histories”) is significant because they can be used to constrain the meteoroid's “birth region,” and test models of meteoroid delivery. Using He, Ne, Ar, 10Be, and 26Al, as well as a dynamical model, we show that the Park Forest meteoroid had a pre‐atmospheric size close to 180 g cm?2, 0–40% porosity, and a pre‐atmospheric mass range of ~2–6 tons. It has a CRE age of 14 ± 2 Ma, and (U, Th)‐He and K‐Ar ages of 430 ± 90 and 490 ± 70 Ma, respectively. Of the meteorites with photographic orbits, Park Forest is the second (after Novato) that was shocked during the L chondrite parent body (LCPB) break‐up event approximately 470 Ma ago. The suggested association of this event with the formation of the Gefion family of asteroids has recently been challenged and we suggest the Ino family as a potential alternative source for the shocked L chondrites. The location of the LCPB break‐up event close to the 5:2 resonance also allows us to put some constraints on the possible orbital migration paths of the Park Forest meteoroid.  相似文献   

6.
Abstract– The collection of approximately 3300 meteorites from the Queen Alexandra Range (QUE) area, Antarctica, is dominated by more than 2000 chondrites classified as either L5 or LL5. Based on concentrations of the cosmogenic radionuclides 10Be, 26Al, 36Cl, and 41Ca in the metal and stone fraction of 16 QUE L5 or LL5 chondrites, we conclude that 13 meteorites belong to a single meteorite shower, QUE 90201, with a large preatmospheric size and a terrestrial age of 125 kyr. Members of this shower have properties typical of L (e.g., pyroxene composition) and LL chondrites (e.g., metal abundance and composition), as well as properties intermediate between the L and LL groups (e.g., olivine composition), and is thus best described as an L/LL5 chondrite. Based on comparison with model calculations, the measured radionuclide concentrations in the metal and stone fractions of QUE 90201 indicate irradiation in an object with a preatmospheric radius of approximately 150 cm, representing one of the largest chondrites known so far. Based on the abundance of small L5 and LL5 chondrites at QUE and their distinct mass distribution, we conclude that the QUE 90201 shower includes up to 2000 fragments with a total recovered mass of 60–70 kg, <1% of the preatmospheric mass of approximately 50,000 kg. The mass distribution of the QUE 90201 shower suggests that the meteoroid experienced catastrophic atmospheric fragmentation(s), either because it was a fragile object or it had a high entry velocity.  相似文献   

7.
The Morasko strewn field located near Poznań, Poland comprises seven impact craters with diameters ranging from 20 to 90 m, all of which were formed in glacial sediments around 5000 yr ago. Numerous iron meteorites have been recovered in the area and their distribution suggests a projectile with the trajectory from NE to SW. Similar impact events producing crater strewn fields on average happen every 500 yr and pose a serious risk for modern civilization, which is why it is of utmost importance to study terrestrial strewn fields in detail. In this work, we investigate the Morasko meteoroid passage through the atmosphere, the distribution of its fragments on the ground, and the process of forming individual craters by means of numerical modeling. By combining atmospheric entry modeling, Pi‐group scaling of transient crater size and hydrocode simulations of impact processes, we constructed a comprehensive model of the Morasko strewn field formation. We determined the preatmospheric parameters of the Morasko meteoroid. The entry mass is between 600 and 1100 tons, the velocity range is between 16 and 18 km s?1, and the trajectory angle is 30–40°. Such entry velocities and trajectory angles do not deviate from typical values for near‐Earth asteroids, although the initial mass we determined can be considered as small. Our studies on velocities and masses of crater‐forming fragments showed that the biggest Morasko crater was formed by a projectile about 1.5 m in diameter with the impact velocity ~10 km s?1. Environmental consequences of the Morasko impact event are very localized.  相似文献   

8.
Results of nondestructive gamma‐ray analyses of cosmogenic radionuclides (7Be, 22Na, 26Al, 46Sc, 48V, 54Mn, 56Co, 57Co, 58Co, and 60Co) in 19 fragments of the Ko?ice meteorite are presented and discussed. The activities varied mainly with position of fragments in the meteoroid body, and with fluxes of cosmic‐ray particles in the space affecting radionuclides with different half‐lives. Monte Carlo simulations of the production rates of 60Co and 26Al compared with experimental data indicate that the pre‐atmospheric radius of the meteoroid was 50 ± 5 cm. In two Ko?ice fragments, He, Ne, and Ar concentrations and isotopic compositions were also analyzed. The noble‐gas cosmic‐ray exposure age of the Ko?ice meteorite is 5–7 Myr, consistent with the conspicuous peak (or doublet peak) in the exposure age histogram of H chondrites. One sample likely contains traces of implanted solar wind Ne, suggesting that Ko?ice is a regolith breccia. The agreement between the simulated and observed 26Al activities indicate that the meteoroid was mostly irradiated by a long‐term average flux of galactic cosmic rays of 4.8 particles cm?2 s?1, whereas the short‐lived radionuclide activities are more consistent with a flux of 7.0 protons cm?2 s?1 as a result of the low solar modulation of the galactic cosmic rays during the last few years before the meteorite fall.  相似文献   

9.
We describe the fall of the Dingle Dell (L/LL 5) meteorite near Morawa in Western Australia on October 31, 2016. The fireball was observed by six observatories of the Desert Fireball Network (DFN), a continental-scale facility optimized to recover meteorites and calculate their pre-entry orbits. The 30 cm meteoroid entered at 15.44 km s−1, followed a moderately steep trajectory of 51° to the horizon from 81 km down to 19 km altitude, where the luminous flight ended at a speed of 3.2 km s−1. Deceleration data indicated one large fragment had made it to the ground. The four person search team recovered a 1.15 kg meteorite within 130 m of the predicted fall line, after 8 h of searching, 6 days after the fall. Dingle Dell is the fourth meteorite recovered by the DFN in Australia, but the first before any rain had contaminated the sample. By numerical integration over 1 Ma, we show that Dingle Dell was most likely ejected from the Main Belt by the 3:1 mean motion resonance with Jupiter, with only a marginal chance that it came from the ν6 resonance. This makes the connection of Dingle Dell to the Flora family (currently thought to be the origin of LL chondrites) unlikely.  相似文献   

10.
Abstract— The petrographic and chemical characteristics of a fresh Indian meteorite fall at Sabrum are described. Its mean mineral composition is defined by olivine (Fa31.4), orthopyroxene (Fs25.1,Wo2.0), clinopyroxene (Wo45En45.6Fs9.4) and plagioclase (An10.6Ab83.6Or5.8). The meteorite shows moderate shock features, which indicate that it belongs to the S4 category. Based on mineralogical and chemical criteria the meteorite is classified as an LL6 brecciated veined chondrite. Several cosmogenic radioisotopes (46Sc, 7Be, 54Mn, 22Na and 26Al), noble gas (He, Ne, Ar, Kr and Xe), nitrogen isotopes, and particle tracks density have been measured. Concentrations of cosmogenic 21Ne and 38Ar indicate that its cosmic‐ray exposure age is 24.8 Ma. Small amounts of trapped Kr and Xe, consistent with petrologic class 5/6, are present. The track density in olivines is found to be (1.3 ± 0.3) × 106/cm2. Activities of most of the short‐lived isotopes are lower than those expected from solar cycle variation. 22Na/26Al (1.12 ± 0.02) is found to be significantly anomalous, being ?25% lower than expected from the Climax neutron monitor data. These results indicate that the cosmic‐ray flux during the terminal segment of the meteoroid orbit was low. The activities of 26Al and 60Co and the track density indicate small meteoroid size with a radius ?15 cm.  相似文献   

11.
Abstract— We report here a chance find of a meteorite in the sand dunes of Ararki village of Hanumangarh district in the Rajasthan desert of northwest India. Chemical and petrological evidence in conjunction with isotopic composition of oxygen indicate that it is an L5 chondrite. The fayalite content of olivines is 26.3 mol%. The meteorite has some serpentinized olivines and 0.3% carbon having a terrestrial isotopic composition, indicating that it is moderately weathered. The absence of 22Na indicate that the meteorite fell to Earth more than a decade ago. The cosmic‐ray exposure age based on cosmogenic 21Ne is 7.2 Ma. Low density of cosmic‐ray heavy nuclei tracks, low 26A1 activity, the shielding parameter [(22Ne/21Ne)C = 1.094] and absence of neutron capture effects indicate cosmic‐ray shielding in a meteoroid having radius of about 16 cm, implying a meteoroid mass of about 60 kg and ablation of about 93%. The gas retention ages, based on U/Th‐4He and K‐40Ar are 1.1 and 0.58 Ga, respectively, suggesting a heating and degassing event late in the history of this meteorite.  相似文献   

12.
Abstract— A stony meteorite fell at Itawa Bhopji, Rajasthan, India on 2000 May 30. This is the fifth recorded fall in a small area of Rajasthan during the past decade. The meteorite is an ordinary chondrite with light clasts in a dark matrix, consisting of a mixture of equilibrated (mainly type 5) and unequilibrated components. Olivine is Fa24–26 and pyroxene Fs20–22 but, within the unequilibrated components, olivine (Fa5–29) and low calcium pyroxene (Fs5–37) are highly variable. Based on petrographic studies and chemical analyses, it is classified as L(3–5) regolith breccia. Studies of various cosmogenic records, including several gamma‐emitting radionuclides varying in half‐life from 5.6 day 52Mn to 0.73 Ma 26Al, tracks and rare gases have been carried out. The exposure age of the meteorite is estimated from cosmogenic components of rare gases to be 19.6 Ma. The track density varies by a factor of ?3 (from 4 to 12 times 106/cm2) within the meteorite, indicating a preatmospheric body of ?9 cm radius (corresponding to a meteoroid mass of ?11 kg) and small ablation (1.5 to 3.6 cm). Trapped components in various rare gases are high and the solar component is present in the dark portion of the meteorite. Large excess of neutron‐produced 82Kr and 128Xe in both the light and the dark lithology but very low 60Co, indicating low neutron fluxes received by the meteoroid in the interplanetary space, are clear signatures of an additional irradiation on the parent body.  相似文献   

13.
A relic impact structure was recognized within the strewn field of the Agoudal iron meteorite. The heavily eroded structure has preserved shatter cones in a limestone basement, and remnants of autochthonous and allochthonous breccias. Fragments of iron incorporated into the allochthonous breccia have a chemical composition (Ni = 5.16 wt%, Ir = 0.019 ppm) similar to that of the Agoudal meteorite, supporting a syngenetic origin of the strewn field and the impact structure. The total recovered mass of Agoudal meteorite fragments is estimated at approximately 500 kg. The estimated size of the SE–NW‐oriented strewn field is 6 × 2 km. Model calculations with minimal preatmospheric size show that a similar meteorite strewn field plus one small crater with observed shock effects could be formed by fragmentation of a meteoroid approximately 1.4 m in diameter with an impact angle of approximately 60° from the horizontal. However, the most probable is an impact of a larger, 3–4 m diameter meteoroid, resulting a strewn field with approximately 10 craters, 10–30 m in diameter each, plus numerous meteorite fragments. The calculated scattering area of meteorite shrapnel ejected from these impact craters could completely cover the observed strewn field of the Agoudal meteorite.  相似文献   

14.
Abstract— The properties and history of the parent meteoroid of the Morávka H5–6 ordinary chondrites have been studied by a combination of various methods. The pre‐atmospheric mass of the meteoroid was computed from fireball radiation, infrasound, seismic signal, and the content of noble gases in the meteorites. All methods gave consistent results. The best estimate of the pre‐atmospheric mass is 1500 ± 500 kg. The fireball integral bolometric luminous efficiency was 9%, and the acoustic efficiency was 0.14%. The meteoroid cosmic ray exposure age was determined to be (6.7 ± 1.0) × 106 yr. The meteorite shows a clear deficit of helium, both 3He and 4He. This deficit can be explained by solar heating. Numerical backward integration of the meteoroid orbit (determined in a previous paper from video records of the fireball) shows that the perihelion distance was probably lower than 0.5 AU and possibly as low as 0.1 AU 5 Ma ago. The collision which excavated Morávka probably occurred while the parent body was on a near‐Earth orbit, as opposed to being confined entirely to the main asteroid belt. An overview of meteorite macroscopic properties, petrology, mineralogy, and chemical composition is given. The meteorites show all mineralogical features of H chondrites. The shock level is S2. Minor deviations from other H chondrites in abundances of trace elements La, Ce, Cs, and Rb were found. The ablation crust is enriched with siderophile elements.  相似文献   

15.
On February 28, 2021, a fireball dropped ∼0.6 kg of recovered CM2 carbonaceous chondrite meteorites in South-West England near the town of Winchcombe. We reconstruct the fireball's atmospheric trajectory, light curve, fragmentation behavior, and pre-atmospheric orbit from optical records contributed by five networks. The progenitor meteoroid was three orders of magnitude less massive (∼13 kg) than any previously observed carbonaceous fall. The Winchcombe meteorite survived entry because it was exposed to a very low peak atmospheric dynamic pressure (∼0.6 MPa) due to a fortuitous combination of entry parameters, notably low velocity (13.9 km s−1). A near-catastrophic fragmentation at ∼0.07 MPa points to the body's fragility. Low entry speeds which cause low peak dynamic pressures are likely necessary conditions for a small carbonaceous meteoroid to survive atmospheric entry, strongly constraining the radiant direction to the general antapex direction. Orbital integrations show that the meteoroid was injected into the near-Earth region ∼0.08 Myr ago and it never had a perihelion distance smaller than ∼0.7 AU, while other CM2 meteorites with known orbits approached the Sun closer (∼0.5 AU) and were heated to at least 100 K higher temperatures.  相似文献   

16.
High entry speed (>25 km s?1) and low density (<2500 kg m?3) are the two factors that lower the chance of a meteoroid to drop meteorites. The 26 g carbonaceous (CM2) meteorite Maribo recovered in Denmark in 2009 was delivered by a bright bolide observed by several instruments across northern and central Europe. By reanalyzing the available data, we confirmed the previously reported high entry speed of (28.3 ± 0.3) km s?1 and trajectory with slope of 31° to the horizontal. In order to understand how such a fragile material survived, we applied three different models of meteoroid atmospheric fragmentation to the detailed bolide light curve obtained by radiometers located in Czech Republic. The Maribo meteoroid was found to be quite inhomogeneous with different parts fragmenting at different dynamic pressures. While 30–40% of the (2000 ± 1000) kg entry mass was destroyed already at 0.02 MPa, another 25–40%, according to different models, survived without fragmentation up to the relatively large dynamic pressures of 3–5 MPa. These pressures are only slightly lower than the measured tensile strengths of hydrated carbonaceous chondrite (CC) meteorites and are comparable with usual atmospheric fragmentation pressures of ordinary chondritic (OC) meteoroids. While internal cracks weaken OC meteoroids in comparison with meteorites, this effect seems to be absent in CC, enabling meteorite delivery even at high speeds, though in the form of only small fragments.  相似文献   

17.
Some 5 per cent of bright meteors show rapid, quasi-periodic brightness variations. It is argued that this effect, observationally known as flickering, is a manifestation of the rotational modulation of surface mass loss through ablation of a non-spherical meteoroid. We develop a set of time-dependent, single-body ablation equations that include the effect of cross-section area modulation. We present a discussion of the effects that the rotation of a non-spherical meteoroid has on the resultant meteor light curve, and we look in depth at the data related to the fireball associated with the fall of the Innisfree meteorite. We find that the parent object to the Innisfree meteorite was spinning at a rotation frequency of 2.5 Hz when it encountered the Earth's upper atmosphere. We also find that the Innisfree parent body had an initial mass of about 20 kg and that the ratio of its semiminor and semimajor axes was about 0.5.  相似文献   

18.
X‐ray microtomography (XMT), X‐ray diffraction (XRD), and magnetic hysteresis measurements were used to determine micrometeorite internal structure, mineralogy, crystallography, and physical properties at μm resolution. The study samples include unmelted, partially melted (scoriaceous), and completely melted (cosmic spherules) micrometeorites. This variety not only allows comparison of the mineralogy and porosity of these three micrometeorite types but also reveals changes in meteoroid properties during atmospheric entry at various velocities. At low entry velocities, meteoroids do not melt and their physical properties do not change. The porosity of unmelted micrometeorites varies considerably (0–12%) with one friable example having porosity around 50%. At higher velocities, the range of meteoroid porosity narrows, but average porosity increases (to 16–27%) due to volatile evaporation and partial melting (scoriaceous phase). Metal distribution seems to be mostly unaffected at this stage. At even higher entry velocities, complete melting follows the scoriaceous phase. Complete melting is accompanied by metal oxidation and redistribution, loss of porosity (1 ± 1%), and narrowing of the bulk (3.2 ± 0.5 g cm?3) and grain (3.3 ± 0.5 g cm?3) density range. Melted cosmic spherules with a barred olivine structure show an oriented crystallographic structure, whereas other subtypes do not.  相似文献   

19.
Abstract— The recently discovered Jiddat al Harasis (JaH) 073 strewn field is the largest found so far in the Sultanate of Oman, covering an area of 19 × 6 km. The 3463 single stones collected range in weight from 52.2 kg down to <1 g (total weight 600.8 kg) and show a pronounced mass sorting. The strewn field shape can be approximated by a NW‐SE‐oriented ellipsoid, indicating an atmospheric entry from SE at a low angle relative to the surface. The meteorite belongs to the L6 ordinary chondrite group and shows S4 average shock grade. Smaller stones generally show a higher weathering grade resulting in a spread from W2 and W4. Enhanced weathering of the stones causing fragmentation after the fall is observed in sandy depressions. Five 14C measurements on stones of variable size and weathering grade yielded 14C from 3.8 to 49.9 dpm/kg. Three samples give a 14C/ 10Be age consistent with about 14.4 ka. For two samples the cosmogenic, trapped, and radiogenic noble gases were measured. The ratio of the 4He and 40Ar gas retention ages of 0.29 ± 0.10 and that of the 3He and 21Ne cosmic ray exposure ages of 0.36 ± 0.08 Ma indicate that JaH 073 experienced a complex exposure history and lost 4He and 40Ar due to a major collision. Fragmentation statistics indicate a single major atmospheric disruption and an originally relatively spherical shape of the object. Assuming the material collected represents the majority of fallen mass, and 90–99% of the original weight was lost by ablation, the pre‐atmospheric minimum radius of the meteoroid with density 3.4 g cm?3would have been at least 75 cm.  相似文献   

20.
Abstract— Mössbauer absorption areas corresponding to 57Fe in olivine, pyroxene, troilite, and the metallic phase in ordinary chondrites are shown to exhibit certain systematic behaviors. H chondrites occupy 2 distinct regions on the plot of metallic phase absorption area versus silicate absorption area, while L/LL chondrites fall in a separate region. Similar separation is also observed when pyroxene absorption area is plotted against olivine absorption area. The one‐dimensional plot for the ratio of olivine area to pyroxene area separates L and LL chondrites. Based on these systematics, a newly fallen meteorite at Jodhpur, India is suggested to be an LL chondrite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号