首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coesite has been identified within ejected blocks of shocked basalt at Lonar crater, India. This is the first report of coesite from the Lonar crater. Coesite occurs within SiO2 glass as distinct ~30 μm spherical aggregates of “granular coesite” identifiable both with optical petrography and with micro‐Raman spectroscopy. The coesite+glass occurs only within former silica amygdules, which is also the first report of high‐pressure polymorphs forming from a shocked secondary mineral. Detailed petrography and NMR spectroscopy suggest that the coesite crystallized directly from a localized SiO2 melt, as the result of complex interactions between the shock wave and these vesicle fillings.  相似文献   

2.
We examined 16 white opaque inclusions exposed on two polished slices of a Muong Nong‐type Australasian tektite from Muong Phin, Laos. The inclusions usually consist of a core, surrounded by a froth layer, and a quartz neoblast layer. The cores are composed primarily of a mixture of silica glass, coesite, and quartz in varying proportions. A thin (up to ~4 μm) layer of SiO2‐poor glass enriched in FeO, MgO, CaO, Al2O3, and TiO2 is observed as a bright halo in backscattered electron images around the quartz neoblasts and in places contains μm‐sized crystals, which may be Fe,Mg‐rich spinel. The distribution and textural relationships between the coesite‐bearing inclusions and the tektite matrix point to an in situ formation of the coesite due to an impact, rather than to infall, from a nearby impact, into tektite melt produced by the aerial burst of a bolide. The quartz neoblasts probably formed by crystallization of silica melt squeezed out of the inclusion core during the development of the froth layer. The bright halo may be the result of silica diffusing from the adjacent tektite melt into the growing quartz neoblasts. We propose that the survival of coesite was possible due to the froth layer that acted as a heat sink during bubble expansion and then as a thermal insulator.  相似文献   

3.
Coesite is one of the most common and abundant high‐pressure phases occurring in impactites. The mechanism of formation of coesite and its postshock evolution is revisited in this paper based on Raman microspectroscopy, and scanning and transmission electron microscopy of a coesite‐bearing suevite from the Ries impact structure. Our data indicate that coesite forms through a single process, i.e., by crystallization from high‐pressure silica melt, and that its formation is related to fluid inclusions in precursor quartz. During the postshock phase, coesite aggregates are partially modified by annealing and interactions with fluids. In an early stage of the postshock evolution, coesite is back‐transformed to quartz and the surrounding diaplectic glass devitrifies into β‐cristobalite, which transforms into α‐cristobalite and then into microcrystalline quartz during subsequent stages of the postshock evolution. Altogether these postshock modifications result in a significant volume loss and extensional fracturing. During a late postshock stage, the fractures are filled with clay minerals due to circulation of hydrothermal fluids.  相似文献   

4.
Coesite and stishovite are high-pressure silica polymorphs known to have been formed at several terrestrial impact structures. They have been used to assess pressure and temperature conditions that deviate from equilibrium formation conditions. Here we investigate the effects of nonhydrostatic, dynamic stresses on the formation of high-pressure polymorphs and the amorphization of α-quartz at elevated temperatures. The obtained disequilibrium states are compared with those predicted by phase diagrams derived from static experiments under equilibrium conditions. We analyzed phase transformations starting with α-quartz in situ under dynamic loading utilizing a membrane-driven diamond anvil cell. Using synchrotron powder X-ray diffraction, the phase transitions of SiO2 are identified up to 77.2 GPa and temperatures of 1160 K at compression rates ranging between 0.10 and 0.37 GPa s−1. Coesite starts forming above 760 K in the pressure range between 2 and 11 GPa. At 1000 K, coesite starts to transform to stishovite. This phase transition is not completed at 1160 K in the same pressure range. Therefore, the temperature initiates the phase transition from α-quartz to coesite, and the transition from coesite to stishovite. Below 1000 K and during compression, α-quartz becomes amorphous and partially converts to stishovite. This phase transition occurs between 25 and 35 GPa. Above 1000 K, no amorphization of α-quartz is observed. High temperature experiments reveal the strong thermal dependence of the formation of coesite and stishovite under nonhydrostatic and disequilibrium conditions.  相似文献   

5.
The high‐pressure minerals of reidite and coesite have been identified in the moderately shock‐metamorphosed gneiss (shock stage II, 35–45 GPa) and the strongly shock‐metamorphosed gneiss (shock stage III, 45–55 GPa), respectively, from the polymict breccias of the Xiuyan crater, a simple impact structure 1.8 km in diameter in China. Reidite in the shock stage II gneiss displays lamellar textures developed in parental grains of zircon. The phase transformation of zircon to reidite likely corresponds to a martensitic mechanism. No coesite is found in the reidite‐bearing gneiss. The shock stage III gneiss contains abundant coesite, but no reidite is identified in the rock. Coesite occurs as acicular, dendritic, and spherulitic crystals characteristic of crystallization from shock‐produced silica melt. Zircon in the rock is mostly recrystallized. The postshock temperature in the shock stage III gneiss is too high for the preservation of reidite, whereas reidite survives in the shock stage II gneiss because of relatively low postshock temperature. Reidite does not occur together with coesite because of difference in shock‐induced temperature between the shock stage II gneiss and the shock stage III gneiss.  相似文献   

6.
Coesite and stishovite are developed in shock veins within metaquartzites beyond a radius of ~30 km from the center of the 2.02 Ga Vredefort impact structure. This work focuses on deploying analytical field emission scanning electron microscopy, electron backscattered diffraction, and Raman spectrometry to better understand the temporal and spatial relations of these silica polymorphs. α-Quartz in the host metaquartzites, away from shock veins, exhibits planar features, Brazil twins, and decorated planar deformation features, indicating a primary (bulk) shock loading of >5 < 35 GPa. Within the shock veins, coesite forms anhedral grains, ranging in size from 0.5 to 4 μm, with an average of 1.25 μm. It occurs in clasts, where it displays a distinct jigsaw texture, indicative of partial reversion to a less dense SiO2 phase, now represented by microcrystalline quartz. It is also developed in the matrix of the shock veins, where it is typically of smaller size (<1 μm). Stishovite occurs as euhedral acicular crystals, typically <0.5 μm wide and up to 15 μm in length, associated with clast–matrix or shock vein margin–matrix interfaces. In this context, the needles occur as radiating or subparallel clusters, which grow into/over both coesite and what is now microcrystalline quartz. Stishovite also occurs as more blebby, subhedral to anhedral grains in the vein matrix (typically <1 μm). We propose a model for the evolution of the veins (1) precursory frictional melting in a microfault (~1 mm wide) generates a molten matrix containing quartz clasts. This is followed by (2) arrival of the main shock front, which shocks to 35 GPa. This generates coesite in the clasts and in the matrix. (3) On initial shock release, the coesite partly reverts to a less dense SiO2 phase, which is now represented by microcrystalline quartz. (4) With continued release, stishovite forms euhedral needle clusters at solid–liquid interfaces and as anhedral crystals in the matrix. (5) With decreasing pressure–temperature, the matrix completes crystallization to yield a microcrystalline quasi-igneous texture comprising quartz–coesite–stishovite–kyanite–biotite–alkali feldspar and accessory phases. It is possible that the shock vein represents the locus of a thermal spike within the bulk shock, in which case there is no requirement for additional pressure (i.e., the bulk shock was ≃35 GPa). However, if that pressure was not realized from the main shock, then supplementary pressure excursions within the vein would have been required. These could have taken the form of localized reverberations from wave trapping, or implosion processes, including pore collapse, phase change–initiated volume reduction, and melt cavitation.  相似文献   

7.
The Younger Dryas impact hypothesis suggests that multiple airbursts or extraterrestrial impacts occurring at the end of the Allerød interstadial resulted in the Younger Dryas cold period. So far, no reproducible, diagnostic evidence has, however, been reported. Quartz grains containing planar deformation features (known as shocked quartz grains), are considered a reliable indicator for the occurrence of an extraterrestrial impact when found in a geological setting. Although alleged shocked quartz grains have been reported at a possible Allerød‐Younger Dryas boundary layer in Venezuela, the identification of shocked quartz in this layer is ambiguous. To test whether shocked quartz is indeed present in the proposed impact layer, we investigated the quartz fraction of multiple Allerød‐Younger Dryas boundary layers from Europe and North America, where proposed impact markers have been reported. Grains were analyzed using a combination of light and electron microscopy techniques. All samples contained a variable amount of quartz grains with (sub)planar microstructures, often tectonic deformation lamellae. A total of one quartz grain containing planar deformation features was found in our samples. This shocked quartz grain comes from the Usselo palaeosol at Geldrop Aalsterhut, the Netherlands. Scanning electron microscopy cathodoluminescence imaging and transmission electron microscopy imaging, however, show that the planar deformation features in this grain are healed and thus likely to be older than the Allerød‐Younger Dryas boundary. We suggest that this grain was possibly eroded from an older crater or distal ejecta layer and later redeposited in the European sandbelt. The single shocked quartz grain at this moment thus cannot be used to support the Younger Dryas impact hypothesis.  相似文献   

8.
Abstract— Previous workers have shown that an impact ejecta layer at Massignano, Italy contains a positive Ir anomaly, flattened spheroids (pancake spherules), Ni‐rich spinel crystals, and shocked quartz with multiple sets of planar deformation features. Because of sample sizes and work by different investigators, it was not clear if the shocked quartz is associated with the Ir anomaly and pancake spherules or if it belongs to a separate impact event. To address this problem, we carried out a high‐resolution stratigraphic study of this ejecta layer. The ejecta layer was sampled continuously at 1 cm intervals in two adjacent columns. The carbonate was removed with dilute HCl, and the non‐carbonate fraction was gently sieved. Pancake spherules were recovered from the 250–500 μm size fraction and counted. At the peak abundance, the number of pancake spherules in the 250–500 μm size fraction is about 6–7/g of sample. The pancake spherules removed from the 250–500 μm size fraction are mostly translucent to opaque pale green, but some have a grey color or dark opaque patches due to a coating of Ni‐ and Cr‐rich spinel crystals. Energy‐dispersive X‐ray analysis and X‐ray diffraction data indicate that the green spherules are composed of iron‐rich smectite, probably nontronite. Black opaque spinel stringers (dark spinel‐rich pancake spherules), usually <200 μm across, can be seen in a polished section of a block that includes the ejecta layer. None of the dark spinel‐rich pancake spherules were recovered from the sieved non‐carbonate fraction due to their fragile nature, but we believe that they are from the same impact event as the green pancake spherules. The <250 μm size fractions from both columns were disaggregated using ultrasonics and re‐sieved. The 63–125 μm size fractions were then searched for shocked quartz using a petrographic microscope. At the peak‐abundance level, the number of shocked quartz grains in the 63–125 μm size fraction is about 7/g of sample. Some of the shocked quartz grains have a “toasted” appearance. These grains have a brownish color and contain a patchy distribution of faint, densely spaced planar deformation features (PDFs). Polymineralic fragments containing one or two shocked quartz grains with one or two sets of PDFs were observed. They appear to have an organic matrix and are probably fragments of agglutinated foraminiferal tests. We searched for, but did not find, coesite or shocked zircons. We found that the peak abundance of the shocked quartz is within a centimeter of the peak abundance of the green pancake spherules. We conclude that the pancake spherules are diagenetically altered clinopyroxene‐bearing spherules and that the shocked quartz, green (and presumably the dark spinel‐rich) pancake spherules, and Ir anomaly all belong to the same impact event. This conclusion is consistent with previous suggestions that the cpx spherule layer may be from the 100 km‐diameter Popigai impact crater in northern Siberia.  相似文献   

9.
Apatite and merrillite are the most common phosphate minerals in a wide range of planetary materials and are key accessory phases for in situ age dating, as well as for determination of the volatile abundances and their isotopic composition. Although most lunar and meteoritic samples show at least some evidence of impact metamorphism, relatively little is known about how these two phosphates respond to shock‐loading. In this work, we analyzed a set of well‐studied lunar highlands samples (Apollo 17 Mg‐suite rocks 76535, 76335, 72255, 78235, and 78236), in order of displaying increasing shock deformation stages from S1 to S6. We determined the stage of shock deformation of the rock based on existing plagioclase shock‐pressure barometry using optical microscopy, Raman spectroscopy, and SEM‐based panchromatic cathodoluminescence (CL) imaging of plagioclase. We then inspected the microtexture of apatite and merrillite through an integrated study of Raman spectroscopy, SEM‐CL imaging, and electron backscatter diffraction (EBSD). EBSD analyses revealed that microtextures in apatite and merrillite become progressively more complex and deformed with increasing levels of shock‐loading. An early shock‐stage fragmentation at S1 and S2 is followed by subgrain formation from S2 onward, showing consistent decrease in subgrain size with increasing level of deformation (up to S5) and finally granularization of grains caused by recrystallization (S6). Starting with 2°–3° of intragrain crystal‐plastic deformation in both phosphates at the lowest shock stage, apatite undergoes up to 25° and merrillite up to 30° of crystal‐plastic deformation at the highest stage of shock deformation (S5). Merrillite displays lower shock impedance than apatite; hence, it is more deformed at the same level of shock‐loading. We suggest that the microtexture of apatite and merrillite visualized by EBSD can be used to evaluate stages of shock deformation and should be taken into account when interpreting in situ geochemically relevant analyses of the phosphates, e.g., age or volatile content, as it has been shown in other accessory minerals that differently shocked domains can yield significantly different ages.  相似文献   

10.
In situ U‐Pb measurements on zircons of the Ries impact crater are presented for three samples from the quarry at Polsingen. The U‐Pb data of most zircons plot along a discordia line, leading to an upper intercept of Carboniferous age (331 ± 32 Ma [2σ]). Four zircons define a concordia age of 313.2 ± 4.4 Ma (2σ). This age most probably represents the age of a granite from the basement target rocks. From granular textured zircon grains (including baddeleyite and anatase/Fe‐rich phases, first identified in the Ries crater), most probably recrystallized after impact (13 analyses, 4 grains), a concordia age of 14.89 ± 0.34 Ma (2σ) and an error weighted mean 206Pb*/238U age of Ma 14.63 ± 0.43 (2σ) is derived. Including the youngest concordant ages of five porous textured zircon grains (24 spot analyses), a concordia age of 14.75 ± 0.22 Ma (2σ) and a mean 206Pb*/238U age of 14.71 ± 0.26 Ma (2σ) can be calculated. These results are consistent with previously published 40Ar/39Ar ages of impact glasses and feldspar. Our results demonstrate that even for relatively young impact craters, reliable U‐Pb ages can be obtained using in situ zircon dating by SIMS. Frequently the texture of impact shocked zircon grains is explained by decomposition at high temperatures and recrystallization to a granular texture. This is most probably the case for the observed granular zircon grains having baddeleyite/anatase/Fe‐rich phases. We also observe non‐baddeleyite/anatase/Fe‐rich phase bearing zircons. For these domains, reset to crater age is more frequently for high U,Th contents. We tentatively explain the higher susceptibility to impact resetting of high U,Th domains by enhanced Pb loss and mobilization due to higher diffusivity within former metamict domains that were impact metamorphosed more easily into porous as well as granular textures during decomposition and recrystallization, possibly supported by Pb loss during postimpact cooling and/or hydrothermal activity.  相似文献   

11.
The Lonar impact crater, India, is one of the few known terrestrial impact craters excavated in continental basaltic target rocks (Deccan Traps, ~65 Ma). The impactites reported from the crater to date mainly include centimeter‐ to decimeter‐sized impact‐melt bombs, and aerodynamically shaped millimeter‐ and submillimeter‐sized impact spherules. They occur in situ within the ejecta around the crater rim and show schlieren structure. In contrast, non–in situ glassy objects, loosely strewn around the crater lake and in the ejecta around the crater rim do not show any schlieren structure. These non–in situ fragments appear to be similar to ancient bricks from the Daityasudan temple in the Lonar village. Synthesis of existing and new major and trace element data on the Lonar impact spherules show that (1) the target Lonar basalts incorporated into the spherules had undergone minimal preimpact alteration. Also, the paleosol layer as preserved between the top‐most target basalt flow and the ejecta blanket, even after the impact, was not a source component for the Lonar impactites, (2) the Archean basement below the Deccan traps were unlikely to have contributed material to the impactite parental melts, and (3) the impactor asteroid components (Cr, Co, Ni) were concentrated only within the submillimeter‐sized spherules. Two component mixing calculations using major oxides and Cr, Co, and Ni suggest that the Lonar impactor was a EH‐type chondrite with the submillimeter‐sized spherules containing ~6 wt% impactor components.  相似文献   

12.
A silicious impact melt rock from polymict impact breccia of the northern part of the alkali granite core of the Araguainha impact structure, central Brazil, has been investigated. The melt rock is thought to represent a large mass of impact‐generated melt in suevite. In particular, a diverse population of zircon grains, with different impact‐induced microstructures, has been analyzed for U‐Pb isotopic systematics. Backscattered electron and cathodoluminescence images reveal heterogeneous intragrain domains with vesicular, granular, vesicular plus granular, and vesicular plus (presumably) baddeleyite textures, among others. The small likely baddeleyite inclusions are not only preferentially located along grain margins but also occur locally within grain interiors. LA‐ICP‐MS U‐Pb data from different domains yield lower intercept ages of 220, 240, and 260 Ma, a result difficult to reconcile with the previous “best age” estimate for the impact event at 254.7 ± 2.7 Ma. SIMS U‐Pb data, too, show a relatively large range of ages from 245 to 262 Ma. A subset of granular grains that yielded concordant SIMS ages were analyzed for crystallographic orientation by EBSD. Orientation mapping shows that this population consists of approximately micrometer‐sized neoblasts that preserve systematic orientation evidence for the former presence of the high‐pressure polymorph reidite. In one partially granular grain (#36), the neoblasts occur in linear arrays that likely represent former reidite lamellae. Such grains are referred to as FRIGN zircon. The best estimate for the age of the Araguainha impact event from our data set from a previously not analyzed type of impact melt rock is based on concordant SIMS data from FRIGN zircon grains. This age is 251.5 ± 2.9 Ma (2σ, MSWD = 0.45, p = 0.50, n = 4 analyses on three grains), indistinguishable from previous estimates based on zircon and monazite from other impact melt lithologies at Araguainha. Our work provides a new example of how FRIGN zircon can be combined with in situ U‐Pb geochronology to extract an accurate age for an impact event.  相似文献   

13.
Thermoluminescence (TL) dating has been used to determine the age of the meteorite impact crater at Gebel Kamil (Egyptian Sahara). Previous studies suggested that the 45 m diameter structure was produced by a fall in recent times (less than 5000 years ago) of an iron meteorite impactor into quartz‐arenites and siltstones belonging to the Lower Cretaceous Gilf Kebir Formation. The impact caused the complete fragmentation of the impactor, and the formation of a variety of impactites (e.g., partially vitrified dark and light materials) present as ejecta within the crater and in the surrounding area. After a series of tests to evaluate the TL properties of different materials including shocked intra‐crater target rocks and different types of ejecta, we selected a suite of light‐colored ejecta that showed evidence of strong thermal shock effects (e.g., partial vitrification and the presence of high‐temperature and ‐pressure silica phases). The abundance of quartz in the target rocks, including the vitrified impactites, allowed TL dating to be undertaken. The variability of radioactivity of the intracrateric target rocks and the lack of direct in situ dosimetric evaluations prevented precise dating; it was, however, possible to constrain the impact in the 2000 BC–500 AD range. If, as we believe, the radioactivity measured in the fallback deposits is a reliable estimate of the mean radioactivity of the site, the narrower range 1600–400 BC (at the 2σ confidence level) can be realistically proposed.  相似文献   

14.
Abstract— Quartz grains subjected to high‐strain‐rate shock waves owing to meteorite or cometary impact on Earth's surface commonly display shock lamellae. These lamellae appear as remarkably straight, thin, planar features (microstructures) in sets within which lamellae are essentially parallel to each other and spaced ≤ 20 μm apart. Two or more intersecting sets are typically present. Shock lamellae are commonly recognized and identified by optical methods, by use of the transmission electron microscope (TEM), and by etching polished sections and subsequent examination with a scanning electron microscope (SEM) operated in the secondary electron mode. We present here a method for observing planar microstructures in shocked quartz by using a cathodoluminescence (CL) detector attached to a SEM. The method relies on the fact that planar microstructures in quartz arising as a result of shock display no CL whatever; thus, they show up as distinct, thin, black lines on otherwise luminescent quartz grains. We used scanning CL imaging to study shocked quartz from the Ries Crater, Germany, a well‐known impact crater of Miocene age. We demonstrate that shock‐produced planar microstructures are clearly displayed in SEM‐CL images and can be distinguished from microfractures generated by tectonism, and subsequently filled with quartz, and other similar features not related to impact events. The SEM‐CL method provides a powerful supplement to other methods of identifying shocked quartz. It commonly provides better spatial resolution than does standard optical methods, and does not require etching of quartz grains. Further, it is easier and faster to use than are TEM methods, although it is not capable of the fine‐scale defect analysis possible with TEM.  相似文献   

15.
Here we present a study of the abundance and orientation of planar deformation features (PDFs) in the Vakkejokk Breccia, a proposed lower Cambrian impact ejecta layer in the North‐Swedish Caledonides. The presence of PDFs is widely accepted as evidence for shock metamorphism associated with cosmic impact events and their presence confirms that the Vakkejokk Breccia is indeed the result of an impact. The breccia has previously been divided into four lithological subunits (from bottom to top), viz. lower polymict breccia (LPB), graded polymict breccia (GPB), top sandstone (TS), and top conglomerate (TC). Here we show that the LPB contains no shock metamorphic features, indicating that the material derives from just outside of the crater and represents low‐shock semi‐autochthonous bombarded strata. In the overlying, more fine‐grained GPB and TS, quartz grains with PDFs are relatively abundant (2–5% of the grain population), and with higher shock levels in the upper parts, suggesting that they have formed by reworking of more distal ejecta by resurge of water toward the crater in a marine setting. The absence of shocked quartz grains in the TC indicates that this unit represents later slumps associated with weathering and erosion of the protruding crater rim. Sparse shocked quartz grains (<0.2%) were also found in sandstone beds occurring at the same stratigraphic level as the Vakkejokk Breccia 15–20 km from the inferred crater site. It is currently unresolved whether the sandstone at these distal sites is related to the impact or just contains rare reworked quartz grains with PDFs.  相似文献   

16.
Abstract— We studied unshocked and experimentally (at 12, 25, and 28 GPa, with 25, 100, 450, and 750°C pre‐shock temperatures) shock‐metamorphosed Hospital Hill quartzite from South Africa using cathodoluminescence (CL) images and spectroscopy and Raman spectroscopy to document systematic pressure or temperature‐related effects that could be used in shock barometry. In general, CL images of all samples show CL‐bright luminescent patchy areas and bands in otherwise nonluminescent quartz, as well as CL‐dark irregular fractures. Fluid inclusions appear dominant in CL images of the 25 GPa sample shocked at 750°C and of the 28 GPa sample shocked at 450°C. Only the optical image of our 28 GPa sample shocked at 25°C exhibits distinct planar deformation features (PDFs). Cathodoluminescence spectra of unshocked and experimentally shocked samples show broad bands in the near‐ultraviolet range and the visible light range at all shock stages, indicating the presence of defect centers on, e.g., SiO4 groups. No systematic change in the appearance of the CL images was obvious, but the CL spectra do show changes between the shock stages. The Raman spectra are characteristic for quartz in the unshocked and 12 GPa samples. In the 25 and 28 GPa samples, broad bands indicate the presence of glassy SiO2, while high‐pressure polymorphs are not detected. Apparently, some of the CL and Raman spectral properties can be used in shock barometry.  相似文献   

17.
18.
Abstract— –Shock‐metamorphosed rock fragments have been found in the Australasian microtektite layer from the South China Sea. Previous X‐ray diffraction (XRD) studies indicate that the most abundant crystalline phases in the rock fragments are coesite, quartz, and a 10 Å phase (mica/clay?). In addition, the presence of numerous other phases was suggested by scanning electron microscopy (SEM) and energy‐dispersive X‐ray (EDX) analysis. In the present research, ten of the rock fragments, which had previously been studied using SEM/EDX, were studied by micro‐Raman spectroscopy. The presence of K‐feldspar, plagioclase, rutile, ilmenite, titanite, magnetite, calcite, and dolomite were confirmed. In addition, the high‐pressure TiO2 polymorph with an α‐PbO2 structure (i.e., TiO2II) was found in several rock fragments. Two grains previously thought to have been zircon, based on their compositions, were found to have Raman spectra that do not match the Raman spectra of zircon, reidite, or any of the possible decomposition products of zircon or their high‐pressure polymorphs. We speculate that the ZrSiO4 phase might be a previously unknown high‐pressure polymorph of zircon or one of its decomposition products (i.e., ZrO2 or SiO2). The presence of coesite and TiO2 II, and partial melting and vesiculation suggest that the rock fragments containing the unknown ZrSiO4 phase must have experienced shock pressures between 45 and 60 GPa. We conclude that micro‐Raman spectroscopy, in combination with XRD and SEM/EDX, is a powerful tool for the study of small, fine‐grained impact ejecta.  相似文献   

19.
High-resolution solid-state silicon-29 nuclear magnetic resonance spectroscopy using “magic-angle” sample-spinning can readily detect the presence of the high pressure silica polymorphs coesite and stishovite in whole-rock samples from a Meteor Crater, Arizona, impact sample, and yields accurate coesite/stishovite ratios. Such determinations are being carried out by partially suppressing (saturating) intense quartz signals (which have long spin-lattice relaxation times) by means of short experimental recycle-times. This method enhances the signal-to-noise ratios of coesite and stishovite (which have relatively short spin-lattice relaxation times). For the sample examined, the coesite/stishovite ratio is about 27.  相似文献   

20.
Here we report in situ secondary ionization mass spectrometry Ca-phosphate U-Pb ages for an L-impact melt breccia (NWA 7251), which are integrated with petrological and mineral chemical studies of this meteorite. NWA 7251 is a heavily shocked rock that is composed mainly of the chondrite host, impact melt portion, and melt veins (crosscutting and pervasive type). The host is an L4 chondrite that has been shocked to S4. The impact melt portion has a fine-grained igneous texture, and is composed mainly of olivine, low-Ca pyroxene, high-Ca pyroxene, and albitic glass. The impact melt was generated at pressure of >30–35 GPa and temperature of >1300–1500 °C during an impact event. The Ca-phosphate grains in the host were affected by a shock heating event. Most of the Ca-phosphate grains in the melt were neocrystallized, but relatively large grains enclosed by or adjacent to metal veins or melt globules are likely inherited. The U-Pb isotopic systematics of Ca-phosphates in NWA 7251 yield an upper intercept age of 4457 ± 56 Ma and a lower intercept age of 574 ± 82 Ma on the normal U-Pb concordia diagram. The age of 4457 ± 56 Ma is interpreted to be related to an early shocking event rather than the thermal metamorphism of the parent body. The impact melt and veins in NWA 7251 were generated at 574 ± 82 Ma, resulting from disruption of the L chondrite parent body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号