首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 802 毫秒
1.
Here we present the first proof of an impact origin for the Saqqar circular structure in northwestern Saudi Arabia (Neville et al. 2014 ), with an apparent diameter of 34 km, centered at 29°35′N, 38°42′E. The structure is formed in Cambrian–Devonian siliciclastics and is unconformably overlain by undeformed Cretaceous and Paleogene sediments. The age of impact is not well constrained and lies somewhere between 410 and 70 Ma. The subsurface structure is constrained by 2‐D reflection seismic profiles and six drilled wells. First‐order structural features are a central uplift that rises approximately 2 km above regional datums, surrounded by a ring syncline. The crater rim is defined by circumferential normal faults. The central uplift and ring syncline correspond to a Bouguer gravity high and an annular ring‐like low, respectively. The wells were drilled within the central uplift, the deepest among them exceed 2 km depth. Sandstone core samples from these wells show abundant indicators of a shock metamorphic overprint. Planar deformation features (PDFs) were measured with orientations along (0001), {103}, and less frequently along {101} and {104}. Planar fractures (PFs) predominantly occur along (0001) and {101}, and are locally associated with feather features (FFs). In addition, some shocked feldspar grains and strongly deformed mica flakes were found. The recorded shock pressure ranges between 5 and 15 GPa. The preserved level of shock and the absence of an allochthonous crater fill suggest that Saqqar was eroded by 1–2 km between the Devonian and Maastrichtian. The documentation of unequivocal shock features proves the formation of the Saqqar structure by a hypervelocity impact event.  相似文献   

2.
Recently it has been shown that the relatively low closure temperature (Tc) of 500 (100)°C calculated for augite from Miller Range nakhlite (MIL 03346,13) using the available geothermometers would correspond to a slow cooling rate inconsistent with the petrologic evidence for an origin from a fast‐cooled lava flow. Moreover, previous annealing experiments combined with HR‐SC‐XRD on an augite crystal from MIL 03346 clearly showed that at 600 °C, the Fe2+‐Mg degree of order remained unchanged, thus suggesting that the actual Tc is close to this temperature. In order to clarify this discrepancy, we undertook an ex situ annealing experimental study at 700, 800, and 900 °C, until the equilibrium in the intracrystalline Fe2+‐Mg exchange is reached, using an augite crystal from Miller Range nakhlite (MIL 03346,13) with a composition of about En36Fs24Wo40. These data allowed us to calculate the following new geothermometer calibration for Martian nakhlites: where The application of this new equation to other Martian nakhlites (NWA 988 and Nakhla) suggests that for augite with composition close to that of MIL 03346, the Tc is up to 170 °C higher with respect to the one calculated using the previous available geothermometer equation, thus suggesting a significantly faster cooling in agreement with petrologic evidence.  相似文献   

3.
The Summanen structure is located in Central Finland and is one of Finland's 12 known meteorite impact structures. In 2017, the discovery of Summanen was based on numerous shatter cone boulders with planar deformation features (PDFs) and a circular electromagnetic anomaly, which is 2.6 km in diameter. The site was revisited in 2020 and 2022, and shatter cone-bearing outcrops were discovered. PDFs and feather features were identified in samples from these outcrops. A total of 38 PDF sets in 27 quartz grains resulted in rational crystallographic orientations concentrating on {10 1 ¯ 4}, {10 1 ¯ 3}, {10 1 ¯ 2}, and {11 2 ¯ 2}, implying shock pressures of 2–20 GPa. Gravity measurements were taken, and the electrical conductivity of the structure was studied. The gravimetric results revealed a circular negative anomaly of about 4 km in diameter, with an amplitude of −3.5 mGal. Excluding the gravitational effect of water and Quaternary sediments reduces the anomaly to −1.6 mGal. A bowl-shaped conductive layer, likely containing relict saline water in the impact-fractured bedrock, was identified to a depth of 240 m. Topographic and bathymetric data were combined to determine the impact's effect and interpret the level of erosion. Cobbles of sedimentary sand- and siltstones were found on the coastline of Lake Summanen. Based on their similarity to those found in the Söderfjärden impact crater with a Cambrian age, it is likely that these rocks and post-impact infill are also of a similar age.  相似文献   

4.
Core samples from the Chicxulub impact structure provide insights into the formation processes of a shallow-marine-target, complex crater. Although previous studies investigated the impactites (generally suevitic and polymict breccias) of the Yaxcopoil-1 (YAX-1) drill core in the Chicxulub impact structure, the interpretation of its deposition remains controversial. Here, we analyze planar deformation features (PDFs), grain size, and abundance of shocked quartz throughout the YAX-1 impactite sequence (794–895 m in depth). PDF orientations of most quartz grains in YAX-1 impactites show a distribution of both low angles ({104}, {103}, {102}) and high angles (orientations higher than 55° to c-axis), while the lower part of the impactite sequence contains quartz showing only PDF orientations of low angles. High-abundance, coarse-grained shocked quartz is found from the lower to middle parts of the impactites, whereas it abruptly changes to low-abundance, fine-grained shocked quartz within the upper part. In the uppermost part of the impactites, repeated oscillations in contents of these two components are observed. PDF orientation pattern suggests most of the shocked quartz grains experienced a range of shock pressure, except two samples in the lower part of impactites, which experienced only a high level of shock. We suggest that the base and lower part of the impactite sequence were formed by ejecta curtain and melt surge deposits, respectively. Our results are also consistent with the interpretation that the middle part of the impactite sequence is fallback ejecta from the impact plume. Additionally, we support the contention that massive seawater resurges into the crater occurred during the deposition of the upper and uppermost part of the impactites.  相似文献   

5.
Chondrules probably formed during a small window of time ~1–4 Ma after CAIs, when most solid matter in the asteroid belt was already in the form of km-sized planetesimals. They are unlikely, therefore, to be “building blocks” of planets or abundant on asteroids, but more likely to be a product of energetic events common in the asteroid belt at that epoch. Laboratory experiments indicate that they could have formed when solids of primitive composition were heated to temperatures of ~1600 K and then cooled for minutes to hours. A plausible heat source for this is magma, which is likely to have been abundant in the asteroid belt at that time, and only that time, due to the trapping of 26Al decay energy in planetesimal interiors. Here, we propose that chondrules formed during low-speed ( 1 km s 1 ) collisions between large planetesimals when heat from their interiors was released into a stream of primitive debris from their surfaces. Heating would have been essentially instantaneous and cooling would have been on the dynamical time scale, 1 / ~30 min, where ρ is the mean density of a planetesimal. Many of the heated fragments would have remained gravitationally bound to the merged object and could have suffered additional heating events as they orbited and ultimately accreted to its surface. This is a hybrid of the splash and flyby models: We propose that it was the energy released from a body's molten interior, not its mass, that was responsible for chondrule formation by heating primitive debris that emerged from the collision.  相似文献   

6.
High‐temperature solid‐state electrochemistry techniques (EMF method) were used to measure the oxygen fugacity (fO2) of the ordinary chondrites Ochansk (H4), Savtschenskoje (LL4), Elenovka (L5), Vengerovo (H5), and Kharkov (L6). The fO2 results are presented in the form of the following equations: It was found that fO2 regularly increases from H chondrites to LL chondrites. Measured fO2 are ~1.5 higher than those previously calculated from mineral assemblages. Kharkov (L6) is a little more oxidized than Elenovka (L5) in agreement with the progressive oxidation model. At the same time, Ochansk (H4) is more oxidized than Vengerovo (H5) and exhibits a slightly different slope compared to other chondrites and at > 1200 K, becomes more reduced than Kharkov (L6) or Elenovka (L5). Measured oxygen fugacity values of meteorites fall within (0.1–1.0)·log fO2 of one another. The possible explanation of discrepancies between measured and calculated values is discussed.  相似文献   

7.
The crystallization temperatures of Itokawa surface particles recovered by the space probe Hayabusa were estimated by a plagioclase geothermometer using sodic plagioclase triclinicity. The Δ131‐index required for the thermometer, which is the difference in X‐ray diffraction peak positions between the 131 and 11 reflections of plagioclase, was obtained by a high‐resolution synchrotron Gandolfi camera developed for the third generation synchrotron radiation beamline, BL15XU at SPring‐8. Crystallization temperatures were successfully determined from the Δ131‐indices for four particles. The observed plagioclase crystallization temperatures were in a range from 655 to 660 °C. The temperatures indicate crystallization temperatures of plagioclases in the process of prograde metamorphism before the peak metamorphic stage.  相似文献   

8.
A reanalysis of NEAR X‐ray/gamma‐ray spectrometer (XGRS) data provides robust evidence that the elemental composition of the near‐Earth asteroid 433 Eros is consistent with the L and LL ordinary chondrites. These results facilitated the use of the gamma‐ray measurements to produce the first in situ measurement of hydrogen concentrations on an asteroid. The measured value,  ppm, is consistent with hydrogen concentrations measured in L and LL chondrite meteorite falls. Gamma‐ray derived abundances of hydrogen and potassium show no evidence for depletion of volatiles relative to ordinary chondrites, suggesting that the sulfur depletion observed in X‐ray data is a surficial effect, consistent with a space‐weathering origin. The newfound agreement between the X‐ray, gamma‐ray, and spectral data suggests that the NEAR landing site, a ponded regolith deposit, has an elemental composition that is indistinguishable from the mean surface. This observation argues against a pond formation process that segregates metals from silicates, and instead suggests that the differences observed in reflectance spectra between the ponds and bulk Eros are due to grain size differences resulting from granular sorting of ponded material.  相似文献   

9.
Magnesium and silicon isotopic profiles across melilite grains in two type B1 and two type B2 calcium‐aluminum‐rich inclusions (CAIs) reveal differing but constant enrichments in heavy isotopes everywhere except ≤1000 μm from the CAI margins. There is no close correlation in the B1s or the B2s between isotopic composition and åkermanite content of the melilite, a measure of progressive igneous crystallization, yet such a correlation might be expected in a type B2: without a melilite mantle (as in B1s) to seal the interior off and prevent further evaporation, the melt would have maintained communication with the external gas. These observations indicate a model in which B1s and B2s solidified under differing conditions. The B2s solidified under lower hydrogen pressures ( ≤ 10?4 – 10?5 bars) than did B1s ( > 10?4 bars), so surface volatilization was slower in the B2s and internal chemical and isotopic equilibrium was maintained over the interval of melilite crystallization. The outermost zones of the CAIs (≤1000 μm from the edge) are not consistently enriched in heavy isotopes relative to the interiors, as might be expected from diffusion‐limited surface evaporation of the melt. In all cases, the magnesium in the CAI margins is lighter than in the interiors. In one case, silicon in the margin also is lighter, but locally in some CAIs, it is isotopically heavier near the surface. If melt evaporation played a role in the formation of these outer zones, a later event in many cases caused isotopic re‐equilibration with an external and isotopically near‐normal reservoir.  相似文献   

10.
A laboratory study was performed using the Visible Oxford Space Environment Goniometer in which the broadband (350–1250 nm) bidirectional reflectance distribution function (BRDF) of the Winchcombe meteorite was measured, across a range of viewing angles—reflectance: 0°–70°, in steps of 5°; incidence: 15°, 30°, 45°, and 60°; and azimuthal: 0°, 90°, and 180°. The BRDF dataset was fitted using the Hapke BRDF model to (1) provide a method of comparison to other meteorites and asteroids, and (2) to produce Hapke parameter values that can be used to extrapolate the BRDF to all angles. The study deduced the following Hapke parameters for Winchcombe: w = 0.152 ± 0.030, b = 0.633 ± 0.064, and hS = 0.016 ± 0.008, demonstrating that it has a similar w value to Tagish Lake (0.157 ± 0.020) and a similar b value to Orgueil (0.671 ± 0.090). Importantly, the surface profile of the sample was characterized using an Alicona 3D® instrument, allowing two of the free parameters within the Hapke model φ and θ ¯ , which represent porosity and surface roughness, respectively, to be constrained as φ = 0.649 ± 0.023 and θ ¯ = 16.113° (at 500 μm size scale). This work serves as part of the characterization process for Winchcombe and provides a reference photometry dataset for current and future asteroid missions.  相似文献   

11.
Abstract– The 1.8 km‐diameter Xiuyan crater is an impact structure in northeastern China, exposed in a Proterozoic metamorphic rock complex. The major rocks of the crater are composed of granulite, hornblendite, gneiss, tremolite marble, and marble. The bottom at the center of the crater covers about 100 m thick lacustrine sediments underlain by 188 m thick crater‐fill breccia. A layer of polymict breccia composed of clasts of granulite, gneiss, hornblendite, and fragments of glass as well as clastic matrix, occurs near the base, in the depth interval from 260 to 295 m. An investigation in quartz from the polymict breccia in the crater‐fill units reveals abundant planar deformation features (PDFs). Quartz with multiple sets of PDFs is found in clasts of granulite that consist of mainly quartz and feldspar, and in fine‐grained matrix of the impact‐produced polymict breccia. A universal stage was used to measure the orientation of PDFs in 70 grains of quartz from five thin sections made from the clasts of granulite of polymict breccia recovered at the depth of 290 m. Forty‐four percent of the quartz grains contain three sets of PDFs, and another 40% contain two sets of PDFs. The most abundant PDFs are rhombohedron forms of , , and with frequency of 33.5, 22.3, and 9.6%, respectively. A predominant PDF form of in quartz suggests a shock pressure >20 GPa. The occurrence of PDFs in quartz from the polymict breccia provides crucial evidence for shock metamorphism of target rocks and confirms the impact origin of this crater, which thus appears to be the first confirmed impact crater in China.  相似文献   

12.
The first JWST observations of hot Jupiters showed an unexpected detection of SO 2 $$ {}_2 $$ in their hydrogen-rich atmospheres. We investigate how much sulfur can be expected in the atmospheres of rocky exoplanets and which sulfur molecules can be expected to be most abundant and detectable by transmission spectroscopy. We run thermochemical equilibrium models at the crust–atmosphere interface, considering surface temperatures 500–5000 K, surface pressures 1–100 bar, and various sets of element abundances based on common rock compositions. Between 1000 and 2000 K, we find gaseous sulfur concentrations of up to 25% above the rock in our models. SO 2 $$ {}_2 $$ , SO, H 2 $$ {}_2 $$ S, and S 2 $$ {}_2 $$ are by far the most abundant sulfur molecules. SO 2 $$ {}_2 $$ shows potentially detectable features in transmission spectra at about 4 μ $$ \mu $$ m, between 7 and 8 μ $$ \mu $$ m, and beyond 15 μ $$ \mu $$ m. In contrast, the sometimes abundant H 2 $$ {}_2 $$ S molecule is difficult to detect in these spectra, which are mostly dominated by H 2 $$ {}_2 $$ O and CO 2 $$ {}_2 $$ . Although the molecule PS only occurs with concentrations < 300 $$ <300 $$ ppm, it can cause a strong absorption feature between 0.3 and 0.65 μ $$ \mu $$ m in some of our models for high surface pressures. The detection of sulfur molecules would enable a better characterization of the planetary surface.  相似文献   

13.
Abstract— The Middle Ordovician Granby structure in Sweden is generally considered the result of an asteroidal or cometary collision with Earth, although no hard evidence, i.e., shock metamorphic features or traces of the impactor, have been presented to date. In this study, drill core samples of a sedimentary breccia from the Granby structure have been investigated for microscopic shock metamorphic evidence in an attempt to verify the impact genesis of the structure. The finding of multiple sets of decorated planar deformation features (PDFs) in quartz grains in these samples provides unambiguous evidence that the structure is impact derived. Furthermore, the orientation of the PDFs, e.g., ω {101 }, π {101 } and r, z {101 }, is characteristic for impact deformation. The fact that a majority of the PDFs are decorated implies a water‐bearing target. The shocked quartz grains can be divided into two groups; rounded grains found in the breccia matrix likely originated from mature sandstone, and angular grains in fragments from crystalline target rocks. The absence of melt particles provides an estimated maximum shock pressure for the sedimentary derived quartz of 15–20 GPa and the frequency distribution of PDF orientations in the bedrock quartz implies pressures of the order of 10 GPa.  相似文献   

14.
Abstract— Microscopic planar deformation features (PDFs) in quartz grains are diagnostic of shock meta-morphism during hypervelocity impact cratering. Measurements of the poles of sets of PDFs and the optic axis of 25 quartz grains were carried out for a sample of the Loftarsten deposit from the Lockne area, Sweden. The most abundant PDFs observed in the sample from the Lockne area correspond to those found at known impact craters (i.e., ω (1013} and π (1012). This study confirms the previous suggestion that the Lockne structure is an impact crater. The Loftarsten is, therefore, interpreted as the final stage of resurge deposition after a marine impact at Lockne in the Middle Ordovician.  相似文献   

15.
In this work, the entanglement entropy is examined within the context of deep inelastic scattering in e p $$ ep $$ collisions. The calculation is based on a formalism where the partonic state at small- x $$ x $$ is maximally entangled, consisting of a large number of micro-states occurring with equal probabilities. Analytical expressions for the number of gluons, N gluon $$ {N}_{\mathrm{gluon}} $$ , are considered, derived from gluon saturation models for dipole-target amplitudes within the framework of the Quantum Chromodynamics (QCD) color dipole picture. A comparison of the entanglement entropy with thermodynamic entropy measured in p p $$ pp $$ and e p $$ ep $$ collisions at high energies is done.  相似文献   

16.
Abstract– Planar deformation features (PDFs) in quartz, one of the most commonly used diagnostic indicators of shock metamorphism, are planes of amorphous material that follow crystallographic orientations, and can thus be distinguished from non‐shock‐induced fractures in quartz. The process of indexing data for PDFs from universal‐stage measurements has traditionally been performed using a manual graphical method, a time‐consuming process in which errors can easily be introduced. A mathematical method and computer algorithm, which we call the Automated Numerical Index Executor (ANIE) program for indexing PDFs, was produced, and is presented here. The ANIE program is more accurate and faster than the manual graphical determination of Miller–Bravais indices, as it allows control of the exact error used in the calculation and removal of human error from the process.  相似文献   

17.
We evaluate the feasibility of Bose–Einstein condensate stars (BECS) as models for the interior of neutron stars (NSs). BECS are compact objects composed of bosons, formed through the spin-parallel pairing of neutrons. Here, we utilize the astronomical data from GW170817, XMMU J173203.3-344518 (the lightest NS known), and a novel lower limit on NS core heat capacity to scrutinize the compatibility of BECS with these recent observations of NSs. Our specific focus is to constrain the values of the scattering length a $$ a $$ , parameter determining the strength of particle interactions in the model. Our analysis suggests that if the stars involved in GW170817 were BECSs, the scattering length of their constituent bosons should fall within the 4 $$ 4 $$ to 10 $$ 10 $$ fm range. Additionally, at a scattering length of a 3.1 4 $$ a\sim 3.1-4 $$ fm, stars with mass and radius characteristics akin to XMMU J173203.3-344518 are identified. Moreover, we find that the heat capacity depends on the mass and temperature of BECS, and surpasses the established lower bound for NS cores when a > 2 5 $$ a>2-5 $$ fm. In summary, our results endorse BECS models with a 4 $$ a\sim 4 $$ fm, providing NS observables in agreement with diverse observations and contributing to the understanding of NS interiors.  相似文献   

18.
Neutron stars may experience differential rotation on short, dynamical timescales following extreme astrophysical events like binary neutron star mergers. In this work, the masses and radii of differentially rotating neutron star models are computed. We employ a set of equations of states for dense hypernuclear and Δ $$ \Delta $$ -admixed-hypernuclear matter obtained within the framework of CDF theory in the relativistic Hartree-Fock (RHF) approximation. Results are shown for varying meson- Δ $$ \Delta $$ couplings, or equivalently the Δ $$ \Delta $$ -potential in nuclear matter. A comparison of our results with those obtained for nonrotating stars shows that the maximum mass difference between differentially rotating and static stars is independent of the underlying particle composition of the star. We further find that the decrease in the radii and increase in the maximum masses of stellar models when Δ $$ \Delta $$ -isobars are added to hyperonuclear matter (as initially observed for static and uniformly rotating stars) persist also in the case of differentially rotating neutron stars.  相似文献   

19.
There are many rotating spheroids in the universe, and many astronomers and physicists have used theoretical methods to study the characteristics of stellar gravity since Newton's time. This paper derives the solutions of eight scattering states ( ϕ ( 0 ) , χ ( 0 ) , ϕ ( 1 ) , χ ( 1 ) , ϕ ( 2 ) $$ \Big({\phi}^{(0)},{\chi}^{(0)},{\phi}^{(1)},{\chi}^{(1)},{\phi}^{(2)} $$ , χ ( 2 ) , ϕ ( 3 ) $$ {\chi}^{(2)},{\phi}^{(3)} $$ , and χ ( 3 ) ) $$ {\chi}^{(3)}\Big) $$ for the Dirac equation with positive-energy E = im $$ E= im $$ , and establishes the relationship between the differential scattering cross section σ i ( p , θ , φ ) $$ {\sigma}_i\left(p,\theta, \varphi \right) $$ and the stellar density μ $$ \mu $$ . It is found that: (1) For the eight scattering states, their average scattering cross-sections σ i $$ \overline{\sigma_i} $$ are proportional to μ 2 $$ {\mu}^2 $$ , and depend on the star's radius, and the higher the stellar density μ $$ \mu $$ , the greater the sensitivity of σ i $$ \overline{\sigma i} $$ to the change of μ $$ \mu $$ ; (2) For the four scattering states χ ( i ) , i = 0 , 1 , 2 , 3 $$ {\chi}^{(i)},i=0,1,2,3 $$ , their average scattering amplitudes f ( p , θ ) $$ \overline{f}\left(p,\theta \right) $$ and σ ( p , θ ) $$ \overline{\sigma}\left(p,\theta \right) $$ depend on the mass m $$ m $$ of the particles; while for the other four scattering states ϕ ( i ) $$ {\phi}^{(i)} $$ , i = 0 , 1 , 2 , 3 $$ i=0,1,2,3 $$ , then f $$ \overline{f} $$ and σ $$ \overline{\sigma} $$ are independent of m $$ m $$ . This study links the gravitational characteristics of stars with the scattering cross section, creating a new method for studying the gravitational characteristics, which helps to reveal the mystery of the gravity of rotating ellipsoidal stars.  相似文献   

20.
The effects of a minimal length on the Kerr metric are studied within the pseudo-complex General Relativity (pcGR), which has a minimal length parameter and also depends on a r $$ r $$ -dependent metric, allowing for the accumulation of dark energy around a star. The relevant parameters are the rotational Kerr parameter a $$ a $$ , the mass of a black hole, and a parameter measuring the amount of dark energy accumulated. It is found that the metric is modified by a factor, depending on r $$ r $$ , resulting in a maximal acceleration. This factor shows several singularities. For small black holes, the corresponding effective potentials exhibit potential barriers, avoiding the increase of the black hole's mass. It is found that the effects of a minimal length are only of importance for very small mass black holes and vanish for macroscopic black holes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号