首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G.H. Rieke 《Icarus》1975,26(1):37-44
Infrared observations of Saturn from 5 to 40 μm are described. There is intense limb brightening at 12.35 μm over the southern polar cap. The C ring is anomalously bright at 10 and 20 μm and has bluer (hotter) colours than the A and B rings. The ring spectra have been extrapolated beyond 40 μm and subtracted from low-resolution far-infrared measurements to show that the far-infrared spectrum of the disk of Saturn is qualitatively similar to that of Jupiter and that Saturn radiates 2.5 ± 0.6 times the energy it absorbs from the Sun.  相似文献   

2.
UBV pinhole scans of the Saturn disk have been made with a photoelectric area-scanning photometer. Limb profiles, spaced parallel to the equator, were obtained over the entire southern hemisphere of the planet. Saturn was found to exhibit strong limb brightening in the ultraviolet, moderate limb brightening at blue wavelengths, and strong limb darkening in the visual region of the spectrum. Latitudinal variations in the disk profiles were found. In general, the degree of limb brightening decreases towards the polar region. Pronounced asymmetry is apparent in the disk profiles in each color. The sunward limb is significantly brighter than the opposite limb. This asymmetry depends on phase angle; approaching zero at opposition, it reaches a maximum near quadrature. Our observations are interpreted using an elementary radiative transfer model. The Saturn atmosphere is approximated by a finite homogeneous layer of isotropically scattering particles overlying a Lambert scattering haze or cloud layer. The reflectivity of the haze or clouds is a strongly dependent function of wavelength. Our best-fitting model consists of a clear H2 layer of column density ~31 km-am above the haze or clouds; the maximum permitted H2 column density is ~46 km-am. The H2 column density above the equatorial region appears to be less than at temperate latitudes. The phase-dependent asymmetry in the disk profiles is a natural consequence of the scattering geometry. Our results are consistent with current knowledge of the Saturn atmosphere.  相似文献   

3.
《Planetary and Space Science》1999,47(10-11):1201-1210
New models of Jupiter are based on observational data provided by the Galileo spaceprobe, which considerably improved previously existing estimates of the helium abundance in the atmosphere of Jupiter. These data yield for Jupiter’s atmosphere 20% of the solar oxygen abundance and do not agree with the results of the analysis of the collision of comet Shoemaker-Levy 9 with Jupiter (10 times the solar value). Therefore, both the models of Jupiter with water-depleted and water-enriched atmosphere are considered. By analogy with Jupiter, trial models of Saturn with a water-depleted external envelope are also developed. The molecular-metallic phase transition pressure of hydrogen Pm was taken to be 1.5, 2 and 3 Mbar. Since Saturn’s internal molecular envelope is noticeably enriched in the IR-component (its weight concentration, 0.25–0.30, being by a factor of 3–4 higher than in Jupiter), the phase transition pressure in Saturn can be lower than in Jupiter. In the constructed models, the IR-core masses are 3–3.5 M for Jupiter and 3–5.5 M for Saturn. Jupiter’s and Saturn’s IR-cores can be considered embryos onto which the accretion of the gas occurred during the formation of the planets. The mass of the hydrogen–helium component dispersed in the zone of planetary formation constitutes ≈2–5 planetary masses for Jupiter and ≈11–14 planetary masses for Saturn.  相似文献   

4.
Infrared spectral observations of Mars, Jupiter, and Saturn were made from 100 to 470 cm?1 using NASA's G. P. Kuiper Airborne Observatory. Taking Mars as a calibration source, we determined brightness temperatures of Jupiter and Saturn with approximately 5 cm?1 resolution. The data are used to determine the internal luminosities of the giant planets, for which more than 75% of the thermally emitted power is estimated to be in the measured bandpass: for Jupiter LJ = (8.0 ± 2.0) × 10?10L and for Saturn LS = (3.6 ± 0.9) × 10?10. The ratio R of thermally emitted power to solar power absorbed was estimated to be RJ = 1.6 ± 0.2, and RS = 2.7 ± 0.8 from the observations when both planets were near perihelion. The Jupiter spectrum clearly shows the presence of the rotational ammonia transitions which strongly influence the opacity at frequencies ?250 cm?1. Comparison of the data with spectra predicted from current models of Jupiter and Saturn permits inferences regarding the structure of the planetary atmospheres below the temperature inversion. In particular, an opacity source in addition to gaseous hydrogen and ammonia, such as ammonia ice crystals as suggested by Orton, may be necessary to explain the observed Jupiter spectrum in the vicinity of 250 cm?1.  相似文献   

5.
For a given planet there is a critical distance from the Sun when the planet is first or last seen. This is called Jian-Fu-Du (JFD) by ancient Chinese astronomers. TABLE 1 lists the values of JFD for the five planets as given in 33 Chinese calendars between −103 and +1368. The data show that 1) in order of decreasing brightness, we have Venus, Jupiter, Saturn and Mars, while the brightness of Mercury is the same as the last two; 2) the JFD of Jupiter is decreasing in time; and 3) the JFDs of the other four planets are increasing in time. Perhaps changes in the transparency of the Earth's atmosphere and in the brightness of the Sun cause a general increase in JFD. Then the decreasing JFD of Jupiter means that Jupiter is getting brighter in time. A rough estimate for the rate of brightening is 0.003 mag per thousand years.  相似文献   

6.
The spectral reflectivity of Saturn's rings between 0.36 and 1.06 μm is derived from observations of the combined light of the Saturn system and the previously determined spectrum of the disk of Saturn. The rings are red relative to the Sun for wavelengths λ? 0.7 μm; at longer wavelengths, the spectral reflectivity declines. The amplitude of the opposition effect (anomalous brightening at very small phase angles) shows a maximum at both ends of our spectral range.  相似文献   

7.
H.M. Schmid  F. Joos  D. Gisler 《Icarus》2011,212(2):701-713
We present ground-based limb polarization measurements of Jupiter and Saturn consisting of full disk imaging polarimetry for the wavelength 7300 Å and spatially resolved (long-slit) spectropolarimetry covering the wavelength range 5200-9350 Å.For the polar region of Jupiter we find for λ = 6000 Å a very strong radial (perpendicular to the limb) fractional polarization with a seeing corrected maximum of about +11.5% in the South and +10.0% in the North. This indicates that the polarizing haze layer is thicker at the South pole. The polar haze layers extend down to 58° in latitude. The derived polarization values are much higher than reported in previous studies because of the better spatial resolution of our data and an appropriate consideration of the atmospheric seeing. Model calculations demonstrate that the high limb polarization can be explained by strongly polarizing (p ≈ 1.0), high albedo (ω ≈ 0.98) haze particles with a scattering asymmetry parameter of g ≈ 0.6 as expected for aggregate particles of the type described by West and Smith (West, R.A., Smith, P.H. [1991]. Icarus 90, 330-333). The deduced particle parameters are distinctively different when compared to lower latitude regions.The spectropolarimetry of Jupiter shows a decrease in the polar limb polarization towards longer wavelengths and a significantly enhanced polarization in strong methane bands when compared to the adjacent continuum. This is a natural outcome for a highly polarizing haze layer above an atmosphere where multiple scatterings are suppressed in absorption bands. For lower latitudes the fractional polarization is small, negative, and it depends only little on wavelength except for the strong CH4-band at 8870 Å.The South pole of Saturn shows a lower polarization (p ≈ 1.0-1.5%) than the poles of Jupiter. The spectropolarimetric signal for Saturn decrease rapidly with wavelength and shows no significant enhancements in the fractional polarization in the absorption bands. These properties can be explained by a vertically extended stratospheric haze region composed of small particles <100 nm as suggested previously by Karkoschka and Tomasko (Karkoschka, E., Tomasko, M. [2005]. Icarus 179, 195-221).In addition we find in the V- and R-band a previously not observed strong polarization feature (p = 1.5-2.0%) near the equator of Saturn. The origin of this polarization signal is unclear but it could be related to a seasonal effect.Finally we discuss the potential of ground-based limb polarization measurements for the investigation of the scattering particles in the atmospheres of Jupiter and Saturn.  相似文献   

8.
According to some investigations (Lecar and Franklin, 1973; Franklin et al., 1989; Soper et al., 1990) asteroids cannot remain for along time between Jupiter and Saturn. But as it is well known there is a near 5:2 commensurability between Jupiter and Saturn. So there might be a possibility that asteroids between Jupiter and Saturn could be trapped in a resonant relation.In order to investigate this possibility, the changes of orbital elements of an asteroid whose initial value of semi-major axis corresponds to that of a 1:2 resonant orbit were investigated by means of a double precision Cowell method. The integration routine was kindly supplied by Dr Yoshikawa.We considered first a planar restricted problem of three bodies, Sun-Jupiter-Asteroid, then a four body problem, Sun-Jupiter-Asteroid-Saturn. When integrating the equations of motion, short periodic terms were not eliminated and in the second test the interactions between Jupiter and Saturn were retained. Whether a close approach occured or not was not investigated. In every case a j = 5.20, a s = 9.54 and a = 8.26 were adopted as initial values of the semi-major axis of Jupiter, Saturn and Asteroid respectively.  相似文献   

9.
Observations with a new near infrared imaging spectrometer with ~15 Å resolution are presented. Twelve spectral images of Saturn in the vicinity of the 8900 Å CH4 absorption complex were obtained and their interpretation discussed. Spectral images of Jupiter were also obtained and several of these at widely separated wavelengths were subjected to a Minnaert analysis.  相似文献   

10.
North to south scans of Jupiter at 7.8-μm wavelength in early 1981 confirm polar brightening events that correlate with LCMIII, such that a polar limb is bright when the corresponding magnetic pole is tilted eartward. The correlation with magnetic features of the planet suggests that the energy source for the brightenings is magnetospheric particles incident upon the polar regions of the atmosphere. The northern polar events are more prominent and more regular than the southern ones. The polar emission may be indirectly related to the ultraviolet absorber observed near the poles by Voyager 2.  相似文献   

11.
The global distribution of phosphine (PH3) on Jupiter and Saturn is derived using 2.5 cm−1 spectral resolution Cassini/CIRS observations. We extend the preliminary PH3 analyses on the gas giants [Irwin, P.G.J., and 6 colleagues, 2004. Icarus 172, 37-49; Fletcher, L.N., and 9 colleagues, 2007a. Icarus 188, 72-88] by (a) incorporating a wider range of Cassini/CIRS datasets and by considering a broader spectral range; (b) direct incorporation of thermal infrared opacities due to tropospheric aerosols and (c) using a common retrieval algorithm and spectroscopic line database to allow direct comparison between these two gas giants.The results suggest striking similarities between the tropospheric dynamics in the 100-1000 mbar regions of the giant planets: both demonstrate enhanced PH3 at the equator, depletion over neighbouring equatorial belts and mid-latitude belt/zone structures. Saturn's polar PH3 shows depletion within the hot cyclonic polar vortices. Jovian aerosol distributions are consistent with previous independent studies, and on Saturn we demonstrate that CIRS spectra are most consistent with a haze in the 100-400 mbar range with a mean optical depth of 0.1 at 10 μm. Unlike Jupiter, Saturn's tropospheric haze shows a hemispherical asymmetry, being more opaque in the southern summer hemisphere than in the north. Thermal-IR haze opacity is not enhanced at Saturn's equator as it is on Jupiter.Small-scale perturbations to the mean PH3 abundance are discussed both in terms of a model of meridional overturning and parameterisation as eddy mixing. The large-scale structure of the PH3 distributions is likely to be related to changes in the photochemical lifetimes and the shielding due to aerosol opacities. On Saturn, the enhanced summer opacity results in shielding and extended photochemical lifetimes for PH3, permitting elevated PH3 levels over Saturn's summer hemisphere.  相似文献   

12.
New broadband observations in several passbands between 30 and 500 μm of Mercury, Venus, Mars, Jupiter, Saturn, and Uranus are presented. The best agreement between the data and various thermal models of Mars, Jupiter, and Uranus is obtained with a slightly cooler absolute temperature scale than that previously adopted by Armstrong et al. (1972). The effective temperature of Uranus is 58 ± 2°K, which is in agreement with its solar equilibrium temperature. The existence of an internal energy source of Saturn has been reconfirmed and must lie within the range of 0.9 to 3.2 times the absorbed solar flux. A depression exists in the spectra of Jupiter, Saturn, and Uranus between 80 and 300 μm, which may be a result of NH3 opacity.  相似文献   

13.
《Planetary and Space Science》1999,47(10-11):1225-1242
Infrared spectra of Jupiter and Saturn have been recorded with the two spectrometers of the Infrared Space Observatory (ISO) in 1995–1998, in the 2.3–180 μm range. Both the grating modes (R=150–2000) and the Fabry-Pérot modes (R=8000–30,000) of the two instruments were used. The main results of these observations are (1) the detection of water vapour in the deep troposphere of Saturn; (2) the detection of new hydrocarbons (CH3C2H, C4H2, C6H6, CH3) in Saturn’s stratosphere; (3) the detection of water vapour and carbon dioxide in the stratospheres of Jupiter and Saturn; (4) a new determination of the D/H ratio from the detection of HD rotational lines. The origin of the external oxygen source on Jupiter and Saturn (also found in the other giant planets and Titan in comparable amounts) may be either interplanetary (micrometeoritic flux) or local (rings and/or satellites). The D/H determination in Jupiter, comparable to Saturn’s result, is in agreement with the recent measurement by the Galileo probe (Mahaffy, P.R., Donahue, T.M., Atreya, S.K., Owen, T.C., Niemann, H.B., 1998. Galileo probe measurements of D/H and 3He/4He in Jupiters atmosphere. Space Science Rev. 84 251–263); the D/H values on Uranus and Neptune are significantly higher, as expected from current models of planetary formation.  相似文献   

14.
Chihiro Tao  Sarah V. Badman 《Icarus》2011,213(2):581-592
Planetary aurora display the dynamic behavior of the plasma gas surrounding a planet. The outer planetary aurora are most often observed in the ultraviolet (UV) and the infrared (IR) wavelengths. How the emissions in these different wavelengths are connected with the background physical conditions are not yet well understood. Here we investigate the sensitivity of UV and IR emissions to the incident precipitating auroral electrons and the background atmospheric temperature, and compare the results obtained for Jupiter and Saturn. We develop a model which estimates UV and IR emission rates accounting for UV absorption by hydrocarbons, ion chemistry, and non-LTE effects. Parameterization equations are applied to estimate the ionization and excitation profiles in the H2 atmosphere caused by auroral electron precipitation. The dependences of UV and IR emissions on electron flux are found to be similar at Jupiter and Saturn. However, the dependences of the emissions on electron energy are different at the two planets, especially for low energy (<10 keV) electrons; the UV and IR emissions both decrease with decreasing electron energy, but this effect in the IR is less at Saturn than at Jupiter. The temperature sensitivity of the IR emission is also greater at Saturn than at Jupiter. These dependences are interpreted as results of non-LTE effects on the atmospheric temperature and density profiles. The different dependences of the UV and IR emissions on temperature and electron energy at Saturn may explain the different appearance of polar emissions observed at UV and IR wavelengths, and the differences from those observed at Jupiter. These results lead to the prediction that the differences between the IR and UV aurora at Saturn may be more significant than those at Jupiter. We consider in particular the occurrence of bright polar infrared emissions at Saturn and quantitatively estimate the conditions for such IR-only emissions to appear.  相似文献   

15.
New narrow-band (100 Å) photoelectric slit scan photometry of Uranus has been obtained in the spectral region 6000 to 8500 Å. Coarse radial intensity profiles in seven wavebands are presented. Measurements of the point spread function have been used to partially remove the effects of atmospheric seeing. Restoration of the Uranus image, with a spatial resolution limit ~0″.5 arc, has been achieved by means of analytical Fourier-Bessel inversion. Results of the investigation confirm earlier studies of limb brightening on the Uranus disk. But not all strong CH4 absorption bands are found to exhibit limb brightening. Specifically, the CH4 bands at 8000 and 8500 Å show pronounced apparent limb darkening. Polar brightening may be responsible for the phenomenon. If so, an aerosol haze with a local optical thickness ~0.5 or greater would be required. Visibility of the dense cloud layer located deep in the atmosphere might also cause apparent limb darkening. If so, the maximum permitted [CH4/H2] mixing ratio in the visible atmosphere would correspond to ~3 times the solar value.  相似文献   

16.
We have calculated evolutionary and static models of Jupiter and Saturn with homogeneous solar composition mantles and dense cores of material consisting of solar abundances of SiO2, MgO, Fe, and Ni. Evolutionary sequences for Jupiter were calculated with cores of mass 2, 4, 6, and 8% of the Jovian mass. Evolutionary sequences for Saturn were calculated with cores of mass 16, 18, 20, and 22% of total mass. Two envelope mixtures, representative of the solar abundances were used: X (mass fraction of hydrogen) = 0.74, Y (mass fraction of helium) = 0.24 and X = 0.77 and Y = 0.21. For Jupiter, the observations of the temperature at 1 bar pressure (T1bar), radius and internal luminosity were best fit by evolutionary models with a core mass of ~6.5% and chemical composition of X = 0.77, Y = 0.21. The calculated cooling time for Jupiter is approximately 4.9 × 109 years, which is consistent, within our error bars, with the known age of the solar system. For Saturn, the observations of the radius, internal luminosity and T1BAR can be best fit by evolutionary models with a core mass of ~21% and chemical composition of X = 0.77, Y = 0.21. The cooling time calculated for Saturn is approximately 2.6 × 109 years, almost a factor 2 less than the present age of the solar system. Static models of Jupiter and Saturn were calculated for the above chemical compositions in order to investigate the sensitivity of the calculated gravitational moments, J2 and J4, to the mass of the dense core, T1BAR and hydrogen/helium ratio. We find for Jupiter that a model having a core mass of approximately 7% gives values of J2, J4, and T1BAR that are within observational limits, for the mixture X = 0.77, Y = 0.21. The static Jupiter models are completely consistent with the evolutionary results. For Saturn, the quantities J2, J4, and J6 determined from the static models with the most probable T1BAR of 140°K, using modeling procedures which result in consistent models for Jupiter, are considerably below the observed values.  相似文献   

17.
《Planetary and Space Science》1999,47(10-11):1183-1200
Interior models of Jupiter and Saturn are calculated and compared in the framework of the three-layer assumption, which rely on the perception that both planets consist of three globally homogeneous regions: a dense core, a metallic hydrogen envelope, and a molecular hydrogen envelope. Within this framework, constraints on the core mass and abundance of heavy elements (i.e. elements other than hydrogen and helium) are given by accounting for uncertainties on the measured gravitational moments, surface temperature, surface helium abundance, and on the inferred protosolar helium abundance, equations of state, temperature profile and solid/differential interior rotation. Results obtained solely from static models matching the measured gravitational fields indicate that the mass of Jupiter’s dense core is less than 14 M (Earth masses), but that models with no core are possible given the current uncertainties on the hydrogen–helium equation of state. Similarly, Saturn’s core mass is less than 22 M but no lower limit can be inferred. The total mass of heavy elements (including that in the core) is constrained to lie between 11 and 42 M in Jupiter, and between 19 and 31 M in Saturn. The enrichment in heavy elements of their molecular envelopes is 1–6.5, and 0.5–12 times the solar value, respectively. Additional constraints from evolution models accounting for the progressive differentiation of helium (Hubbard WB, Guillot T, Marley MS, Burrows A, Lunine JI, Saumon D, 1999. Comparative evolution of Jupiter and Saturn. Planet. Space Sci. 47, 1175–1182) are used to obtain tighter, albeit less robust, constraints. The resulting core masses are then expected to be in the range 0–10 M, and 6–17 M for Jupiter and Saturn, respectively. Furthermore, it is shown that Saturn’s atmospheric helium mass mixing ratio, as derived from Voyager, Y=0.06±0.05, is probably too low. Static and evolution models favor a value of Y=0.11−0.25. Using, Y=0.16±0.05, Saturn’s molecular region is found to be enriched in heavy elements by 3.5 to 10 times the solar value, in relatively good agreement with the measured methane abundance. Finally, in all cases, the gravitational moment J6 of models matching all the constraints are found to lie between 0.35 and 0.38×10−4 for Jupiter, and between 0.90 and 0.98×10−4 for Saturn, assuming solid rotation. For comparison, the uncertainties on the measured J6 are about 10 times larger. More accurate measurements of J6 (as expected from the Cassini orbiter for Saturn) will therefore permit to test the validity of interior models calculations and the magnitude of differential rotation in the planetary interior.  相似文献   

18.
The Sun's gradual brightening will seriously compromise the Earth'sbiosphere within 109 years. If Earth's orbit migrates outward,however, the biosphere could remain intact over the entiremain-sequence lifetime of the Sun. In this paper, we explore thefeasibility of engineering such a migration over a long timeperiod. The basic mechanism uses gravitational assists to (in effect)transfer orbital energy from Jupiter to the Earth, and therebyenlarges the orbital radius of Earth. This transfer is accomplishedby a suitable intermediate body, either a Kuiper Belt object or a mainbelt asteroid. The object first encounters Earth during an inward passon its initial highly elliptical orbit of large ( 300 AU)semimajor axis. The encounter transfers energy from the object to theEarth in standard gravity-assist fashion by passing close to theleading limb of the planet. The resulting outbound trajectory of theobject must cross the orbit of Jupiter; with proper timing, theoutbound object encounters Jupiter and picks up the energy it lost toEarth. With small corrections to the trajectory, or additionalplanetary encounters (e.g., with Saturn), the object can repeat thisprocess over many encounters. To maintain its present flux of solarenergy, the Earth must experience roughly one encounter every 6000years (for an object mass of 1022 g). We develop the details ofthis scheme and discuss its ramifications.  相似文献   

19.
In a previous paper (Hou et al. in Celest Mech Dyn Astron 119:119–142, 2014a), the problem of dynamical symmetry between two Jupiter triangular libration points (TLPs) with Saturn’s perturbation in the present configuration of the two planets was studied. A small short-time scale spatial asymmetry exists but gradually disappears with the time going, so the planar stable regions around the two Jupiter TLPs should be dynamically symmetric from a longtime perspective. In this paper, the symmetry problem is studied when the two planets are in migration. Several mechanisms that can cause asymmetries are discussed. Studies show that three important ones are the large short-time scale spatial asymmetry when Jupiter and Saturn are in resonance, the changing orbits of Jupiter and Saturn in the planet migration process, and the chaotic nature of Trojan orbits during the planet migration process. Their joint effects can cause an observable difference to the two Jupiter Trojan swarms. The thermal Yarkovsky effect is also found to be able to cause dynamical differences to the two TLPs, but generally they are too small to be practically observed.  相似文献   

20.
We present spectrophotometry in the 27–41 μm spectral region for icy satellites of Saturn (Tethys, Dione, Rhea, Iapetus, and Hyperion) and Jupiter (Europa, Ganymede, and Callisto). The 3.6-μm reflectance peak characteristic of fine-grained water ice is observed prominently on the satellites of Saturn, faintly on the leading side of Europa, and not all on Ganymede, Callisto, or the dark side of Iapetus. The spectral reflectances of these icy satellites may be affected by their equilibrium surface temperatures and magnetospheric effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号