首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Empirical criteria have been used successfully to design filters of most embankment large dam projects throughout the world. However, these empirical rules are only applicable to a particular range of soils tested in laboratory and do not take into account the variability of the base material and filter particle sizes. In addition, it is widely accepted that the safety of fill dams is mainly dependent on the reliability of their filter performance. The work herein presented consists in a new general method for assessing the probability of fulfilling any empirical filter design criteria accounting for base and filter heterogeneity by means of first‐order reliability methods (FORM), so that reliability indexes and probabilities of fulfilling any particular criteria are obtained. This method will allow engineers to estimate the safety of existing filters in terms of probability of fulfilling their design criteria and might also be used as a decision tool on sampling needs and material size tolerances during construction. In addition, sensitivity analysis makes possible to analyse how reliabilities are influenced by different sources of input data. Finally, in case of a portfolio risk assessment, this method will allow engineers to compare the safety of several existing dams in order to prioritize safety investments and it is expected to be a very useful tool to evaluate probabilities of failure due to internal erosion. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Granular filters are an essential component in earth dams to protect the dam core from seepage erosion. This paper uses the particle flow method (PFM) to study the mechanism of particle transport in a base soil–filter system. The distributions of the eroded base-soil particles in different filters are traced and analyzed. The eroded mass and intruding depth of the eroded particles into the filters are obtained under different times and hydraulic gradients. The simulation results show that the eroded mass and intruding depth of the base-soil particles into the filter are related to the representative particle size ratio of the base soil to the filter, hydraulic gradient and erosion time. The numerical predictions are also compared with the empirical filter design criterion. The results show that the particle flow model provides an effective approach for studying the filtration micro-property and the erosion mechanism in a base soil–filter system, which is useful for filter design.  相似文献   

3.
左永振  赵娜 《岩土力学》2020,41(2):520-526
高土石心墙坝的渗透稳定性在很大程度上依赖于反滤层对心墙料的反滤保护作用。心墙在大坝蓄水和长期运行的条件下,要经历复杂的填筑加载、浸水饱和与水荷载的作用,在差异沉降、复杂结构应力作用、水力劈裂和渗透水流作用下,心墙一旦出现裂缝,其渗透稳定性及反滤层的保护作用就将面临严峻的考验。针对这一问题,设计了专门非常规的抛填土料反滤试验和泥浆渗透反滤试验,模拟心墙裂缝条件下其颗粒被冲刷起动后,被反滤料阻挡和淤积过程。试验结果表明,心墙料和反滤料满足反滤准则条件下,心墙颗粒被拦截和淤积在反滤层上游表面,反滤料能有效防止心墙颗粒的流失,反滤层在极端条件下对心墙料仍能起到有效的反滤保护作用。  相似文献   

4.
袁俊平  王启贵 《岩土力学》2015,36(12):3360-3364
心墙是否会发生水力劈裂关系土石坝的安全,该问题的难点和关键之一是水力劈裂的发生机制和条件。利用自制模型,在2种不同加压速率条件下,对有无初始裂缝和5种不同初始裂缝深度的试样进行了水力劈裂试验;结合数值模拟和CT观测试验,验证了水力劈裂的楔劈效应机制-当水压力作用在初始裂缝形成的劈背上,引起劈刃上的力超过临界值时就可能导致发生水力劈裂。研究结果表明:初始裂缝深度越大、加压速率越高,越容易发生水力劈裂。为避免土石坝发生水力劈裂破坏,应注意心墙迎水面的施工质量和平整性,宜采用较慢的蓄水方案。  相似文献   

5.
邹玉华  陈群  谷宏海 《岩土力学》2011,32(7):2177-2183
一般对土石坝进行渗流分析时都未考虑坝体的应力场对渗流场的影响。然而,在土石坝的蓄水过程中,坝体内的应力状态复杂且变化大,对渗流场的影响也较大。因此,忽略应力场对渗流场的影响必然造成一定的误差。用有限元方法对心墙堆石坝体蓄水过程中考虑和不考虑应力场影响的渗流场进行对比分析,计算结果表明,渗流-应力耦合作用下坝体局部压密变形,渗透流速减小,心墙下游出逸区域的水力坡降峰值明显高于非耦合值。因此,渗流分析时有必要考虑应力场的影响,否则会得出偏于危险且对工程不利的结果  相似文献   

6.
堰塞坝是由于崩塌、滑坡、泥石流等形成的天然坝体,不同于人工土石坝,堰塞坝坝体结构松散,颗粒级配不均匀,在较高水头作用下坝体可能发生渗透破坏而导致溃坝,严重威胁下游人民群众的生命及财产安全。由于堰塞坝存在较大粒径颗粒,常规的渗透试验装置难以满足要求,本文研制了直径为60cm的大直径渗透试验仪,进行了不同堰塞坝级配材料的渗透破坏试验,并探讨了堰塞坝体材料渗透特性的主要影响因素。研究发现:(1)堰塞坝材料的渗透破坏形式取决于材料级配,粗颗粒含量较多时为管涌破坏,细颗粒含量较多或粒径缺失时为流土破坏;(2)堰塞坝渗透系数随干密度的增大而减小,主要取决于细料填充粗料孔隙的程度,单独使用不均匀系数或曲率系数不适用于评价渗透系数的变化;(3)基于试验数据提出了用于堰塞坝渗流破坏形式的判别公式,并推导出堰塞坝管涌破坏的临界水力坡降计算公式。  相似文献   

7.
Micromechanical assessment of an internal stability criterion   总被引:1,自引:1,他引:0  
The internal stability of a soil is a measure of its susceptibility to suffusion and suffosion, two forms of internal erosion. The internal stability of granular filters must be carefully considered when designing new embankment dams and assessing the risk associated with existing embankment dams. Current guidelines for assessing the internal stability of such filters were empirically derived from macroscale observations and consider the shape of the particle-size distribution curve. These guidelines lack a fundamental, scientific micromechanical basis. The initiation and propagation of internal erosion is clearly a particle-scale phenomenon, and this paper applies particulate mechanics to provide a micromechanical justification for one currently used stability criterion. The study used discrete element simulations of idealised virtual soil samples that had various degrees of internal stability when assessed using the criterion proposed by Kézdi [10]. The internal topologies of stable and unstable samples were analysed by considering the distributions of inter-particle contact forces, the number of particle–particle contacts and the average particle stresses. Clear correlations are observed between the filter stability criterion and the average number of contacts per particle and the probability that a given particle participates in stress transmission. The phenomenon of a critical fines content, at which the existing guidelines are no longer considered to be valid, is also considered.  相似文献   

8.
Cheapest and simplest techniques of filtration systems are required for rural water treatment in developing countries. Using a filter made of blocks for the water treatment enables us to make porous concrete filter and use it vertically. It is expected that the required area would decrease by more than 70 % if porous concrete filters were used vertically. The operation and backwash mode would be simpler than using horizontal sand filters as filters made of blocks would be used instead. The feasibility study focused on finding adequate materials, compositions and methods of making a block with enough resistance to water pressure, sufficient porosity for water transformation and using inexpensive and available materials. A pilot study was performed to determine an appropriate thickness of filter. Testing the porous filter in another pilot study using the low overflow rate of river water showed biological growth in that media and an adequate efficiency of about 90–100 % was obtained for decreasing the coliform bacteria. The required backwash water was 2.9 % of total treated water.  相似文献   

9.
We present a spatially explicit global overview of nearshore coastal types, based on hydrological, lithological and morphological criteria. A total of four main operational types act as active filters of both dissolved and suspended material entering the ocean from land: small deltas (type I), tidal systems (II), lagoons (III) and fjords (IV). Large rivers (V) largely bypass the nearshore filter, while karstic (VI) and arheic coasts (VII) act as inactive filters. This typology provides new insight into the spatial distribution and inherent heterogeneity of estuarine filters worldwide. The relative importance of each type at the global scale is calculated and types I, II, III and IV account for 32%, 22%, 8% and 26% of the global coastline, respectively, while 12% have a very limited nearshore coastal filter. As an application of this typology, the global estuarine surface area is re-estimated to 1.1 × 106 km2 instead of 1.4 × 106 km2 in earlier work.  相似文献   

10.

Filters managed in zoned dams are designed according to criteria based on the grain size distribution of both filter and eroded soil. However, the constriction size distribution of the filter is the key parameter which governs the filter retention process of flowing eroded particles. To assess the filter efficiency regarding eroded particles, several filters and base soils are tested in a vertical cell with a configuration coupling erosion and filtration processes. For setting the boundary condition of eroded particles at the filter inlet, hole erosion test (HET) was performed on the base soil. The investigation of the evolution of filter behavior shows that the void ratio and the grain shape are of a great influence on filter efficiency. A new approach of filter clogging was proposed by evaluating a damage index which is affected by various parameters such as the ratio D15/d85 and the size of eroded particles. An approach linking the geometrical parameters (damage index) to the hydraulic conductivity leads to an estimation of the filter performance which provides a more quantifiable and realistic criterion. The results indicate that even existing criteria were not met; the tested filters remain efficient as regards to experimental data. An analytical approach based on constrictions size distribution was used and pore reduction was matched with experimental results.

  相似文献   

11.
A model has been constructed to study water flow in a single clay crack, and a new concept of the critical rise rate of water level in the crack has been put forward. When the water level rises faster than this critical rate, the flow in a crack will increase, and vice versa. The flow in a crack is not in proportion to the water level. The maximium water flow in clay is 30-40 times smaller than that in a rock fissure under the same condition. In the process of water discharge, the flow in a crack will lessen gradually, and the crack will grow narrower by 3.0-4.0cm, with its depth reducing by over 50%.  相似文献   

12.
杨艳  周伟  常晓林  花俊杰 《岩土力学》2012,33(8):2513-2520
目前针对堆石或土石坝的心墙水力劈裂问题虽然已取得了不少成果,但现有的成果大多从宏观的角度进行研究,对心墙水力劈裂发生机制的认识尚未达成一致的观点。采用颗粒流方法从细观角度对心墙水力劈裂问题进行初步研究,模拟了心墙水力劈裂发生和发展的过程。计算结果表明,劈裂水压力Pf随着竖向应力的增大而增大,且两者基本呈线性关系,与室内成果的规律基本一致;心墙在高水力梯度作用下,形成的水楔效应降低了裂缝尖端区附近的最大主应力,当该值小于或接近心墙上游的外水压力时则会导致水力劈裂的发生。此外,计算结果还证明了心墙发生水力劈裂的主要力学原因是由于心墙中的张拉应力超过了土体的抗拉强度。  相似文献   

13.
海堤土工织物滤层的探讨   总被引:2,自引:0,他引:2  
章香雅  朱奚冰  孙元元 《岩土力学》2005,26(12):1941-1944
研究了波动水流对海堤织物滤层的水力要素及过滤机理。粒径小于0.6 mm颗粒间存在粘着力;同时,由于滤层和堤体的渗透流速不一致,则堤体界面的土颗粒将受水流剪应力的作用。在分析了使土颗粒发生变形的水流剪应力、变形土体周壁的屈服应力和波浪压力等后,根据平衡原理,建立了织物滤层的保土性准则。  相似文献   

14.
Two proposed quartz fibrous filters with dissimilar solid volume fractions and thicknesses are investigated for their efficiency in removing soot aerosol particles from air. Soot particles are sourced from a candle burning in a chamber, and the tests involve 1.5 h of continuous loading of particles at three different flow rates: 4.5, 8.15 and 9.55 l/min. The fractional efficiency, morphology and pressure drop of both clean and loaded filters are studied using a scanning mobility particle sizer, scanning electron microscope and differential pressure gauge. Both filters have relatively similar levels of efficiency 93% for particle size (100–400 nm) at the lowest flow rate. At higher flow rates, the re-entrainment process effects the filtration efficiency of both filters. At the higher flow rate of 8.15 l/min, the filter with a higher solid volume fraction and thickness shows a higher pressure drop and an efficiency level of 95%. Increasing the flow rate to 9.55 l/min helps to pass the particles with diameters larger than 100 nm through two filters. This phenomenon decreases the fractional efficiency of both filters during the loading time.  相似文献   

15.
Shan  Yibo  Chen  Shengshui  Zhong  Qiming  Mei  Shengyao  Yang  Meng 《Landslides》2022,19(6):1491-1518

The existing empirical models do not consider the influence of material composition of landslide deposits on the peak breach flow due to the uncertainty in the material composition and the randomness of its distribution. In this study, based on the statistical analyses and case comparison, the factors influencing the peak breach flow were comprehensively investigated. The highlight is the material composition-based classification of landslide deposits of 86 landslide cases with detailed grain-size distribution information. In order to consider the geometric morphology of landslide dams and the potential energy of dammed lakes, as well as the material composition of landslide deposits in an empirical model, a multiple regression method was applied on a database, which comprises of 44 documented landslide dam breach cases. A new empirical model for predicting the peak breach flow of landslide dams was developed. Furthermore, for the same 44 documented landslide dam failures, the predicted peak breach flow obtained by using the existing empirical models for embankment and landslide dams and that obtained by using the newly developed model were compared. The comparison of the root mean square error (Erms) and the multiple coefficient of determination (R2) for each empirical model verifies the accuracy and rationality of the new empirical model. Furthermore, for fair validation, several landslide dam breach cases that occurred in recent years in China and have reliable measured data were also used in another comparison. The results show that the new empirical model can reasonably predict the peak breach flow, and exhibits the best performance among all the existing empirical models for embankment and landslide dam breaching.

  相似文献   

16.
阐述了毛管水对土体强度、变形和渗流的影响。粉性土既有较高的毛管水头,又有一定的渗透性,水压传递快;毛管水对此类土的地基、基坑和堤坝等工程有明显的影响。研究的主要成果有:①根据试样浸水与否的无侧限抗压强度比较试验及理论分析,证明毛管水张力增高了土体强度,强度增高的数值,试验结果和理论分析相符;②计算分析雨季粉性土地表层毛管水张力消失和土体膨胀的过程;③借砂模试验和电拟试验,分析了毛管水对堤坝渗流流态的影响,毛管水增高了渗流量和出逸点高度;④提出了砂土和粉性土毛管水头hc和渗透系数k新的经验计算式。研究成果可应用于粉性土地基、基坑和堤坝等工程。  相似文献   

17.
The behaviour of an embankment built on a Portuguese soft soil is analysed considering the material and geometric non-linearity associated with a coupled soil–water formulation. The numerical predictions are compared with the field data in terms of settlements, horizontal displacements and excess pore water pressures. The repercussions of including the large displacements formulation are also studied. It is found that the analysis considering large displacements results in a decrease in settlements and an increase in the rate of excess pore pressure dissipation, both of which are related to the reduction of the thickness of a deformable layer.  相似文献   

18.
Homogeneous earth dams that are waterproofed with geomembranes are a suitable option for storing water and other sorts of liquids, like leachates from landfills. Such dams do not require complicated engineering technical calculations, their cost is usually low and they are not difficult to construct. To ensure the geotechnical safety of the dam, the slopes of the embankment must be correctly designed and constructed. This paper provides a set of nomograms which allow the user to get the safety factor of the slopes immediately. In some cases, it is only necessary to know previously the material classification according to the Unified Soil Classifications System. From this information it can be determined whether the material is appropriate or not. If the material classification is not available, geotechnical data of the material used in the construction of the embankment are needed. Examples of the application of nomograms are presented. Secondly, the paper includes a set of equations to calculate quickly the safety factor of a slope of earth upper than 7.5 m height.  相似文献   

19.
Dispersive soils have become common materials for the construction industry. Highly susceptible to internal erosion and piping, dispersive soils must only be used with specific engineering measure in order to avoid failures that were often catastrophic. In an earth dam, clayey soils are used for the core and sandy materials are used for the filter to retain the eroded core soils and prevent their migration. In the absence of first-rate core material, dispersive soils have been used instead. This paper provides a review of the current knowledge and experiences regarding filtration of core soils, particularly the dispersive ones. The engineering problems associated with the use of dispersive soils are discussed and significant findings from previous studies on protective filters are summarized. It is worthy to note that the current review considers both, the conventional, rather empirical filter design criteria based on particle sizes and the current, quite theoretical state-of-the-art filter design criteria based on constriction sizes, with discussion given on the advantages and disadvantages of both. The information provided by this review should be handy for the study, design, construction, and operation of related geotechnical and geo-environmental projects.  相似文献   

20.
Because of the relatively low soil moisture in arid or semi-arid regions, water vapour movement often predominates in the vadose zone and affects the partitioning of energy among various land surface fluxes. In an outdoor sand bunker experiment, the soil water content at 10 and 30 cm depth were measured at hourly intervals for 2.5 days during October 2004. It was found that the soil moisture reached the daily maximum value (5.9–6.1% at 10 cm and 11.9–13.1% at 30 cm) and minimum value (4.4–4.5% at 10 cm and 10.4–10.8% at 30 cm) at midday (0–1 p.m. for 10 cm and 2–3 p.m. for 30 cm) and before dawn (2–3 a.m. for 10 cm and 4–5 a.m. for 30 cm), respectively. The modified HYDRUS-1D code, which refers to the coupled water, water vapour and heat transport in soil, was used to simulate the moisture and water vapour flow in the soil. The numerical analyses provided insight into the diurnal movement of liquid water and water vapour driven by the gradients of pressure heads and temperatures in the subsurface zone. The simulated temperature and water content were in good agreement with the measured values. The spatial–temporal distribution of liquid water flux, water vapour flux and soil temperature showed a detailed diurnal pattern of soil water dynamics in relatively coarse sand. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号