首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The El Sibai area of the Central Eastern Desert (CED) of Egypt consists of an ophiolitic association of arc metavolcanics, ophiolitic rocks, mélange, metasediments and minor mafic intrusions; and a gneissic association of amphibolite, gneissic diorite, tonalite, granodiorite and granite. Previous studies of the El Sibai area have identified the gneissic association as a lower crustal infrastructure in sheared contact with upper crustal ophiolitic association suprastructure, and have presented it as an example of a metamorphic or magmatic core complex. Detailed structural remapping of the El Sibai area reveals that the gneissic association rocks are not infrastructural but form a unit within the ophiolitic association nappes. Furthermore, the El Sibai structure is not domal in shape, and is not antiformal. The main gneissic association rocks are tabular intrusions roughly concordant with the shears dividing the ophiolitic association into nappes, and are syn-kinematic with the nappe stacking event (∼700–650 Ma). The gneissic granite tabular intrusions and their ophiolitic host were later folded about upright NW–SE trending mainly open folds during a NE–SW directed shortening event (∼625–590 Ma). Subsequently, NW–SE regional extension effects became evident including low angle normal ductile shear zones and mylonites. The latest gneissic red granites are syn-kinematic with respect to these shear zones. Probably continuing from the low-angle shearing event were steep normal faults, and sinistral WNW and N–S trending transcurrent faults (∼590–570 Ma). The normal faults mark the southeastern and maybe also the northwestern limits of the El Sibai gneissic association rocks. The El Sibai complex is not a core complex, but exemplifies the overlap of NW–SE folding and NW–SE extensional which is a significant theme of CED regional structure.  相似文献   

2.
Minor folds formed synchronous with ductile deformation in high strain zones can preserve a record of the scale and kinematics of heterogeneous flow. Using structures associated with WNW-directed Caledonian thrusting in N Scotland, we show that localised perturbations in flow resulted in the generation of predominantly cylindrical minor folds with hinges lying at low angles to the transport direction. These define a series of larger-scale fold culminations (reflecting ‘surging flow’) or depressions (reflecting ‘slackening flow’) that are bisected by transport-parallel culmination and depression surfaces. The fold patterns suggest a dominance of layer-normal differential shearing due to gradients in shear strain normal to transport. Culmination surfaces are marked by along-strike reversals in the polarity of structural facing and vergence of minor folds which, contrary to classic fold patterns, define reverse asymmetric relationships. Culmination surfaces separate folding in to clockwise (Z folds) and anticlockwise (S folds) domains relative to the transport lineation. The dip of fold axial planes systematically increases as their strike becomes sub-parallel to transport resulting in a 3D statistical fanning arrangement centred about the transport direction. Thus, mean S- and Z-fold axial planes intersect precisely parallel to the transport lineation and potentially provide a means of determining transport directions in cases where lineations are poorly preserved. Culminations display convergent fold patterns with fold hinges becoming sub-parallel to transport towards the culmination surface and underlying detachment, whilst axial planes define overall concave up listric geometries which are bisected by the culmination surface. Thus, around culminations and depressions there are ordered, scale-independent relationships between transport direction, shear sense, fold facing, vergence and hinge/axial plane orientations. The techniques described here can be applied and used predictively within any kinematically coherent system of ductile flow.  相似文献   

3.
STRUCTURAL EVOLUTION OF THE KULU-RAMPUR AND LARJI WINDOW ZONES, WESTERN HIMALAYA, INDIA  相似文献   

4.
More than 1400 km of two-dimensional seismic data were used to understand the geometries and structural evolution along the western margin of the Girardot Basin in the Upper Magdalena Valley. Horizons are calibrated against 50 wells and surface geological data (450 km of traverses). At the surface, low-angle dipping Miocene strata cover the central and eastern margins. The western margin is dominated by a series of en echelon synclines that expose Cretaceous–Oligocene strata. Most synclines are NNE–NE trending, whereas bounding thrusts are mainly NS oriented. Syncline margins are associated mostly with west-verging fold belts. These thrusts started deformation as early as the Eocene but were moderately to strongly reactivated during the Andean phase. The Girardot Basin fill records at least four stratigraphic sequences limited by unconformities. Several periods of structural deformation and uplifting and subsidence have affected the area. An early Tertiary deformation event is truncated by an Eocene unconformity along the western margin of the Girardot Basin. An Early Oligocene–Early Miocene folding and faulting event underlies the Miocene unconformity along the northern and eastern margin of the Girardot Basin. Finally, the Late Miocene–Pliocene Andean deformation folds and erodes the strata along the margins of the basin against the Central and Eastern Cordilleras.  相似文献   

5.
Low-grade metamorphic rocks of Paleozoic–Mesozoic age to the north of Konya, consist of two different groups. The Silurian–Lower Permian Sizma Group is composed of reefal complex metacarbonates at the base, and flyschoid metaclastics at the top. Metaigneous rocks of various compositions occur as dykes, sills, and lava flows within this group. The ?Upper Permian–Mesozoic age Ardicli Group unconformably overlies the Sizma Group and is composed of, from bottom to top, coarse metaclastics, a metaclastic–metacarbonate alternation, a thick sequence of metacarbonate, and alternating units of metachert, metacarbonates and metaclastics. Although pre-Alpine overthrusts can be recognized in the Sizma Group, intense Alpine deformation has overprinted and obliterated earlier structures. Both the Sizma and Ardicli Groups were deformed, and metamorphosed during the Alpine orogeny. Within the study area evidence for four phases of deformation and folding is found. The first phase of deformation resulted in the major Ertugrul Syncline, overturned tight to isoclinal and minor folding, and penetrative axial planar cleavage developed during the Alpine crustal shortening at the peak of metamorphism. Depending on rock type, syntectonic crystallization, rotation, and flattening of grains and pressure solution were the main deformation mechanisms. During the F2-phase, continued crustal shortening produced coaxial Type-3 refolded folds, which can generally be observed in outcrop with associated crenulation cleavage (S2). Refolding of earlier folds by the noncoaxial F3-folding event generated Type-2 interference patterns and the major Meydan Synform which is the largest map-scale structure within the study area. Phase 3 structures also include crenulation cleavage (S3) and conjugate kink folds. Further shortening during phase 4 deformation also resulted in crenulation cleavage and conjugate kink folds. According to thin section observations, phases 2–4 crenulation cleavages are mainly the result of microfolding with pressure solution and mineral growth.  相似文献   

6.
An assessment of the southern Betsimisaraka Suture (B.S.) of southeastern Madagascar using remote sensing and field investigation reveals a complex deformation history. Image processing of Landsat ETM+data and JERS-I Synthetic Aperture Radar (SAR) imagery was integrated with field observations of structural geology and field petrography. The southern B.S. divides the Precambrian basement rocks of Madagascar in two parts. The western part includes Proterozoic rocks whereas the eastern part is an Archean block, named the Masora block. The southern part of the B.S. includes high-grade metamorphic rocks, recording strong deformation and has mineral deposits including chromite, nickel, and emerald, characteristic of oceanic material that is compatible with a suture zone.Large-scale structural features indicate ductile deformation including three generations of folding (F1, F2, and F3) associated with dextral shearing. The first folding event (F1) shows a succession of folds with NE striking axial planes. The second folding event (F2) mainly has north–south striking axial planes and the last event (F3) is represented by mega folds that have ENE–WSW axial plane directions and have NNW and SSE contractional strain patterns. Closure of the Mozambique Ocean between two components of Gondwana sandwiched rocks of the B.S. and formed upright folds and shortening zones which produced N–S trending lineaments. Later dextral movements followed the contraction and formed NW–SE trending lineaments and N–S trending normal faults associated with dextral strike slip faults and fractures.  相似文献   

7.
The banded iron-formation in the southeastern Bababudan Hills display a macroscopic synformal bend gently plunging towards WNW. The bedding planes in smaller individual sectors show a cylindrical or conical pattern of folding. The dominant set of minor folds has WNW-ESE trending axial planes and the axes plunge towards WNW at gentle to moderate angles, though there is considerable variation in orientation of both axes and axial planes. A later set of sporadically observed folds has N-S trending axial planes. The macroscopic synformal bend within the study area forms the southeastern corner of a horseshoe shaped regional synformal fold closure which encompasses the entire Bababudan range. The minor folds are buckle folds modified to a varying extent by flattening. In some examples the quartzose layers appear to be more competent than the ferruginous layers; in others the reverse is true. The folds are frequently noncylindrical and the axes show curvature with branching and en echelon patterns. Such patterns are interpreted to be the result of complex linking of progressively growing folds whose initiation is controlled by the presence of original perturbations in the layers. Domes and basins have at places developed as a result of shortening along two perpendicular directions in a constrictional type of strain. Development of folds at different stages of progressive deformation has given rise to nonparallelism of fold axes and axial planes. The axes and axial planes of smaller folds developed on the limbs of a larger fold are often oriented oblique to those of the latter. Progressive deformation has caused rotation and bending of axial planes of earlier formed folds by those developed at later stages of the same deformational episode. Coaxial recumbent to nearly reclined fold locally encountered on the N-S limb of the macroscopic fold may belong to an earlier episode of deformation or to the early stage of the main deformation episode. The E-W to ESE-WNW strike of axial plane of the regional fold system in the Bababudan belt contrasts with the N-S to NNW-SSE strike of axial planes of the main fold system in the Chitradurga and other schist belts of Karnataka.  相似文献   

8.
Inliers of 1.0–1.3 Ga rocks occur throughout Mexico and form the basement of the Oaxaquia microcontinent. In the northern part of the largest inlier in southern Mexico, rocks of the Oaxacan Complex consist of the following structural sequence of units (from bottom to top), which protolith ages are: (1) Huitzo unit: a 1012±12 Ma anorthosite–mangerite–charnockite–granite (AMCG) suite; (2) El Catrı́n unit: ≥1350 Ma orthogneiss migmatized at 1106±6 Ma; and (3) El Marquez unit: ≥1140 Ma para- and orthogneisses. These rocks were affected by two major tectonothermal events that are dated using U–Pb isotopic analyses of zircon: (a) the 1106±6 Ma Olmecan event produced a migmatitic or metamorphic differentiation banding folded by isoclinal folds; and (b) the 1004–978±3 Ma Zapotecan event produced at least two sets of structures: (Z1) recumbent, isoclinal, Class 1C/3 folds with gently NW-plunging fold axes that are parallel to mineral and stretched quartz lineations under granulite facies metamorphism; and (Z2) tight, upright, subhorizontal WNW- to NNE-trending folds accompanied by development of brown hornblende at upper amphibolite facies metamorphic conditions. Cooling through 500 °C at 977±12 Ma is documented by 40Ar/39Ar analyses of hornblende. Fold mechanisms operating in the northern Oaxacan Complex under Zapotecan granulite facies metamorphism include flexural and tangential–longitudinal strain accompanied by intense flattening and stretching parallel to the fold axes. Subsequent Phanerozoic deformation includes thrusting and upright folding under lower-grade metamorphic conditions. The Zapotecan event is widespread throughout Oaxaquia, and took crustal rocks to a depth of 25–30 km by orogenic crustal thickening, and is here designated as Zapotecan Orogeny. Modern analogues for Zapotecan granulite facies metamorphism and deformation occur in middle to lower crustal portion of subduction and collisional orogens. Contemporaneous tectonothermal events took place throughout Oaxaquia, and in various parts of the Genvillian orogen in Laurentia and Amazonia.  相似文献   

9.
A multiple-deformation sequence is established for different types of gneisses, mafic-paleosomes and banded magnetite quartzites (BMQ) exposed within the area. In gneisses, the basin-shaped map pattern represents the type-i interference structure formed due to the overprinting of F3 folds with ENE striking axial planes on F2 folds with axial planes striking NNW. The BMQ band occurring as an enclave within the gneissic country, represents a large scale F1 fold with relatively smaller scale F2 folds developed on its limbs. Mafic-paleosomes within the streaky-charnockitic-gneisses exhibit structures formed due to the interference of more than two phases of folding (F1,Fla,F2,F3). It is shown that the deformation plan in these rocks is consistent with the generalized deformation scheme for Granite-greenstone belts. The difference in the map pattern of Granite-greenstone belts and Granulite-charnockite terrains is ascribed to the variance in Theological properties, layerthickness ratios and local displacement directions during different phases of folding. These differences apart, both the Granite-greenstone and Granulite-charnockite provinces in South India are deformed by an early isoclinal folding which is successively overprinted by folding on NNW and ENE striking axial planes.  相似文献   

10.
大别-苏鲁造山带不同岩片(块)经历了不同的褶皱变形.榴辉岩块(或透镜体)和硬玉石英岩片经历了高压-超高压背景下的两幕褶皱变形之后,在区域性第一幕变形期间主要发生透镜化为主,后期与围岩共同经历紧闭同斜第二幕褶皱.而其它岩片主要经历了现今野外可见的区域性三幕褶皱,其中区域性第一幕褶皱为片内残留褶皱,在斜长角闪岩透镜体中多见,宏观规律不明.区域性第二幕褶皱在露头尺度多见,轴面为折劈理,局部强烈置换成片理化带(复合片理或第二期片理),恢复第三幕褶皱改造作用后,揭示出各种岩片中的各级尺度的第二幕褶皱都为轴面北西倾南东倒、轴迹走向为NNE向的紧闭不对称褶皱,不对称性一致反映其指向与各种岩片向南东的逆冲运动有关.第三幕褶皱为以片理或折劈理为变形面的宽缓褶皱,轴迹走向NWW,枢纽向西倾伏.韧性剪切带为非透入性构造,分早晚两期,早期为韧性逆冲,新县穹隆以南,运动学标志指示向北逆冲,错切第二幕褶皱,结合新县穹隆北部向南的逆冲特征,反映这些韧性逆冲断层多数为第二幕大型褶皱翼部的次级逆冲断层;晚期为韧性滑脱带,其发育局限于几个岩性差异较大的接触带,带内伸展型折劈理发育,并对挤压构造样式有重要的改造作用.华北克拉通东部地块是华北克拉通的重要组成,其盖层古生界和三叠系在印支运动期间经历了一幕宽缓褶皱作用,其轴迹方向主体也为NWW向.这一褶皱构造明显在变形时间、变形样式和展布方向上都和大别-苏鲁造山带中的第三幕褶皱非常一致,说明它们具有动力学上的必然联系.同时,研究表明在华北克拉通东部地块中没有经历大别-苏鲁造山带中区域性第一、第二幕褶皱变形的记录,故本文认为印支期这两幕变形主要发生在华北板块东南缘的边界上,并没有波及到板内,而且从东向西高压-超高压岩石剥露具有穿时性.只有当华北板块和华南板块在第二幕变形之后构成了统一块体后,第三幕变形才波及华北板内.  相似文献   

11.
The main aims of this study are to show (i) that non-cylindrical three-dimensional (3D) fold shapes and patterns can form during a single, unidirectional shortening event and (ii) that numerical reverse modeling of 3D folding is a feasible method to reconstruct the formation of 3D buckle-folds. 3D viscous (Newtonian) single-layer folding is numerically simulated with the finite element method to investigate the formation of fold shapes during one shortening event. An initially flat layer rests on a matrix with smaller viscosity and is shortened in one direction parallel to the layering. Forward modeling with different initial geometrical perturbations on the flat layer and different lateral boundary conditions generates non-cylindrical 3D fold shapes and patterns. The simulations show that, in reality, the initial layer geometry and the boundary conditions strongly control the final fold geometry. Fold geometries produced from the forward folding models are used as initial setting in numerical reverse folding models with parameters identical to those of forward models. These reverse models accurately reconstruct the initial geometry of forward models with also only one extension event parallel to the previous shortening direction. The starting geometry of the forward models is inaccurately reconstructed by the reverse models if a significantly different viscosity ratio than in the forward models is used. This work demonstrates that reverse modeling has a high potential for reconstructing the deformation history of folded regions and rheological constraints such as viscosity ratio. Reverse models may be applied to natural 3D fold shapes and patterns in order to determine if they formed (i) during a single or multiple deformation events and (ii) as active buckle-folds with a viscosity ratio 1 or as passive, kinematic folds without buckling. This approach may find much application to fold interference patterns, in particular.  相似文献   

12.
雪峰山早中生代构造演化:构造学和年代学分析木   总被引:1,自引:0,他引:1       下载免费PDF全文
雪峰山主体地处湖南省境内,位于华南板块的中心区域,是一条典型的陆内造山带.通过详细的野外地质观察,我们将其分为3个构造单元:西部外区,主要以大型箱状褶皱为主;中部区,与西部区以主逆冲断层相分隔,劈理发育呈扇状,是雪峰山构造带的核心区域,也是变质级别最深、变形最强的区域;东部区,变形集中在脆韧性区域之上,以极性北西构造为...  相似文献   

13.
Superposition, mainly of two Eoalpine (Cretaceous) deformation events, can be observed in vertical sections and horizontal traverses throughout a decollement zone in the Eastern Alps consisting of crystalline basement and autochthonous and allochthonous cover stacked in several nappes. The first event is an episode with a non-coaxial strain history caused by W-directed thrusting, the second a N-directed shortening by folding and fold imbrication. Strain analysis based both on deformed pebbles and on the preferred orientation of phyllosilicate grains (March theory), microfabric analysis, and observations of the relative timing of deformation and metamorphism, together indicate that the superposition of structures caused by the two events amounts to one continuous, progressive act of deformation. We attribute gradual and consistent variations in intensity and axial ratio of the tectonic strain to a history influenced by: (a) the position of samples in the pile; (b) the relative importance of the strain increments caused by the two events; and (c) rock ductility. We interpret variations of the c-axis fabrics of quartz in the same way, and draw tentative kinematic conclusions for the Eoalpine orogeny in the Eastern Alps.  相似文献   

14.
Polyphase deformation chronologies established within the mid-crustal portions of orogenic belts have classically been attributed to regional-scale ‘events’ which generate distinct structural sequences that can be directly correlated across large tracts of the orogenic belt. However, concepts of progressive deformation in which minor structures may be continually generated, amplified and redeformed within a unifying kinematic framework suggest that regional correlation of minor structures is both misguided and misleading. Detailed structural analysis of lower amphibolite facies Dalradian metasediments in north-west Ireland does, however, demonstrate that a coherent and meaningful deformation chronology can be established within the framework of individual fold nappes. Protracted deformation has resulted in the generation of a series of overprinting, secondary structures (D4–D9), which are kinematically linked to the continued structural evolution and south-east directed translation of the crustal-scale (D3) Ballybofey (fold) Nappe. Secondary (D4) crenulation axes initiated at an oblique angle to the direction of nappe transport both rotate and amplify into larger scale folds, which are subparallel to transport and demonstrate successive stages of diachronous folding. Continued nappe-related deformation induces southwards verging contractional (D5) folds, which are particularly well developed and focused into reactivated ductile (D3) thrust zones generated during the initial stages of nappe translation. Subsequent to thickening-induced ductile extension and collapse of the nappe, a return to contractional tectonics is marked by major episodes of broad, open buckle folding developed orthogonal to both the overturned limb (D7) and upper limb (D8) of the nappe. Detailed structural analysis and investigation of secondary folds and overprinting fabrics provides a valuable insight into the protracted kinematic evolution of major fold nappes.  相似文献   

15.
Low grade metasediments and metavolcanics of the Hill End Synclinorial Zone within the Rockley district, NSW have experienced two phases of macroscopic folding (D1 and D2), both of which are post‐latest Silurian in age. No hiatus is evident between D1 and D2. D1 produced large Fi folds (λ/2 usually > 2 km) lacking mesoscopic elements and having variable axial trends. D2 was associated with the development of regional slaty cleavage (S2) and mesoscopic folds which are parasitic on plunging macroscopic F2 folds (λ/2=0.4–2 km). D2 strain is variable, being most intense in the north of the district where slaty cleavage and tight mesoscopic F2 folds are well developed, and weakest in the south where mesoscopic folds are absent or usually gentle and cleavage is often feebly developed even in mica‐rich rocks, which are stratigraphic equivalents to slates and schists in the north. The F1 fold mechanism may involve multiple folding, simultaneous folding in more than one direction, or complex buckling of layers of variable thickness. D1 and D2 are tentatively correlated with folding events elsewhere in the Hill End Synclinorial Zone.  相似文献   

16.
A section through the Neoproterozoic Mozambique Belt of Tanzania exposes western foreland (Archaean Tanzania Craton and Palaeoproterozoic Usagaran Belt), marginal (Western Granulites) and eastern, internal (Eastern Granulites) portions of the orogen. The assembly of granulite nappes at ca. 620 Ma displays westward emplacement along an eastward deepening basal decollement and forward propagation of thrusts, climbing from the deep crust to the surface. This goes along with eastward increase of syntectonic temperatures, derived from prevalent deformation mechanisms, and eastward decrease of the kinematic vorticity number. Distinctly different pressure - temperature paths with a branch of isothermal decompression (ITD) in Western Granulites and isobaric cooling (IBC) in Eastern Granulites reflect residence times of rocks within lower crustal levels. Western Granulites, exhumed rapidly at the orogen margin, display ITD and non-coaxial fabrics. Eastern Granulites in the internal orogen portions escaped from rapid exhumation and show IBC and co-axial flow fabrics. The vertical variation of structural elements, i.e. basement — cover relations within the Eastern Granulites, shows decoupling between lower and middle crust with horizontal west — east stretching in the basement and horizontal west — east shortening in the cover.A model of hot fold nappes [Beaumont, C., Nguyen, M.H., Jamieson, R.A., Ellis, S., 2006. Crustal flow modes in large hot orogens. In: Law, R.D., Searle, M.P., Godin, L., (eds). Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones. Geological Society, London, Special Publications. vol. 268, 91–145] is adopted to explain flow diversity in the deep crust. The lower crust represented by Eastern Granulite basement flowed coaxially outwards (westward) in response to thickened crust and elevated gravitational forces, supported by a melt-weakened, viscous channel at the crustal base. Horizontal flow with rates faster than thermal equilibration gave rise to isobaric cooling. Simultaneously the mid crust (Eastern Granulite cover) was shortened when hot fold nappes moved along upward climbing thrust planes. Western Granulites preserved isothermal decompression through exhumation by thrusting and coeval erosion at the orogen front.Two different styles define the Neoproterozoic East African Orogen between northern Egypt and southern Mozambique. The Arabian Nubian Shield in the north is classified as small and cold orogen in which thin — skinned thrusting was associated with lateral extrusion. The Central Mozambique Belt in Tanzania/Southern Kenya is classified as large and hot orogen characterized by thick-skinned thrusting and assembly of large granulite nappes.  相似文献   

17.
南天山造山带中段推覆体内部变形及其与逆冲构造的关系   总被引:3,自引:0,他引:3  
南天山造山带是古生代期间塔里木板块与伊犁—伊塞克湖板块对接、碰撞的产物 ,主体由向南逆冲的推覆体组成。推覆体内部变形构造在垂直于主断面方向上呈规律性变化。从推覆体底部向上 ,褶皱从 A型褶皱 ,紧闭、等斜的 B型褶皱 ,前翼褶皱经斜歪、倒转褶皱渐变为对称的尖棱或箱状 B型褶皱 ;构造面理从发育主断面近平行的 S-面理及剪切滑移的 C-面理渐变为只发育与主断面近垂直的 D-面理。据此 ,可把推覆体自下而上划分成为递进剪切、过渡和等轴挤压三个变形域。变形过程分析表明 ,存在水平挤压变形和随后的简单剪切变形两个变形阶段 ,前者发育于主断裂面形成之前 ,后者发育于主断裂面形成之后。这指示南天山造山带以变形扩展速率高于断裂扩展速率为特征  相似文献   

18.
Parasitic folds are typical structures in geological multilayer folds; they are characterized by a small wavelength and are situated within folds with larger wavelength. Parasitic folds exhibit a characteristic asymmetry (or vergence) reflecting their structural relationship to the larger-scale fold. Here we investigate if a pre-existing geometrical asymmetry (e.g., from sedimentary structures or folds from a previous tectonic event) can be inherited during buckle folding to form parasitic folds with wrong vergence. We conduct 2D finite-element simulations of multilayer folding using Newtonian materials. The applied model setup comprises a thin layer exhibiting the pre-existing geometrical asymmetry sandwiched between two thicker layers, all intercalated with a lower-viscosity matrix and subjected to layer-parallel shortening. When the two outer thick layers buckle and amplify, two processes work against the asymmetry: layer-perpendicular flattening between the two thick layers and the rotational component of flexural flow folding. Both processes promote de-amplification and unfolding of the pre-existing asymmetry. We discuss how the efficiency of de-amplification is controlled by the larger-scale fold amplification and conclude that pre-existing asymmetries that are open and/or exhibit low amplitude are prone to de-amplification and may disappear during buckling of the multilayer system. Large-amplitude and/or tight to isoclinal folds may be inherited and develop type 3 fold interference patterns.  相似文献   

19.
20.
Axial culminations and depressions of folds are common in regions of superposed deformations involving two sets of folds at high angles to each other. If the intensity of the later folding in these cases exceeds a particular limit, plunge reversal of the early folds gives way to “plunge inversion”. In such instances, segments of early folds rotate through end-on or reclined geometry while being refolded. And instead of plunge reversal at the hinge zones of later folds, the early folds plunge in the same direction in both limbs of the later folds. As a result, an antiform will pass along the axial trend to a synform. A particularly clear instance of plunge inversion has been noted from the “Sawar outlier” comprising a metasedimentary sequence within the older Banded Gneissic Complex in central Rajasthan. In Sawar, the southern segment of a south-southwest-trending synformal early fold has been inverted to attain an antiformal geometry because of superposition of a later fold at high angles to the early fold axes and axial planes. The deformation history of the large-scale folds has been traced and the stratigraphic implications of the plunge inversion discussed. From the movement pattern, it seems justifiable to correlate the metasedimentary sequence of the outlier with the Late Precambrian Delhi Group of parametamorphic rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号