首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gulf sturgeon,Acipenser oxyrinchus desotoi, forage extensively in the Suwannee River estuary following emigration out of the Suwannee River, Florida. While in the estuary, juvenile Gulf sturgeon primarily feed on benthic infauna. In June–July 2002 and February–April 2003, random sites within the estuary were sampled for benthic macrofauna (2002 n = 156; 2003 n = 103). A mean abundance of 2,562 ind m−2 (SE ± 204) was found in the summer, with significantly reduced macrofaunal abundance in the winter (mean density of 1,044 ind m−2, SE ± 117). Benthic biomass was significantly higher in the summer with an average summer sample dry weight of 5.92 g m−2 (SE ± 0.82) compared to 3.91 g m−2 (SE ± 0.67) in the winter. Amphipods and polychaetes were the dominant taxa collected during both sampling periods. Three different estimates of food availability were examined taking into account principal food item information and biomass estimates. All three estimates provided a slightly different view of potential resources but were consistent in indicating that food resource values for juvenile Gulf sturgeon are spatially heterogeneous within the Suwannee River estuary.  相似文献   

2.
 The marine coastal sediments from Togo have been analysed for the trace elements Cd, Cr, Cu, Ni, Pb, Sr, V, Zn and Zr to ascertain the geo-ecological impact of dumping of phosphorite tailings into the sea. Trace element concentrations ranged from 2–44 ppm for Cd, 22–184 ppm for Cu, 19–281 ppm for Ni, 22–176 ppm for Pb, 179–643 ppm for Sr, 38–329 ppm for V, 60–632 ppm for Zn and 18–8928 ppm for Zr. Regional distribution of trace elements in the marine environment indicates that the concentrations of Cr, Cu, Ni, Pb, V, Sr and Zn increase seawards and along the coastal line outwards of the tailing outfall, whereas Cd and Zr showed reversed spatial patterns. Sorting and transport of phosphorite particles by coastal currents are the main factors controlling the distribution of particle-bound trace metals in the coastal environment. The Cd, Sr and Zn concentrations decrease with decreasing grain size in marine coastal sediments, whereas Cr, Cu, Ni and Zn concentrations increase with decreasing grain size. Percolation and shaking experiments were carried out in laboratory using raw phosphate material and artificial sea water. Enhanced mobilization of Cd from phosphorites by contact with the sea water was observed. Received: 11 May 1998 · Accepted: 20 October 1998  相似文献   

3.
The European sturgeon (Acipenser sturio) is an endangered diadromous fish species that spawns in the rivers in late spring and early summer. The juveniles spend their first years in the brackish waters (5‰ to 25‰) of the estuary zone before moving out to sea. This study describes the downstream migration pattern of juvenile sturgeon, belonging to the 1994 cohort, the only one born naturally in the Gironde basin, France since the end of the 1980s. During October 1994 to December 1996 the inland section of the Gironde estuary was sampled monthly by trawl (n=818 tows) and all European sturgeon caught (n=381) were marked and released. The first sturgeon of the 1994 cohort (TL=27 cm) were caught in early March 1995 in the zones furthest upstream. During their second fall of life, juveniles gradually acclimatized, and spread over a wide range of salinity conditions. A first incursion into marine water was also observed (at least for a few fish) by the end of the second winter. During this second period, sturgeon showed preference for two particular zones situated at 18 and 38 km, respectively, from the mouth of the estuary. These zones, belonging to two different salinity sectors of the estuary, did not appear to be any different to their neighbors with regards to depth and type of substrate. There were no significant size differences among estuarine zones. Seasonal movements of sturgeon seem to be motivated by a search for warmer temperatures. After a period of early acclimatization of 15 months, juvenile European sturgeon appear to be highly tolerant of salinity variations.  相似文献   

4.
 This study re-estimates one important component in the global carbon cycle: the modern global fluviatile organic carbon discharge- and burial rates. According to these results, approximately 430×1012 g of terrestrial organic carbon are transported to the ocean in modern times. This amount is higher than the latest estimates but takes into account new data from Oceania not previously considered in global flux studies. However, only the minor amount of 10% or approximately 43×1012 gC year–1 is most likely buried in marine sediments. This amount is similar to the burial of marine organic carbon in the coastal ocean (55×1012 gC year–1). Adding both estimates gives approximately 100×1012 gC year–1, which is the value calculated by Berner (1982) for "terrestrial" deltaic-shelf sediments. However, the results in this study suggest that on a global scale the organic carbon content in coastal ocean sediments is not solely of terrestrial origin but a mixture of nearly equal amounts of marine and terrestrial organic carbon. The major part of the terrestrial organic carbon that enters the ocean by rivers (approximately 400×1012 gC year–1) seems to be either (a) remineralised in the ocean, whereas the mechanism by which the terrestrial organic carbon is oxidised in the ocean are unknown; or (b) is dispersed throughout the oceans and accumulates in pelagic sediments. Received: 9 November 1998 / Accepted: 25 May 1999  相似文献   

5.
A broad-scale survey of seagrass species composition and distribution along Florida's central Gulf Coast (known as the Big Bend region) was conducted in the summer of 2000 to address growing concerns over the potential effects of increased nutrient loading from adjacent coastal rivers. Iverson and Bittaker (1986) originally surveyed seagrass distribution in this region between 1974–1980. We revisited 188 stations from the original survey, recording the presence or absence of all seagrass species. Although factors such as accuracy of station relocation, differences in sampling effort among studies, and length of time between surveys preclude statistical comparisons, several interesting patterns emerged. While the total number of stations occupied by the three most common seagrass species,Thalassia testudinum, Syringodium filiforme, andHalodule wrightii, was similar between the two time periods, we observed a change in the number of records of each species as well as changes in distribution with depth.T. testudinum andHalophila engelmanni occurrence declined in the deepest areas of the region, while the number of stations occupied byS. filiforme andH. wrightii increased in nearby areas. We observed several localized areas of seagrass loss, frequently associated with the mouths of coastal rivers. These results suggest that increased nutrient loading to coastal rivers that discharge into the Big Bend area may be affecting seagrasses by increasing phytoplankton abundance in the water column, thus changing water clarity characteristics of the region.  相似文献   

6.
 Suspended sediment transport effectiveness was examined near the mouths of three large impounded rivers (Rio Grande, Brazos, and Pearl Rivers) in differing precipitation regimes in the U.S. Gulf Coastal Plain. Magnitude and frequency analysis of suspended sediment transport was performed by examining the effectiveness of both discharge and time in transporting suspended sediment. Bivariate plots of discharge with infrequent values of silt/clay and sand provide an insight into the relative proportion of coarse-versus fine-grained sediment transport for the three rivers. Despite the aridity of the Rio Grande and Brazos drainage basins, which is often associated with infrequent or episodic transport of sediment, the duration of the effective discharge is similar to humid basins described in the literature. The majority of sediment transport occurs during the moderate discharge events, having a duration of 2.4%, 1.5%, and 4.4% for the Rio Grande, Brazos, and Pearl Rivers, respectively. This may be due to the influence of scale or the influence of upstream dams and reservoirs on discharge and sediment transport. Findings from this research suggest that magnitude and frequency analysis of discharge and suspended sediment near the mouths of large rivers may provide a useful framework for understanding the timing and delivery of riverine sediments to the nearshore coastal environment from rivers draining a range of geologic and climatic settings. Received: 6 September 1996 · Accepted: 4 February 1997  相似文献   

7.
 Hydrogeologic data of 455 water wells comprising geologic logs, water qualities, and aquifer test results are analyzed to determine hydrogeological characteristics, water quality, and sustainable yield of the groundwater resources of Cheju volcanic island. The groundwater of the island occurs in unconsolidated pyroclastic deposits and clinkers interbedded in highly jointed basaltic and andesitic rocks as high-level, basal, and parabasal groundwater under unconfined conditions. The total storage of groundwater is estimated at about 44 billion m3. The average transmissivity and specific yield of the aquifer are at about 0.34 m2 s–1(29300 m2 day–1) and 0.12, respectively. The average annual precipitation is about 3.39 billion m3, of which 1.49 billion m3– equivalent to 44.0% of the total annual precipitation – is recharged into aquifers, with 0.638 billion m3 year–1 of runoff and 1.26 billion m3 year–1 of evapotranspiration. Based on a groundwater budget analysis, the sustainable yield is estimated at about 0.62 billion m3 year–1, equivalent to 41.6% of annual recharge. A low-permeability marine sedimentary formation (Sehwari formation), composed of loosely cemented sandy silt, was recently found to be situated at 120±68 m below mean sea level. If the said marine sediment is distributed as a basal formation of the freshwater zone of the island, most of its groundwater will be of parabasal type. So the marine sediment is one of the most important hydrogeological boundaries and groundwater occurrences in the area. Received: 16 January 1997 / Accepted: 16 June 1997  相似文献   

8.
 The Valley of Hermosillo coastal aquifer, state of Sonora, northwestern Mexico, has been over-exploited for the last four decades, in order to maintain agricultural activity in one of the most important irrigation districts of the Mexican Republic. The over-exploitation has resulted in the development of several drawdown cones and in the lowering of the water table to as much as 50 m below mean sea level. Contamination of the aquifer in the form of salt-water intrusion from the Gulf of California and high nitrate concentrations is the consequence of human activities. A hydrogeochemical zonation of the aquifer, based on the presence of different water families, led to the identification of a coastal band approximately 30 km wide that is affected by salt-water intrusion. Conductivity of the sampled water and the interpretation of the ratio Na/Cl×1000 was used to identify the location of three major intrusion plumes in this coastal band. The background nitrate contamination of the aquifer is about 4 ppm, but contents as great as about 17 ppm occur in some wells. Irrigation with raw sewage and movement of contaminants in areas of high hydraulic gradients within the drawdown cones probably are responsible for localized peaks of the nitrate concentration. Received, October 1996 Revised, September 1997, May 1998 Accepted, July 1998  相似文献   

9.
The composition and distribution of diatom algae inhabiting estuaries and coasts of the subtropical Americas are poorly documented, especially relative to the central role diatoms play in coastal food webs and to their potential utility as sentinels of environmental change in these threatened ecosystems. Here, we document the distribution of diatoms among the diverse habitat types and long environmental gradients represented by the shallow topographic relief of the South Florida, USA, coastline. A total of 592 species were encountered from 38 freshwater, mangrove, and marine locations in the Everglades wetland and Florida Bay during two seasonal collections, with the highest diversity occurring at sites of high salinity and low water column organic carbon concentration (WTOC). Freshwater, mangrove, and estuarine assemblages were compositionally distinct, but seasonal differences were only detected in mangrove and estuarine sites where solute concentration differed greatly between wet and dry seasons. Epiphytic, planktonic, and sediment assemblages were compositionally similar, implying a high degree of mixing along the shallow, tidal, and storm-prone coast. The relationships between diatom taxa and salinity, water total phosphorus (WTP), water total nitrogen (WTN), and WTOC concentrations were determined and incorporated into weighted averaging partial least squares regression models. Salinity was the most influential variable, resulting in a highly predictive model (r apparent2 = 0.97, r jackknife2 = 0.95) that can be used in the future to infer changes in coastal freshwater delivery or sea-level rise in South Florida and compositionally similar environments. Models predicting WTN (r apparent2 = 0.75, r jackknife2 = 0.46), WTP (r apparent2 = 0.75, r jackknife2 = 0.49), and WTOC (r apparent2 = 0.79, r jackknife2 = 0.57) were also strong, suggesting that diatoms can provide reliable inferences of changes in solute delivery to the coastal ecosystem.  相似文献   

10.
Isothermal thermogravimetric experiments have been carried out to determine the reaction kinetics of the dehydration processes in fuller's earth, a natural Ca-montmorillonite. Dehydration in swelling clays is a complex reaction, and analysis of the thermogravimetric data using empirical rate equations and time-transformation analysis reveals that the nature of the rate controlling mechanism is dependent upon both the temperature regime of the sample as well as the extent of reaction. For fuller's earth, we find that the dehydration kinetics are dominated by a nucleation and growth mechanism at low temperatures and fractions transformed (stage I), but above 90 °C the last stages of the reaction are diffusion controlled (stage II). The activation energy for dehydration during stage I is around 35 kJ · mol−1, whereas the removal of water during stage II requires an activation energy of around 50 kJ · mol−1. These two stages of dehydration are associated with primary collapse of the interlayer (stage I) and movement of water that is hydrated to cations within the interlayer (stage II). Received: 28 August 1998 / Revised, accepted: 27 January 1999  相似文献   

11.
The eastern Alaska Beaufort Sea coast is characterized by numerous shallow (2–5 m) estuarine lagoons, fed by streams and small rivers that drain northward from the Brooks Range through the arctic coastal plain, and bounded seaward by barrier islands and shoals. Millions of birds from six continents nest and forage during the summer period in this region using the river deltas, lagoons, and shoreline along with several species of anadromous and marine fish. We examined biogeochemical processes linking the benthic community to the overall food web structure of these poorly studied but pristine estuaries, which are largely covered by 1.8 m of ice for 10 months annually. In summer, these lagoons are relatively warm with brackish salinities (5–10°C, S = 10–25) compared to more open coastal waters (0–5°C, S > 27). The stable isotopic composition of organic materials in sediments (i.e., benthic particulate organic matter) and water column suspended particulate organic matter from both streams and lagoons are largely indistinguishable and reflect strong terrestrial contributions, based upon δ13C and δ15N values (−25.6‰ to −27.4‰ and 1.4‰ to 3.3‰, respectively). By comparison, shifts toward more heavy isotope-enriched organic materials reflecting marine influence are observed on the adjacent coastal shelf (−24.8‰ to −25.4‰ and 3.4‰ to 5.3‰, respectively). The isotopic composition of lagoon fauna is consistent with a food web dominated by omnivorous detritovores strongly dependent on microbial processing of terrestrial sources of carbon. Biomagnification of 15N in benthic organisms indicate that the benthic food web in lagoons support up to four trophic levels, with carnivorous gastropod predators and benthic fishes (δ15N values up to 14.4‰) at the apex.  相似文献   

12.
Mid-Holocene stable isotope record of corals from the northern Red Sea   总被引:1,自引:0,他引:1  
We present a study based on X-ray chronologies and the stable isotopic composition of fossil Porites spp. corals from the northern Gulf of Aqaba (Red Sea) covering the mid-Holocene period from 5750 to 4450 14C years BP (before present). The stable oxygen and carbon isotopic compositions of five specimens reveal regular annual periodicities. Compared with modern Porites spp. from the same environment, the average seasonal δ 18O amplitude of the fossil corals is higher (by ca. 0.35–0.60‰), whereas annual growth rates are lower (by ca. 3.5 to 2 mm/year). This suggests stronger seasonality of sea surface temperatures and increased variability of the oxygen isotopic composition of the sea water due to changes in the precipitation and evaporation regime during the mid-Holocene. Most likely, summer monsoon rains reached the northern end of the Red Sea at that time. Average annual coral growth rates are diminished probably due to an increased input and resuspension of terrestrial debris to the shallow marine environment during more humid conditions. Our results corroborate published reports of paleodata and model simulations suggesting a northward migration of the African monsoon giving rise to increased seasonalities during the mid-Holocene over northeastern Africa and Arabia. Received: 4 January 1999 / Accepted: 13 September 1999  相似文献   

13.
 Intensive application of surface water in command areas of irrigation projects is creating water logging problems, and the increase of groundwater usage in agriculture, industry and domestic purposes (through indiscriminate sinking of wells) is causing continuous depletion of water levels, drying up of wells and quality problems. Thus the protect aquifers to yield water continuously at economical cost, the management of water resources is essential. Integrated geological, hydrological (surface and groundwater) and geochemical aspects have been studied for the development and management of water resources in drought-prone Cuddapah district. The main lithological units are crystallines, quartzites, shales and limestones. About 91 000 ha of land in the Cuddapah district is irrigated by canal water. A registered ayacut of about 47 000 ha is irrigated by 1368 minor irrigation tanks. A total of 503 spring channels are identified in the entire district originating from the rivers/streams, which has the capacity of irrigating about 8700 ha. The average seasonal rise in groundwater level is 7.32 m in quartzites, 5.35 m in crystallines, 3.82 m in shales, 2.50 m in limestones and 2.11 m in alluvium. Large quantities of groundwater are available in the mining areas which can be utilised and managed properly by the irrigation department/cultivators for the irrigation practices. Groundwater assessment studies revealed that 584 million m3 of groundwater is available for future irrigation in the district. From the chemical analysis, the quality of groundwater in various rock units is within the permissible limits for irrigation and domestic purposes, but at a few places the specific conductance, chloride and fluoride contents are high. This may be due to untreated effluents, improper drainage system and/or the application of fertilisers. Received: 10 June 1998 · Accepted: 15 November 1998  相似文献   

14.
The Massachusetts Water Resources Authority (MWRA) conducts a comprehensive multidisciplinary monitoring program in Massachusetts Bay, Cape Cod Bay, and Boston Harbor to assess the environmental effects of a relocated secondary-treated effluent outfall. Through 2007, 8.7 years of baseline data and 7.3 years of postdiversion data (16 total years), including species level estimates of phytoplankton and zooplankton abundance, have been collected. MWRA’s monitoring program and other studies make this region one of the most thoroughly studied and well-described marine systems in the world. The data show that the diversion of MWRA effluent from the harbor to the bay has decreased nutrients concentrations and improved water quality in the harbor (e.g., higher dissolved oxygen, lower chlorophyll). The diversion also resulted in an increase in dissolved inorganic nutrients (especially ammonium) in the vicinity of the bay outfall, but no obvious impacts such as increased biomass or decreased bottom water dissolved oxygen have been observed. Regional changes in phytoplankton and zooplankton unrelated to the diversion have been seen, and it is clear that the bays are closely connected both physically and ecologically with the greater Gulf of Maine. Direct responses to modifications of the nutrient field within a 10 × 10-km area centered near the midpoint of the 2-km long outfall diffuser in Massachusetts Bay (a.k.a. the nearfield) have not been seen in the plankton community. However, plankton variability in the bays has been linked to large regional to hemispheric scale (NAO) processes.  相似文献   

15.
In this study, environmental magnetic, heavy metal and statistical analyses were conducted on 21 surface sediments collected from Chennai coast, India, to examine the feasibility of heavy metal pollution using magnetic susceptibility. The Chennai coastal sediment samples are dominated by ferrimagnetic minerals corresponding to magnetite-like minerals. The percentage of frequency dependent magnetic susceptibility reflects the presence of super-paramagnetic/single domain magnetic minerals in Chennai harbour, Cooum and Adayar rivers sediments. High pollution load index in sample E1, E2, CH7, C11, C12 and A16 is mainly due to anthropogenic activities such as, harbour activities, Cooum and Adayar rivers input and industrial effluent. Factor analysis shows that the magnetic concentration dependent parameters (χ, χ ARM and SIRM) covary with the heavy metal concentrations, suggesting that the input of magnetic minerals and heavy metals in Chennai coastal sediments are derived from the same anthropogenic sources. Strong correlation obtained between pollution load index (PLI) and concentration dependent parameters (χ, χ ARM and SIRM) for the polluted samples with magnetic susceptibility excess of 50×10 − 8 m3kg − 1. Significant correlations between heavy metals and magnetic susceptibility point out the potential of magnetic screening/monitoring for simple and rapid proxy indicator of heavy metal pollution in marine sediments.  相似文献   

16.
海洋碎屑沉积物的粒度特征是海底沉积动力环境的直接体现,是用来研究海洋动力环境变化的重要手段,尤其是陆架海底表层沉积物的粒度分布,对于研究沿岸和水柱底边界层现今海洋动力环境可起到重要作用。该项研究通过调查遍布泰国湾至湄公河口海底表层沉积物陆源碎屑的粒度分布特征,以期获得影响现今特定海域沉积作用的海洋动力环境过程。粒度分析的结果显示,泰国湾表层沉积物的陆源碎屑以细砂-细粉砂为主,分选总体较差,频率分布以正偏为主。其中,细砂-极细砂组分主要分布在曼谷湾和柬埔寨沿岸。湄公河岸外沉积物为细砂,且分选比泰国湾区域的沉积物要好。这些表层沉积物的粒度特征具有良好的环境变化指示作用。湄公河岸外分选较好、近于正态分布的中砂沉积物指示了波浪作用下的沉积环境。曼谷湾和柬埔寨沿岸分选较差的中砂-细砂粗粒沉积物反映了潮汐和波浪的共同作用;泰国湾东西沿岸区域分选中等、呈正偏态的极细砂-中粉砂沉积物体现了潮汐的控制作用;而泰国湾中部分选较差的沉积物则指示了表层洋流作用。研究表明,泰国湾和湄公河岸外表层沉积物陆源碎屑的粒度分布特征可用于区分不同海洋动力因素的控制作用,揭示出泰国湾的沉积动力环境主要受潮汐、波浪和洋流的共同影响,湄公河岸外的沉积动力环境主要受波浪的影响。  相似文献   

17.
《Earth》2009,92(1-4):27-76
In this study we reconstruct the evolution of the northern New England passive margin whose development has been influenced by Pleistocene glaciations. The morphology of the northern New England shelf is rather unique consisting of a inner lowland, the Gulf of Maine, with an average depth of 150 m and an area of 90,700 km2 and Georges Bank, a high whose crest is less than 40 m deep and has an area of 27,000 km2. The bank's northern slope, facing the Gulf of Maine, has a maximum relief of 377 m. On the seaward side of Georges Bank is the 2000 m high continental slope deeply cut by canyons. Two channels, Northeast and Great South Channels, east and west of Georges Bank, provide passageways from the Gulf of Maine to the open sea. This morphology was acquired by a combination of Tertiary fluvial erosion, Pleistocene glacial erosion/deposition and Pleistocene/Holocene marine processes. Fluvial/glacial erosion in the Gulf of Maine was so extensive as to expose basement, thus making it possible to map the various terranes making up this foundation. These terranes include the pre-Carboniferous Avalon and Meguma units, a Carboniferous–Permian rift basin formed by the oblique continental collision during the closure of the Paleozoic proto-Atlantic and a Late Triassic–Early Jurassic rift system created during the opening of the present Atlantic. Basement in the Gulf of Maine remained above sea level from the opening of the Atlantic 190 Ma (Early Jurassic) to the Eocene 55 Ma. That the Gulf of Maine remained a high for so long may have been due to igneous activity along the northwest-trending Boston–Ottawa Lineation extending from the vicinity of the St. Lawrence River, Canada to Gulf of Maine from Late Triassic to Early Cretaceous. The northwest-trending New England Seamounts south of Georges Bank may represent a seaward extension of this lineation. On Georges Bank, rising hundreds of meters above the Gulf of Maine, the basement exposed in the gulf is mantled by sediments thousands of meters thick. Included in these sediments are Early Jurassic- to earliest Cretaceous reefs along the continental slope and carbonates north of the reefs grading landward into continental sediments, Cretaceous–Cenozoic continental/marine terrigenous sediments and Pleistocene glacial deposits. The continental slope on the seaward flank of Georges Bank has a complex history of early to mid Mesozoic carbonate accretion, mid to late Mesozoic and Cenozoic calcareous/terrigenous sediments and canyon erosion, burial and exhumation going back to Early Cretaceous.  相似文献   

18.
Maps of the distributions of the four major clay minerals (smectite, illite, kaolinite and chlorite) in and around the Mississippi River drainage basin and in the Northern Gulf of Mexico have been produced using newly acquired data from erodible/alluvial terrestrial sediments and marine surface sediments, as well as from previously published data. East of the Rockies, North America can be divided into four, large, clay-mineral provinces: (1) the north-western Mississippi River watershed (smectite rich), (2) the Great Lakes area and eastern Mississippi River watershed (illite and chlorite rich), (3) the south-eastern United States (kaolinite rich) and (4) the Brazos River and south-western Mississippi River watersheds (illite and kaolinite rich). The clay mineral distributions in surface sediments of the present-day Gulf of Mexico are strongly influenced by three main factors: (1) by relative fluvial contributions: the Mississippi River delivers the bulk of the clay input to the Northern Gulf of Mexico whereas the Apalachicola, Mobile, Brazos and Rio Grande rivers inputs have more local influences; (2) by differential settling of various clay mineral species, which is identified for the first time in Northern Gulf of Mexico sediments; and (3) by oceanic current transport: the Gulf of Mexico surface and subsurface circulation distributes the clay-rich sediments from river mouth sources throughout the Northern Gulf of Mexico.  相似文献   

19.
To investigate environmental variability during the late Holocene in the western Gulf of Maine, USA, we collected a 142-year-old living bivalve (Arctica islandica) in 2004, and three fossil A. islandica shells of the Medieval Warm Period (MWP) and late MWP / Little Ice Age (LIA) period (corrected 14CAMS = 1030 ± 78 ad; 1320 ± 45 ad; 1357 ± 40 ad) in 1996. We compared the growth record of the modern shell with continuous plankton recorder (CPR) time-series (1961–2003) from the Gulf of Maine. A significant correlation (r 2 = 0.55; p < 0.0001) exists between the standardized annual growth index (SGI) of the modern shell and the relative abundance of zooplankton species Calanus finmarchicus. We therefore propose that SGI data from A. islandica is a valid proxy for paleo-productivity of at least one major zooplankton taxa. SGIs from these shells reveal significant periods of 2–6 years (NAO-like) based on wavelet analysis, multitaper method (MTM) analysis and singular spectrum analysis (SSA) during the late Holocene. Based on established physical oceanographic observation in the Gulf of Maine, we suggest that slope water variability coupled with North Atlantic Oscillation (NAO) dynamics is primarily responsible for the observed SGI variability. Special Issue: AGU OS06 special issue “Ocean’s role in climate change—a paleo perspective”.  相似文献   

20.
 The Basque country magnetic anomaly follows a NW–SE trend over the Basque country (northern Spain) with intensities up to 250 nT measured at 3000 m above sea level. The paired negative part of the anomaly is located to the north and presents intensities down to –60 nT. A model of the magnetic properties of the crust in the area, taking into account previous geological and geophysical data, indicates a wedge of material with a magnetic susceptibility of 0.07 SI emplaced along a NE-directed basal thrust. The anomalous wedge is composed of basic and/or ultrabasic Cretaceous intrusives and lower crustal rocks, and reaches a minimum depth which increases towards the northwest from 5–7 to 12 km. According to previous works, geological features of the rocks on top of the anomalous wedge indicate that during the Cretaceous this zone constituted a deep marine environment which underwent important crustal thinning related to rifting. The transition towards the southwest was to a normal continental platform. Alpine deformation gave rise to displacement on a basal thrust, which can be correlated with the lower contact of the magnetic wedge, and emplacement of this wedge towards the northeast. The southeastern termination of the anomaly can be related to the lateral termination of the basic rocks which constitute the anomalous wedge in a transform fault related to the rifting event. Received: 30 January 1995 / Accepted: 9 February 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号