首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The 1370 km long 4-AR reference profile crosses the North Barents Basin, the northern end of the Novaya Zemlya Rise, and the North Kara Basin. Integrated geophysical studies including common deep point (CDP) survey and deep seismic sounding (DSS) were carried out along the profiles. The DSS was performed using autonomous bottom seismic stations (ABSS) spaced 10–20 km apart and a powerful air gun producing seismic signals with a step size of 250 m. As a result, detailed P- and S-wave velocity structures of the crust and upper mantle were studied. The basic method was ray-tracing modeling. The Earth’s crust along the entire profile is typically continental with compressional wave velocities of 5.8–7.2 km/s in the consolidated part. Crustal thickness increases from 30 km near the islands of Franz Josef Land to 35 km beneath the North Barents Basin, 50 km beneath the Novaya Zemlya Rise, and 40 km beneath the North Kara Basin. The North Barents Basin 15 km deep is characterized by unusually low velocities in the consolidated crust: The upper crust layer with velocities of 5.8–6.4 km/s has a thickness of about 15 km beneath the basin (usually, this layer wedges beneath deep sedimentary basins). Another special property of the crust in the North Barents Basin is the destroyed structure of the Moho.  相似文献   

2.
In 1976, the Institute of Physics of the Earth and the Institute of Oceanology, the U.S.S.R. Academy of Sciences, carried out deep seismic soundings in the Barents Sea along a profile 700 km long northeast of Murmansk. A system of reversed and overlapping traveltime curves from 200 to 400 km long has been obtained. The wave correlation was effected by several independent approaches, which identified on the records the refracted and reflected waves from boundaries in the Earth's crust and the upper mantle. Different methods were applied for the solution of the inverse problem: the isochrone method, the intercept-time method, and the iteration method.The use of these different methods gives an indication of the general applicability of the interpretation and of the most reliable elements in the seismic model.All the interpretations and representations of the section positively establish an essentially horizontal inhomogeneity of the Earth's crust in the Barents Sea. On the whole the structure is similar to that of deep sedimentary basins of the East European platform. The thickness of the sedimentary layer varies from 8 to 17 km, the average crustal thickness is about 35–40 km; the velocities in the upper part of the consolidated crust are 5.8–6.4 km/s; in the lower crust they are 6.8–7.0 km/s and higher.  相似文献   

3.
In 1995–1998 and 2003–2005, detailed deep seismic soundings were undertaken in the Barents-Kara Region along geotraverses 1-AR, 2-AR, 3-AR with a total length of over 3000 km. Seismic cross-sections, up to 50 km deep as an average, were obtained using the software package GODOGRAPH designed at the Department of Seismometry and Geoacoustics of the Lomonosov Moscow State University. The study was based on refraction traveltime curves with approximately 100 curves per profile. The sections obtained along the 1-AR and 2-AR traverses were geologically interpreted. The main crustal boundaries, fold-thrust structural features of the lower crust and a suture zone between the North Barents Basin and the Caledonian Orogenic Belt were distinguished. Based on our data, the structure of the suture can be interpreted as an ancient subduction zone. The possible pattern of tectonic movements of the Barents Plate is characterized.  相似文献   

4.
Qunshu Tang  Ling Chen   《Tectonophysics》2008,455(1-4):43-52
We have used Rayleigh wave dispersion analysis and inversion to produce a high resolution S-wave velocity imaging profile of the crust and uppermost mantle structure beneath the northeastern boundary regions of the North China Craton (NCC). Using waveform data from 45 broadband NCISP stations, Rayleigh wave phase velocities were measured at periods from 10 to 48 s and utilized in subsequent inversions to solve for the S-wave velocity structure from 15 km down to 120 km depth. The inverted lower crust and uppermost mantle velocities, about 3.75 km/s and 4.3 km/s on average, are low compared with the global average. The Moho was constrained in the depth range of 30–40 km, indicating a typical crustal thickness along the profile. However, a thin lithosphere of no more than 100 km was imaged under a large part of the profile, decreasing to only ~ 60 km under the Inner Mongolian Axis (IMA) where an abnormally slow anomaly was observed below 60 km depth. The overall structural features of the study region resemble those of typical continental rift zones and are probably associated with the lithospheric reactivation and tectonic extension widespread in the eastern NCC during Mesozoic–Cenozoic time. Distinctly high velocities, up to ~ 4.6 km/s, were found immediately to the south of the IMA beneath the northern Yanshan Belt (YSB), extending down to > 100-km depth. The anomalous velocities are interpreted as the cratonic lithospheric lid of the region, which may have not been affected by the Mesozoic–Cenozoic deformation process as strongly as other regions in the eastern NCC. Based on our S-wave velocity structural image and other geophysical observations, we propose a possible lithosphere–asthenosphere interaction scenario at the northeastern boundary of the NCC. We speculate that significant undulations of the base of the lithosphere, which might have resulted from the uneven Mesozoic–Cenozoic lithospheric thinning, may induce mantle flows concentrating beneath the weak IMA zone. The relatively thick lithospheric lid in the northern YSB may serve as a tectonic barrier separating the on-craton and off-craton regions into different upper mantle convection systems at the present time.  相似文献   

5.
Crustal structure of mainland China from deep seismic sounding data   总被引:18,自引:0,他引:18  
Since 1958, about ninety seismic refraction/wide angle reflection profiles, with a cumulative length of more than sixty thousand kilometers, have been completed in mainland China. We summarize the results in the form of (1) a new contour map of crustal thickness, (2) fourteen representative crustal seismic velocity–depth columns for various tectonic units, and, (3) a Pn velocity map. We found a north–south-trending belt with a strong lateral gradient in crustal thickness in central China. This belt divides China into an eastern region, with a crustal thickness of 30–45 km, and a western region, with a thickness of 45–75 km. The crust in these two regions has experienced different evolutionary processes, and currently lies within distinct tectonic stress fields. Our compilation finds that there is a high-velocity (7.1–7.4 km/s) layer in the lower crust of the stable Tarim basin and Ordos plateau. However, in young orogenic belts, including parts of eastern China, the Tianshan and the Tibetan plateau, this layer is often absent. One exception is southern Tibet, where the presence of a high-velocity layer is related to the northward injection of the cold Indian plate. This high-velocity layer is absent in northern Tibet. In orogenic belts, there usually is a low-velocity layer (LVL) in the crust, but in stable regions this layer seldom exists. The Pn velocities in eastern China generally range from 7.9 to 8.1 km/s and tend to be isotropic. Pn velocities in western China are more variable, ranging from 7.7 to 8.2 km/s, and may display azimuthal anisotropy.  相似文献   

6.
We present velocity models determined by inverting refracted and reflected arrivals along two active source lines in the Changbaishan volcanic region, NE China. We resolve a prominent low-velocity zone (LVZ) in the crust, with velocities as low as 5.4 km/s. Away from the LVZ, the velocity gradients in the crust are relatively smooth, with average P-wave velocities of about 6.0–6.5 km/s. The Moho is at about 35 km depth, thickening to about 40 km under the Tianchi volcano, and thinning to about 30 km under the LVZ. The LVZ is located about 30–60 km to the north of the summit of the Tianchi volcano (the most recently active volcano in the region), is about 30–75 km in north–south extent, is at most 35 km in east–west extent, and is in the depth range of about 10–25 km below the surface. We use these results to constrain receiver function inversions, and show that the receiver functions in the region are compatible with our findings. With these data alone, the significance of the LVZ in non-unique, although we do not see any evidence to support the presence of partial melt in the crust, and favor the interpretation that the LVZ indicates a residual crustal magma chamber.  相似文献   

7.
The Izu-Bonin intra-oceanic arc with 20–35 km thick continental crust is being subducted under the Honshu, presumably since 17 Ma. Tomographic image clearly demonstrates that the whole Izu-Bonin arc is subducting under the Honshu arc. Geologic cross section and the thickness of continental crust do not support the accretion of thick crust in spite of the continued subduction over 17 Ma.  相似文献   

8.
S.B. Lyngsie  H. Thybo   《Tectonophysics》2007,429(3-4):201-227
We present a new model for the lithospheric structure of the transitions between Laurentia, Avalonia and Baltica in the North Sea, northwestern Europe based on 2¾D potential field modelling of MONA LISA profile 3 across the Central Graben, with constraints from seismic P-wave velocity models and the crustal normal incidence reflection section along the profile. The model shows evidence for the presence of upper-and lower Palaeozoic sedimentary rocks as well as differences in crustal structure between the palaeo-continents Laurentia, Avalonia and Baltica. Our new model, together with previous results from transformations of the gravity and magnetic fields, demonstrates correlation between crustal magnetic domains along the profile and the terrane affinity of the crust. This integrated interpretation indicates that a 150 km wide zone, characterized by low-grade metamorphosis and oblique thrusting of Avalonia crust over Baltica lower crust, is characteristic for the central North Sea area. The magnetic susceptibility and the density across the Coffee Soil Fault range from almost zero and 2715 kg/m3 in Avalonia crust to 0.05 SI and 2775 kg/m3 in Baltica crust. The model of MONA LISA profile 3 indicates that the transition between Avalonia and Baltica is located beneath the Central Graben with a ramp–flat–ramp geometry. Our results indicate that the initial rifting of the Central Graben and the Viking Graben was controlled by the location of the Caledonian collisional suture, located at the Coffee Soil Fault, and that the deep crustal part of Baltica extends further to the west than hitherto believed.  相似文献   

9.
The crustal structure of the central Eromanga Basin in the northern part of the Australian Tasman Geosyncline, revealed by coincident seismic reflection and refraction shooting, contrasts with some neighbouring regions of the continent. The depth to the crust-mantle boundary (Moho) of 36–41 km is much less than that under the North Australian Craton to the northwest (50–55 km) and the Lachlan Fold Belt to the southeast (43–51 km) but is similar to that under the Drummond and Bowen Basins to the east.The seismic velocity boundaries within the crust are sharp compared with the transitional nature of the boundaries under the North Australian and Lachlan provinces. In particular, there is a sharp velocity increase at mid-crustal depths (21–24 km) which has not been observed with such clarity elsewhere in Australia (the Conrad discontinuity?).In the lower crust, the many discontinuous sub-horizontal reflections are in marked contrast to lack of reflecting horizons in the upper crust, further emphasising the differences between the upper and lower crust. The crust-mantle boundary (Moho) is characterised by an increase in velocity from 7.1–7.7 km/s to a value of 8.15 + 0.04 km/s. The depth to the Moho under the Canaway Ridge, a prominent basement high, is shallower by about 5 km than the regional Moho depth; there is also no mid-crustal horizon under the Canaway Ridge but there is a very sharp velocity increase at the Moho depth of 34 km. The Ridge could be interpreted as a horst structure extending to at least Moho depths but it could also have a different intra-crustal structure from the surrounding area.The sub-crustal lithosphere has features which have been interpreted, from limited data, as being caused by a velocity gradient at 56–57 km depth with a low velocity zone above it.Because of the contrasting crustal thicknesses and velocity gradients, the lithosphere of the central Eromanga Basin cannot be considered as an extension of the exposed Lachlan Fold Belt or the North Australian Craton. The lack of seismic reflections from the upper crust indicates no coherent accoustic impedance pattern at wavelengths greater than 100 m, consistent with an upper crustal basement of tightly folded meta-sedimentary and meta-volcanic rocks. The crustal structure is consistent with a pericratonic or arc/back-arc basin being cratonised in an episode of convergent tectonics in the Early Palaeozoic. The seismic reflections from the lower crust indicate that it could have developed in a different tectonic environment.  相似文献   

10.
The CELEBRATION 2000 together with the earlier POLONAISE'97 deep seismic sounding experiments was aimed at the recognition of crustal structure in the border zone between the Precambrian East European Craton (Baltica) and Palaeozoic Europe. The CEL02 profile of the CELEBRATION family is a 400-km long SW–NE transect, running in Poland from the Upper Silesia Block (USB), across the Małopolska Block (MB) and the Trans-European Suture Zone (TESZ) to the East European Craton (EEC). The structure along CEL02 was interpreted using both 2D tomography and forward ray-tracing techniques as well as 2D gravity modelling.The crustal thickness along CEL02 varies from 32–35 km in the USB to 45–47 km beneath the TESZ and the EEC. The USB is a clearly distinctive crustal block with the characteristic high velocity lower crust (7.1–7.2 km/s), interpreted as a fragment of Gondwana. The Kraków–Lubliniec Fault is a terrane boundary produced by soft docking of the USB with the MB. The Małopolska crust fundamentally differs from the USB and has a strong connection with Baltica. It is a transitional, 150- to 200-km wide unit composed of the extended Baltican lower crust and the overlying low velocity (5.15–5.9 km/s) Neoproterozoic metasediments in the up to 18-km thick upper crust. The Łysogóry Unit has its crustal structure identical with that of Małopolska, thus it is connected with Baltica and cannot be interpreted as a Gondwana-derived terrane. Higher velocity and density bodies found below the Mazovia–Lublin Graben at a depth of 12 km and at the base of the lower crust, might be a result of mantle-derived mafic intrusions accompanying the extension of Baltica. By the preliminary 2D gravity modelling, we have reconfirmed the need for considering the increased TESZ mantle density in comparison to the EEC and USB mantle.  相似文献   

11.
A biostratigraphic model of the temporal distribution of distinctive Proterozoic microfossil assemblages is suggested, based on studies of upper Precambrian chert-embedded and compression-preserved organic-walled microfossils from the reference sections of Eurasia, North America and Australia. Microfossils from 2.0 to 0.542 Ga can be divided into seven successive informal global units which can be compared to standard units of the International and Russian time scales. Each unit is characterized by a particular association of taxa, typified by the fossil assemblage that gives it its name. These form broad biostratigraphic units comparable to assemblage zones of Phanerozoic successions; in general (but with minor differences) they correspond to chronostratigraphic units accepted by the Internal Commission on Stratigraphy. The units are: (1) Labradorian, the upper part of the Paleoproterozoic (Orosirian and Statherian), 2.0–1.65 Ga; (2) Anabarian, lower Mesoproterozoic (Calymmian–Ectasian)/Lower Riphean–lower Middle Riphean, 1.65–1.2 Ga; (3) Turukhanian, upper Mesoproterozoic (Stenian)/upper Middle Riphean, 1.2–1.03 Ga; (4) Uchuromayan, lower Neoproterozoic (late Stenian–Tonian)/lower Upper Riphean, 1.03–0.85 Ga; (5) Yuzhnouralian, upper Neoproterozoic (Cryogenian)/upper Upper Riphean, 0.85–0.63 Ga; (6) Amadeusian, lower Ediacaran/lower Vendian, 0.63–0.55 Ga; (7) Belomorian, upper Ediacaran/upper Vendian, 0.55–0.542 Ga.  相似文献   

12.
The 1000-km-long Darlag–Lanzhou–Jingbian seismic refraction profile is located in the NE margin of the Tibetan plateau. This profile crosses the northern Songpan-Ganzi terrane, the Qinling-Qilian fold system, the Haiyuan arcuate tectonic region, and the stable Ordos basin. The P-wave and S-wave velocity structure and Poisson's ratios reveal many significant characteristics in the profile. The crustal thickness increases from northeast to southwest. The average crustal thickness observed increases from 42 km in the Ordos basin to 63 km in the Songpan-Ganzi terrane. The crust becomes obviously thicker south of the Haiyuan fault and beneath the West-Qinlin Shan. The crustal velocities have significant variations along the profile. The average P-wave velocities for the crystalline crust vary between 6.3 and 6.4 km/s. Beneath the Songpan-Ganzi terrane, West-Qinling Shan, and Haiyuan arcuate tectonic region P-wave velocities of 6.3 km/s are 0.15 km/s lower than the worldwide average of 6.45 km/s. North of the Kunlun fault, with exclusion of the Haiyuan arcuate tectonic region, the average P-wave velocity is 6.4 km/s and only 0.5 km/s lower than the worldwide average. A combination of the P-wave velocity and Poisson's ratio suggests that the crust is dominantly felsic in composition with an intermediate composition at the base. A mafic lower crust is absent in the NE margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordos basin. There are low velocity zones in the West-Qinling Shan and the Haiyuan arcuate tectonic region. The low velocity zones have low S-wave velocities and high Poisson's ratios, so it is possible these zones are due to partial melting. The crust is divided into two layers, the upper and the lower crust, with crustal thickening mainly in the lower crust as the NE Tibetan plateau is approached. The results in the study show that the thickness of the lower crust increases from 22 to 38 km as the crustal thickness increases from 42 km in the Ordos basin to 63 km in the Songpan-Ganzi terrane south of the Kunlun fault. Both the Conrad discontinuity and Moho in the West-Qinling Shan and in the Haiyuan arcuate tectonic region are laminated interfaces, implying intense tectonic activity. The arcuate faults and large earthquakes in the Haiyuan arcuate tectonic region are the result of interaction between the Tibetan plateau and the Sino–Korean and Gobi Ala Shan platforms.  相似文献   

13.
The Lachlan Fold Belt has the velocity‐depth structure of continental crust, with a thickness exceeding 50 km under the region of highest topography in Australia, and in the range 41–44 km under the central Fold Belt and Sydney Basin. There is no evidence of high upper crustal velocities normally associated with marginal or back‐arc basin crustal rocks. The velocities in the lower crust are consistent with an overall increase in metamorphic grade and/or mafic mineral content with depth. Continuing tectonic development throughout the region and the negligible seismicity at depths greater than 30 km indicate that the lower crust is undergoing ductile deformation.

The upper crustal velocities below the Sydney Basin are in the range 5.75–5.9 km/s to about 8 km, increasing to 6.35–6.5 km/s at about 15–17 km depth, where there is a high‐velocity (7.0 km/s) zone for about 9 km evident in results from one direction. The lower crust is characterised by a velocity gradient from about 6.7 km/s at 25 km, to 7.7 km/s at 40–42 km, and a transition to an upper mantle velocity of 8.03–8.12 km/s at 41.5–43.5 km depth.

Across the central Lachlan Fold Belt, velocities generally increase from 5.6 km/s at the surface to 6.0 km/s at 14.5 km depth, with a higher‐velocity zone (5.95 km/s) in the depth range 2.5–7.0 km. In the lower crust, velocities increase from 6.3 km/s at 16 km depth to 7.2 km/s at 40 km depth, then increase to 7.95 km/s at 43 km. A steeper gradient is evident at 26.5–28 km depth, where the velocity is about 6.6—6.8 km/s. Under part of the area an upper mantle low‐velocity zone in the depth range 50–64 km is interpreted from strong events recorded at distances greater than 320 km.

There is no substantial difference in the Moho depth across the boundary between the Sydney Basin and the Lachlan Fold Belt, consistent with the Basin overlying part of the Fold Belt. Pre‐Ordovician rocks within the crust suggest fragmented continental‐type crust existed E of the Precambrian craton and that these contribute to the thick crustal section in SE Australia.  相似文献   

14.
Interpretation of reprocessed seismic reflection profiles reveals three highly coherent, layered, unconformity-bounded sequences that overlie (or are incorporated within) the Proterozoic “granite–rhyolite province” beneath the Paleozoic Illinois basin and extend down into middle crustal depths. The sequences, which are situated in east–central Illinois and west–central Indiana, are bounded by strong, laterally continuous reflectors that are mappable over distances in excess of 200 km and are expressed as broad “basinal” packages that become areally more restricted with depth. Normal-fault reflector offsets progressively disrupt the sequences with depth along their outer margins. We interpret these sequences as being remnants of a Proterozoic rhyolitic caldera complex and/or rift episode related to the original thermal event that produced the granite–rhyolite province. The overall thickness and distribution of the sequences mimic closely those of the overlying Mt. Simon (Late Cambrian) clastic sediments and indicate that an episode of localized subsidence was underway before deposition of the post-Cambrian Illinois basin stratigraphic succession, which is centered farther south over the “New Madrid rift system” (i.e., Reelfoot rift and Rough Creek graben). The present configuration of the Illinois basin was therefore shaped by the cumulative effects of subsidence in two separate regions, the Proterozoic caldera complex and/or rift in east–central Illinois and west–central Indiana and the New Madrid rift system to the south. Filtered isostatic gravity and magnetic intensity data preclude a large mafic igneous component to the crust so that any Proterozoic volcanic or rift episode must not have tapped deeply or significantly into the lower crust or upper mantle during the heating event responsible for the granite–rhyolite.  相似文献   

15.
The Central European Basin System (CEBS) is composed of a series of subbasins, the largest of which are (1) the Norwegian–Danish Basin (2), the North German Basin extending westward into the southern North Sea and (3) the Polish Basin. A 3D structural model of the CEBS is presented, which integrates the thickness of the crust below the Permian and five layers representing the Permian–Cenozoic sediments. Structural interpretations derived from the 3D model and from backstripping are discussed with respect to published seismic data. The analysis of structural relationships across the CEBS suggests that basin evolution was controlled to a large degree by the presence of major zones of crustal weakness. The NW–SE-striking Tornquist Zone, the Ringkøbing-Fyn High (RFH) and the Elbe Fault System (EFS) provided the borders for the large Permo–Mesozoic basins, which developed along axes parallel to these fault systems. The Tornquist Zone, as the most prominent of these zones, limited the area affected by Permian–Cenozoic subsidence to the north. Movements along the Tornquist Zone, the margins of the Ringkøbing-Fyn High and the Elbe Fault System could have influenced basin initiation. Thermal destabilization of the crust between the major NW–SE-striking fault systems, however, was a second factor controlling the initiation and subsidence in the Permo–Mesozoic basins. In the Triassic, a change of the regional stress field caused the formation of large grabens (Central Graben, Horn Graben, Glückstadt Graben) perpendicular to the Tornquist Zone, the Ringkøbing-Fyn High and the Elbe Fault System. The resulting subsidence pattern can be explained by a superposition of declining thermal subsidence and regional extension. This led to a dissection of the Ringkøbing-Fyn High, resulting in offsets of the older NW–SE elements by the younger N–S elements. In the Late Cretaceous, the NW–SE elements were reactivated during compression, the direction of which was such that it did not favour inversion of N–S elements. A distinct change in subsidence controlling factors led to a shift of the main depocentre to the central North Sea in the Cenozoic. In this last phase, N–S-striking structures in the North Sea and NW–SE-striking structures in The Netherlands are reactivated as subsidence areas which are in line with the direction of present maximum compression. The Moho topography below the CEBS varies over a wide range. Below the N–S-trending Cenozoic depocentre in the North Sea, the crust is only 20 km thick compared to about 30 km below the largest part of the CEBS. The crust is up to 40 km thick below the Ringkøbing-Fyn High and up to 45 km along the Teisseyre–Tornquist Zone. Crustal thickness gradients are present across the Tornquist Zone and across the borders of the Ringkøbing-Fyn High but not across the Elbe Fault System. The N–S-striking structural elements are generally underlain by a thinner crust than the other parts of the CEBS.The main fault systems in the Permian to Cenozoic sediment fill of the CEBS are located above zones in the deeper crust across which a change in geophysical properties as P-wave velocities or gravimetric response is observed. This indicates that these structures served as templates in the crustal memory and that the prerift configuration of the continental crust is a major controlling factor for the subsequent basin evolution.  相似文献   

16.
Understanding deep continental structure and the seismotectonics of Deccan trap covered region has attained greater importance in recent years. For imaging the deep crustal structure, magnetotelluric (MT) investigations have been carried out along three long profiles viz. Guhagarh–Sangole (GS), Sangole–Partur (SP), Edlabad–Khandwa (EK) and one short profile along Nanasi–Mokhad (NM). The results of GS, SP and NM profiles show that the traps lie directly over high resistive basement with thin inter-trappean sediments, where large thickness of sediments, of the order of 1.5–2.0 km, has been delineated along EK profile across Narmada–Son–Lineament zone. The basement is intersected by faults/fractures, which are clearly delineated as narrow steep conducting features at a few locations. The conducting features delineated along SP profile are also seen from the results of aeromagnetic anomalies. Towards the southern part of the profile, these features are spatially correlated with Kurduwadi rift proposed earlier from gravity studies. Apart from the Kurduwadi rift extending to deep crustal levels, the present study indicates additional conductive features in the basement. The variation in the resistivity along GS profile can be attributed to crustal block structure in Koyna region. Similar block structure is also seen along NM profile.Deccan trap thickness, based on various geophysical methods, varies gradually from 1.8 km towards west to 0.3 km towards the east. While this is the general trend, a sharp variation in the thickness of trap is observed near Koyna. The resistivity of the trap is more (150–200 Ω m) towards the west as compared to the east (50–60 Ω m) indicating more compact or denser nature for the basalt towards west. The upper crust is highly resistive (5000–10,000 Ω m), and the lower crust is moderately resistive (500–1000 Ω m). In the present study, seismotectonics of the region is discussed based on the regional geoelectrical structure with lateral variation in the resistivity of the basement and presence of anomalous conductors in the crust.  相似文献   

17.
The evolution and geometry of the Tertiary Upper Rhine Graben were controlled by a continually changing stress field and the reactivation of pre-existing crustal discontinuities. A period of WNW-ESE extension in the late Eocene and Oligocene was followed by lateral translation from the early Miocene onwards. This study utilizes 3D finite element techniques to simulate extension and lateral translation on a lithospheric scale. Brittle and creep behaviour of lithospheric rocks are represented by elastoplasticity and thermally activated power-law viscoplasticity, respectively. Contact elements allocated with cohesion and frictional coefficients are used to describe pre-existing zones of weakness in the elastic-brittle field. Our results suggest that (1) extension is accommodated along listric border faults to midcrustal depth of 15–16 km. Beneath, pure shear stretching occurs without a need for localized shear zones in lower crust and upper mantle. (2) Ductile flow at midcrustal depth across the graben accounts for the pronounced halfgraben morphology. Thereby, the shape of the border faults, their frictional coefficients, and sedimentary loads have profound effects on the rate of ductile flow across the graben. (3) Horizontal extension of 8–8.5 km and sinistral displacement across the rift of 3–4 km are needed to accommodate the observed sediment thickness.  相似文献   

18.
The Polish Geophysical Expedition to West Antarctica in the summer of 1979–1980 was organized by the Institute of Geophysics of the Polish Academy of Sciences. The purpose of the expedition was to carry out studies of deep structures of the Earth's crust by reflection, refraction and deep seismic sounding methods. Special attention was paid to tectonically active zones and to the contact zones between the blocks of the Earth's crust and the lithospheric plates. Geophysical measurements were carried out in the area extending between 61° and 65°S and between 56° and 66°W. The measurements covered the southern Shetlands, the Antarctic Peninsula, the Bransfield Strait, the Drake Passage, the Palmer Archipelago, the Gerlache Strait and the Bismarck Strait towards the southern Pacific.Deep seismic soundings were made along profiles with a total length of about 2000 km. Seismic reflection measurements were made along profiles about 1100 km long. A detailed analysis of the seismic wave field shows that the structure of the Earth's crust in this part of West Antarctica is very complex. Numerous deep fractures divide the Earth's crust into blocks of different physical properties. The thickness of the Earth's crust changes from 32 km in the region of the South Shetland Islands to 40–45 km in the region of the Antarctic Peninsula. A preliminary geodynamical model of this part of West Antarctica is presented.  相似文献   

19.
Modeling of receiver functions computed using data from the IRIS broadband station PALK in Sri Lanka reveals a simple crust with a thickness of 34 km. The crust appears to be more felsic with dominance of quartzite, as evidenced by a low Poisson's ratio of 0.25 compared to the global average for Precambrian shields. An overview of crustal composition of the high-grade terrains of Gondwana land reveals that Poisson's ratios mostly lie in the range of 0.24–0.26. These lower than global average values from both Archean and Proterozoic shields, including the metamorphic regions appear to be characteristic of Precambrian shields consistent with the average continental crust composition estimates showing 59% silica content. The two principal mantle discontinuities beneath PALK are found at 418 and 678 km, respectively, which are both deeper than the global averages, suggesting a hotter upper mantle.  相似文献   

20.
Geochemical and Nd isotope data are reported for Late Riphean metamorphic complexes and granitoids of the Bayannur zone of the Songino block in the Early Caledonian superterrane of Central Asia. Geological, geochronolgical, geochemical, and isotope data were integrated to discuss rock sources and main mechanisms responsible for the formation and evolution of the Late Riphean continental crust. It was established that lithotectonic complexes of the Bayannur zone were formed on a convergent plate during Late Proterozoic tectonogenesis (around 1.3–0.78 Ga). This period primarily produced a juvenile crust represented by paleooceanic (N- and E-MORB types) and island arc basalts. An interval of 800–880 Ma was marked by the formation of rocks of the Bayannur complex and metaterrigenous sequence (accretionary wedge) of the Kholbonur complex, and the emplacement of quartz diorites and granodiorites of the Gashunnur pluton due to erosion and melting of both Late Riphean juvenile sources and ancient possibly Early Precambrian crustal material in a setting of ensialic island arc. At the final stage of the Late Riphean evolution of the Bayannur zone, postkinematic granitoids of the Bayannur pluton, and gabbrodiorites and anorthosites of the Ontsula pluton were derived from mantle juvenile and crustal sources in a within-plate setting. In terms of isotope characteristics, the crystalline complexes of the Bayannur zone are comparable with the Japan-type modern island arc systems. A synthesis of geological, geochronological, and isotope-geochemical data indicates a much wider distribution of the Late Riphean juvenile crust-forming processes than considered previously and remobilization of continental crust in the eastern segment of the Central Asian Fold Belt. The Vendian-Paleozoic stage in the evolution of this segment was characterized by an intense growth of juvenile crust, while magmatism during Late Riphean stage was determined by mixing of Late Riphean juvenile and ancient Early Precambrian sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号