首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Chen  Liyun  Duan  Qi 《Natural Hazards》2016,82(1):267-297
Using a production-theoretical decomposition analysis, this study evaluated the driving factors impacting CO2 emissions between 2001 and 2010 in 28 provinces in China. Factors were decomposed into six indicators: scale effect, technical efficiency, technological progress, change in carbon emission intensity, change in inputs, and change in output structure. The results showed that changes in scale effect and change in inputs were the main factors driving CO2 emissions growth. Conversely, technical efficiency, technological progress, and change in output structure inhibited CO2 emission growth. Change in carbon emission intensity had little effect on CO2 emission growth.  相似文献   

2.
Based on input–output table to measure inter-industry R&D technology spillover, this paper introduces inter-industry R&D technology spillover into panel econometric model for carbon dioxide (CO2) emissions factor analysis. Using the panel data of 34 industrial sectors in China from 2005 to 2014, the results reveal that there is an inverted “U-shaped” nonlinear relationship between R&D technology spillover (intensity) and carbon emission; it is estimated that R&D technology spillover can reduce carbon emission currently; the indirect impact of R&D technology spillovers or spillovers intensity through R&D intensity on carbon emissions is also beneficial to carbon emission reduction; at last, this study suggests that industrial sectors should improve R&D intensity and strengthen technical exchanges and cooperation with other related sectors for the purpose of R&D technology spillover increase and CO2 emissions reduction.  相似文献   

3.
The impact of trade on the environment and the climate has become a focus of attention. Tending to develop industries with higher added values, developed countries rely on importing high energy consumption goods from developing countries, and however, some CO2 emissions are embodied in the process of import. Currently, the accounting method of the territorial responsibility used to get the international data of greenhouse gas inventories ignores the difference between domestic consumption and export demands. Thus, developing countries bear the responsibility of pollution emissions from the export. The steel industry is an important basic industry of China’s national economy as well as a vital part in the industrial system. With the expansion of trade scale, the impact of the export and import of China’s steel on CO2 emissions is growing. This paper studied the embodied CO2 emissions in the trade of China’s steel from 2005 to 2014, using the input–output model and the trade data of the China’s steel imports and exports. The results indicate that (1) the complete CO2 emissions of China’s steel industry are high. (2) The increase in the export scale makes the embodied CO2 emissions in the trade of China’s steel export increase, and (3) China is a net exporter of CO2 emissions in the steel trade. Especially after 2007, the value of China’s steel exports has been larger than that of China’s steel imports, so China had borne much CO2 emissions responsibility in the trade of China’s steel. Therefore, this paper puts forward that, in the future, the export structure of goods should be optimized into the high-tech products with the high added value, low energy consumption and low carbon emissions, and meanwhile, service industry is promoted to improve technical support to reduce CO2 emissions in the steel industry.  相似文献   

4.
This paper explores China’s strategies for addressing climate change on the industrial level. Focusing on six energy-intensive industries, this paper applies gray relational analysis theory to the affecting factors to CO2 emissions of each industry after calculating each industry’s CO2 emissions during 2001–2010. Further research based on GM(1, 1) model is conducted to forecast the trend of the factors, the energy consumption and each industry’s CO2 emissions during the 12th Five-Year Plan period. As a breakthrough in previous conclusions, energy consumption structure was divided into the respective proportion of coal, oil, natural gas and electricity in the primary energy consumption, with which industrial output and energy intensity are combined to analyze each of their impacts on the energy-intensive industries. It turns out that all the factors’ impacts on emissions of the six major energy-intensive industries are significant, despite their differentiated extents. It is worth noting that, contrary to previous findings, industrial output is not the leading affecting factor to CO2 emissions of the energy-intensive industries compared with the proportion of coal and electricity in the primary energy consumption. The GM(1, 1) forecast results of energy consumption and CO2 emissions by the end of 2015 show that coal and electricity will remain a large proportion in primary energy consumption. This research may shed some light on China’s adjustment of energy structure under the pressure of addressing climate change and hence provide decision support for the acceleration of renewable energy utilization in the industrial departments.  相似文献   

5.
Wang  Mingquan  Zhang  Lingyun  Su  Xin  Lei  Yang  Shen  Qun  Wei  Wei  Wang  Maohua 《Natural Hazards》2019,99(3):1455-1468

Thermal power, steel, cement, and coal chemical industries account 62.6% energy consumption and 84.6% carbon emissions of China simultaneously in 2015. This research use C3IAM-Tice model to analyze the impact of advanced technologies ratio increasing quantitatively. The model can explore the balance of emission reduction and economy efficiency of energy use, finally got the technology structure optimization for these four industries. The paper uses the historical energy consumption and CO2 emission, combing with the low-carbon developing goal objection, to create the database for these four energy- and carbon-intensive industries. As the result, the scenario-4, which is the most advanced technology-oriented strategy, shows 282 Mt CO2 emission reductions for the 2020 Goal. In this scenario, 26.19%, 47.43%, 65.39%, and 28.98% of the CO2 emissions per unit of added value in thermal power industry, steel industry, cement industry, and coal chemical industry could be reduced comparing with data in 2005. Although the advanced technology-oriented strategy shows the positive impact, we need to consider the cost of elimination of existed technology. On the other hand, the paper notices the future technology, with new energy alternative, low-carbon economy development, and industry restructure together, which are important factors for the low-carbon development of China.

  相似文献   

6.
This paper aims to evaluate the carbon dioxide (CO2) emissions reduction performance of 30 mainland provinces in China over 2005?C2009. First, the log-mean Divisia index (LMDI) technique is used to decompose the changes in CO2 emissions at the provincial level into 4 effects that are carbon intensity effect, energy mix effect, energy intensity effect and gross domestic product (GDP) effect. Next, two indicators, decoupling index and rescaled decoupling index, are implemented to evaluate the performance of 30 provinces in CO2 emission reduction from 2005 to 2009. The decomposition result shows that the GDP growth is mainly responsible for the CO2 emissions increase, while the energy intensity effect is the key factor for the decrease in CO2 emissions in each province. Moreover, according to the evaluation, the performance of each province in what concerns the CO2 emission reduction varies significantly. Most provinces in China made significant efforts in emissions reduction during 2005?C2009, while some provinces only made weak efforts or even no efforts in decoupling progress.  相似文献   

7.
To investigate the impact of carbon emission reduction paths on energy demand and CO2 emissions in China, in this study, quantitative carbon emission reduction paths in the period 2014–2020 are established by decomposing the target for emissions reduction. An optimization model of energy demand, into which reduction paths are incorporated, is then constructed from a goal-oriented perspective. The results suggest that energy consumption varies under different emission reduction paths. Coal demand is found to be much more sensitive to the choice of emission reduction path than other forms of energy; in particular, it responds strongly to the decreasing reduction path. We conclude that the decreasing reduction path is a better means than the increasing reduction path of achieving China’s emission reduction target for 2020 with the least amount of energy and the least amount of CO2 emissions.  相似文献   

8.
Imposing any tax among carbon tax, sulfur tax and nitrogen tax on fossil fuels will also reduce the other two air pollutants. Neglecting the synergistic effect of each energy environmental tax and levying carbon tax, sulfur tax and nitrogen tax at the same time will overestimate the abatement cost of air emissions. This study adopts a partial equilibrium model which uses linear demand and supply curves to illustrate the emission reductions in carbon tax, sulfur tax and nitrogen tax. The synergistic reduction effects of CO2, SO2 and NO x are firstly evaluated under the implicit tax scenario of resource tax and consumption tax on fossil fuels. Then it is compared with the synergistic reduction effects of CO2, SO2 and NO x under different explicit tax scenarios of increasing tax rate on carbon tax, sulfur tax and nitrogen tax. If the synergistic reduction effect of explicit environmental taxes is better, this research aims to find one kind of environmental tax among carbon tax, sulfur tax and nitrogen tax with the best synergistic reduction effect and to provide a decision support for the policy makers of energy environmental taxes. The results indicate that explicit environmental taxes have better synergistic reduction effects compared with the current implicit environmental taxes. And explicit sulfur tax can lead to the largest synergistic reduction effects of CO2, SO2 and NO x . Therefore, the policy makers of energy environmental taxes could consider adopting the explicit sulfur tax to reduce various environmental air emissions at the largest amount.  相似文献   

9.
Wang  Zhaohua  Liu  Wei  Yin  Jianhua 《Natural Hazards》2014,75(2):257-272

Human activities have become a major source of Earth’s climate change, which brings the rise of surface air temperature and subsurface ocean temperature. Therefore, promoting sustainable consumption and production patterns is imperative to minimize the use of natural resources and reduce emissions of pollutants. This study uses Economic Input–Output Life-Cycle Assessment method and structural decomposition model to identify the driving forces that influence the changes in carbon emissions from China’s residential consumption in the context of sustainable consumption. The findings of the study are as follows: (1) indirect carbon emissions from Chinese household consumption increase rapidly over time; (2) the largest carbon dioxide emitting sector turns from agriculture sector in 1992 into service sector in 2007; (3) the consumption level and the emission intensity are the main drivers that influence the change in indirect carbon emissions; and (4) the factor of consumption level presents positive effect on the emissions, while the emission intensity effect plays a negative role. Besides, the factors of urbanization, production structure, population size and consumption structure also promote the rapid increase in carbon emissions.

  相似文献   

10.
Climate change has not only brought about many natural hazards but also threaten the sustainable development of industry. This study is to investigate the adaptive implications for energy-intensive industries of China in response to climate change impacts. For this purpose, a deep and comprehensive analysis on the change of CO2 emission for 6 energy-intensive sectors is explored over the period of 2000–2007. A Log-Mean Divisia Index based on time series is also introduced in our study to identify the key factors toward the change of CO2 emission. It is shown that there were 146.1 million metric tons carbon increased in energy-intensive industries from 2000 to 2007. And the excessive growth of industrial output and increasingly fossil-intensive energy consumption structure were the main driving forces for the increased CO2 emission. Nevertheless, energy intensity change and declining emission coefficient of electricity played negative role in the growing trend of CO2 emission. On the basis of these four determinants (namely industrial output, energy intensity, fuel mix effect, and emission coefficient), it is suggested that both economic motives and technologically feasible approaches should be implemented to control the scale of excessive productions and improve energy efficiency toward the energy-intensive industries. And more importantly, strengthening energy-intensive sectors’ awareness of climate change adaptation should be given stronger emphasis as long-term work with the help of some propaganda campaigns for instance.  相似文献   

11.
《Comptes Rendus Geoscience》2003,335(6-7):611-625
Increasing atmospheric level of greenhouse gases are causing global warming and putting at risk the global climate system. The main anthropogenic greenhouse gas is CO2. Technical solutions exist to reduce CO2 emission and stabilise atmospheric CO2 concentration, including energy saving and energy efficiency, switch to lower carbon content fuels like natural gas and to energy sources that operate with zero CO2 emissions such as renewable or nuclear energy, enhance the natural sinks for CO2 (forests, soils, etc.), and last but not least, sequester CO2 from fossil fuels combustion. The purpose of this paper is to provide an overview of the technology and cost for capture and storage of CO2. Some of the factors that will influence application, including environmental impact, cost and efficiency, are also discussed. Capturing CO2 and storing it in underground geological reservoirs appears as the best environmentally acceptable option. It can be done with existing technology; however, substantial R&D is needed to improve available technology and to lower the cost. Applicable to large CO2 emitting industrial facilities such as power plants, cement factories, steel industry, etc., which amount to more than 30% of the global anthropogenic CO2 emission, it represents a valuable tool in the battle against global warming. To cite this article: P. Jean-Baptiste, R. Ducroux, C. R. Geoscience 335 (2003).  相似文献   

12.
Agriculture produced the largest methane emissions in China. It is of great importance to investigate effect of fertilizer using intensity on the environmental efficiency of China’s agriculture. This paper mainly investigates the determinants of environmental efficiency of China’s agriculture. First, we estimate environmental efficiency of China’s agriculture of 30 provinces from 1997 to 2014 through metafrontier SBM super efficiency with undesirable outputs, which allow for technology heterogeneity in different regions. Then, we compare environmental efficiency in different regions. Furthermore, we also analyze whether heterogeneity of environmental technology widened or decreased. Last, we also explore the determinants of environmental efficiency of China’s agriculture through bootstrap truncation regression. We find that fertilizer intensity negatively affects environmental efficiency. Urbanization has significant positive (1.454) effect on environmental efficiency under metafrontier in the east. It is significant use more organic fertilizer to decrease CO2 (carbon dioxide) emissions. It is important to enhance environmental innovation for China’s agriculture.  相似文献   

13.
Prabhu  Saurabh  Javanbarg  Mohammad  Lehmann  Marc  Atamturktur  Sez 《Natural Hazards》2019,99(3):1327-1343

The chemical industry is one of the most important industry sectors in terms of energy consumption and CO2 emissions in China. However, few studies have undertaken accounting of the CO2 emissions in the chemical industry. In addition, there are some shortcomings in the traditional accounting method as a result of poor data availability, such as the incomplete consideration of emission sources and overestimation of actual emissions. Based on the traditional accounting method and the actual situation of the chemical industry, this study proposes a method called the Emission Accounting Model in the Chemical Industry, which covers fossil energy-related emission, indirect emission generated by electricity and heat, carbonate-related process emission and the reuse of CO2. In particular, fossil energy used as feedstock is included. By applying the Emission Accounting Model in the Chemical Industry in China, the calculated CO2 emissions would be 19–30% less than the result from the traditional method. In addition, it is found that the indirect CO2 emissions generated by electricity and heat account for 67% of the total amount, the fossil energy-related emissions account for approximately 37%, the process-related emissions accounted for 2%, and reuse of CO2 accounts for ??6% in 2016. The production of ammonia, ethylene and calcium carbide generated approximately half of the total CO2 emissions in 2016. In addition, in view of emission sources and carbon source flow, two other bottom-up accounting methods are proposed that can take effect when the chemical plant-level data are available.

  相似文献   

14.
Human activities have become a major source of Earth’s climate change, which brings the rise of surface air temperature and subsurface ocean temperature. Therefore, promoting sustainable consumption and production patterns is imperative to minimize the use of natural resources and reduce emissions of pollutants. This study uses Economic Input–Output Life-Cycle Assessment method and structural decomposition model to identify the driving forces that influence the changes in carbon emissions from China’s residential consumption in the context of sustainable consumption. The findings of the study are as follows: (1) indirect carbon emissions from Chinese household consumption increase rapidly over time; (2) the largest carbon dioxide emitting sector turns from agriculture sector in 1992 into service sector in 2007; (3) the consumption level and the emission intensity are the main drivers that influence the change in indirect carbon emissions; and (4) the factor of consumption level presents positive effect on the emissions, while the emission intensity effect plays a negative role. Besides, the factors of urbanization, production structure, population size and consumption structure also promote the rapid increase in carbon emissions.  相似文献   

15.
Wang  Qian  Liang  Qiao-Mei  Wang  Bing  Zhong  Fang-Xun 《Natural Hazards》2015,84(1):353-379

The aim of this paper is to analyze the relationship between household expenditure and CO2 emissions among different income groups of urban and rural households in China. Having employed the 2007 Social Accounting Matrix of China, this study examines the direct and indirect CO2 emissions caused by household demand. The results show that within both urban and rural households, the higher the income level is, the higher the per capita emissions are; the CO2 emissions per unit expenditure due to savings and taxes are generally much larger than those from consumption of goods and services; and these emissions per unit consumption expenditures mainly come from indirect emissions. To deeply explore the relationships between consumption patterns and CO2 emissions, two scenarios are established to eliminate the differences in income level and consumption propensity among different groups step by step. Main results indicate that (1) the income gap is the primary cause of the significant differences in emission levels among each group; (2) the difference in consumption propensity is also a notable reason; and (3) the rural higher income groups spend a larger share of their income on those carbon-intensive goods (e.g., electricity, transportation, energy products), thus making their consumption patterns more carbon-intensive, while for the urban, the consumption patterns of lower income groups are more carbon-intensive. Finally, policy recommendations on the reduction of household emissions are also made.

  相似文献   

16.
China has become the biggest CO2 emitter in the world. In China, economic development in different regions is not the same. Thus, it is necessary to study the regional decoupling relationship between energy-related CO2 emission and economic development. Considering the regional difference of economic development, energy consumption and CO2 emission, provincial regions in China are divided into seven economic bands. The Tapio decoupling method is adopted to calculate the decoupling index in the seven regions over the study period 1996–2013. Furthermore, the WCDM is developed to study the driving factors governing the decoupling state. The result showed that decoupling development differed in each economic band; North-East and North-West, showed a better trend and a worse one, respectively, than the others. Economic factor showed a stable trend of negative effect, and energy intensity factor was the crucial factor to accelerate the process of CO2 emission decoupling. Only in Yangtze River delta, economic band had structural factor shown a positive effect during the research period, and emission efficiency factor was not stable and showed a negative effect in most years in every region.  相似文献   

17.
As an emerging technology with the potential to enable large-scale utilization of fossil fuels in a low-carbon manner, carbon capture, utilization and storage (CCUS) is widely considered to be a strategic technology option to help reduce CO2 emissions and ensure energy security in China. In principle, CCUS can be divided into three categories, namely chemical utilization, biological utilization and geological utilization. Of the three categories, carbon geological utilization and storage (CGUS) technology has obtained the most attention lately due to its ability to utilize underground resources and conditions, to generate further economic benefits, a feature that distinguishes it from other CO2 reduction technologies. The CGUS technology related in this paper has various types, each with its own potential, difficulties and characteristics. This paper summarizes China’s research findings on the various types of CGUS technology, analyzes their research status, development potential, early opportunities and long-term contributions and recommends major geological utilization methods to policy makers and investors based on China’s natural resources and industrial characteristics. Besides, this paper analyzes the status, mechanisms and limitations of China’s relations with other countries in this field, as a means to promote research cooperation on an international level.  相似文献   

18.
马冰  贾凌霄  于洋  王欢  陈静  钟帅  朱吉昌 《中国地质》2021,48(2):347-358
碳中和是当前世界关注的热点,地球科学可以在其中发挥很大的作用。在国际上,政府间气候变化专门委员会、国际能源署、能源转型委员会,以及在国家层面,政策咨询小组已就CO_2减排可能的实现方式提出了一系列模型和预测情景,表明要实现碳中和,电将代替化石燃料成为全球能源的主要载体。在全球迫切需要减排的背景下,地球科学为实现《巴黎协定》气候目标提供地质解决方案至关重要,主要科学问题涉及:储热与地热;干热岩;水电储能;压缩空气储能;核能;碳捕集与储存;氢经济;能源转型需要的矿产原材料。这就需要地球科学:一是对岩石进行地球化学和地质体的岩石力学特征描述,以便在可能开展脱碳的地区储存CO_2和建立绿色能源系统;二是进一步揭示电动汽车电池和风力涡轮机等所需矿产资源的起源和成因;三是从小型实验室尺度扩大到试点、工业化和商业化全尺度规模;四是要了解公众对地下脱碳技术的态度,保证项目安全性。碳中和目标为地球科学研究提供了新的机遇,未来发展需要从多方面提供支持;提高对地球科学在实现脱碳方面关键作用的认识,并发展技术,打造产业链,实现可持续发展。  相似文献   

19.
This study examines the impact of income inequality and economic growth on environmental degradation in Pakistan using ARDL bounds testing approach for the period 1966–2011. Empirical results for the aggregate CO2 emissions and its four sources such as CO2 emissions from solid fuel, liquid fuel and gaseous fuel consumption as well as electricity and heat production confirm the existence of long run co-integrated relationship between income inequality, economic growth and environment degradation. The estimated results indicate that carbon emissions increase as the income gap expands in Pakistan. Besides the negative impact of industrial share and population density on CO2 emissions, we also confirm that economic growth in Pakistan comes up with higher emissions. Hence, the hypothesis of EKC is not valid for Pakistan during the study period. Our empirical findings are robust as evidenced by dynamic ordinary least squared and the U-tests. Overall, this study suggests that the distribution of income matters to aggregate carbon emissions and focus should be made on sustained economic growth to reduce pollutants and hence CO2 emission in the study area.  相似文献   

20.
The purpose of this paper is to use the gravity theory to study the spatial distribution and centers of gravity for the global energy-related CO2 emissions and to determine how they have changed over time. The main results are as follows: (1) In 2011, global energy-related CO2 emissions reached 34,032.74 Mt, and Asia was the largest CO2 emitter, which accounted for 45.25 % of total CO2 emissions in the world. (2) Since 2006, China has exceeded the USA and become the biggest CO2 emissions country. (3) In terms of the annual growth speed of CO2 emissions, China is the fastest, followed by India, Saudi Arabia, Brazil, and South Africa. (4) During the study period, the center of gravity for CO2 emissions is an overall movement toward the southeast, and Asia has become the center of gravity for CO2 emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号