首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Iran is one of the most seismically active countries of the world located on the Alpine-Himalayan earthquake belt. More than 180,000 people were killed due to earthquakes in Iran during the last five decades. Considering the fact that most Iranians live in masonry and non-engineered houses, having a comprehensive program for decreasing the vulnerability of society holds considerable importance. For this reason, loss estimation should be done before an earthquake strikes to prepare proper information for designing and selection of emergency plans and the retrofitting strategies prior to occurrence of earthquake. The loss estimation process consists of two principal steps of hazard analysis and vulnerability assessment. After identifying the earthquake hazard, the first step is to evaluate the vulnerability of residential buildings and lifelines and also the social and economic impacts of the earthquake scenarios. Among these, residential buildings have specific importance, because their destruction will disturb the daily life and result in casualties. Consequently, the vulnerability assessment of the buildings in Iran is important to identify the weak points in the built environment structure. The aim of this research is to prepare vulnerability curves for the residential buildings of Iran to provide a proper base for estimating probable damage features by future earthquakes. The estimation may contribute fundamentally for better seismic performance of Iranian societies. After a brief review of the vulnerability assessment methods in Iran and other countries, through the use of the European Macroseismic method, a model for evaluating the vulnerability of the Iranian buildings is proposed. This method allows the vulnerability assessment for numerous sets of buildings by defining the vulnerability curves for each building type based on the damage observations of previous earthquakes. For defining the vulnerability curves, a building typology classification is presented in this article, which is representative of Iranian building characteristics. The hazard is described in terms of the macroseismic intensity and the EMS-98 damage grades have been considered for classifying the physical damage to the buildings. The calculated vulnerability indexes and vulnerability curves show that for engineered houses there is not any notable difference between the vulnerability of Iranian and Risk-UE building types. For the non-engineered houses, the vulnerability index of brick and steel structures is less than the corresponding values of the other unreinforced masonry buildings of Iran. The vulnerability index of unreinforced and masonry buildings of Iran are larger than the values of the similar types in Risk-UE and so the Iranian buildings are more vulnerable in this regard.  相似文献   

2.
Al Hoceima is one of the most seismic active regions in north of Morocco. It is demonstrated by the large seismic episodes reported in seismic catalogs and research studies. However, seismic risk is relatively high due to vulnerable buildings that are either old or don’t respect seismic standards. Our aim is to present a study about seismic risk and seismic scenarios for the city of Al Hoceima. The seismic vulnerability of the existing residential buildings was evaluated using the vulnerability index method (Risk-UE). It was chosen to be adapted and applied to the Moroccan constructions for its practicality and simple methodology. A visual inspection of 1102 buildings was carried out to assess the vulnerability factors. As for seismic hazard, it was evaluated in terms of macroseismic intensity for two scenarios (a deterministic and probabilistic scenario). The maps of seismic risk are represented by direct damage on buildings, damage to population and economic cost. According to the results, the main vulnerability index of the city is equal to 0.49 and the seismic risk is estimated as Slight (main damage grade equal to 0.9 for the deterministic scenario and 0.7 for the probabilistic scenario). However, Moderate to heavy damage is expected in areas located in the newer extensions, in both the east and west of the city. Important economic losses and damage to the population are expected in these areas as well. The maps elaborated can be a potential guide to the decision making in the field of seismic risk prevention and mitigation strategies in Al Hoceima.  相似文献   

3.
Empirical, theoretical or hybrid methods can be used for the vulnerability analysis of structures to evaluate the seismic damage data and to obtain probability damage matrices. The information on observed structural damage after earthquakes has critical importance to drive empirical vulnerability methods. The purpose of this paper is to evaluate the damage distributions based on the data observed in Erzincan-1992, Dinar-1995 and Kocaeli-1999 earthquakes in Turkey utilizing two probability models—Modified Binomial Distribution (MBiD) and Modified Beta Distribution (MBeD). Based on these analyses, it was possible (a) to compare the advantages and limitations of the two probability models with respect to their capabilities in modelling the observed damage distributions; (b) to evaluate the damage assessment for reinforced concrete and masonry buildings in Turkey based on these models; (c) to model the damage distribution of different sub-groups such as buildings with different number of storeys or soil conditions according to the both models. The results indicate that (a) MBeD is more suitable than the MBiD to model the observed damage data for both reinforced concrete and masonry buildings in Turkey; (b) the sub-groups with lower number of stories are located in the lower intensity levels, while the sub-groups with higher number of stories depending on local site condition are concentrated in the higher intensity levels, thus site conditions should also be considered in the assessment of the intensity levels; (c) the detailed local models decrease the uncertainties of loss estimation since the damage distribution of sub-groups can be more accurately modelled compared to the general damage distribution models.  相似文献   

4.
Vulnerability assessment of natural disasters is a crucial input for risk assessment and management. In the light of increasing frequency of disasters, societies must become more disaster resilient. This research tries to contribute to this aim. For risk assessment, insight is needed into the hazard, the elements at risk and their vulnerabilities. This study focused on the estimation of structural vulnerability due to flood for a number of structural elements at risk in the rural area of Orissa, India (Kendrapara), using a community-based approach together with geospatial analysis tools. Sixty-three households were interviewed about the 2003 floods in 11 villages and 166 elements at risk (buildings) were identified. Two main structural types were identified in the study area, and their vulnerability curves were made by plotting the relationships between flood depth and vulnerability for each structural type. The vulnerability ranges from 0 (no damage) to 1 (collapse/total damage). Structural type-1 is characterized by mud wall/floor material and a roof of paddy straw, and structural type-2 is characterized by reinforced cement concrete (RCC) walls/floor and a RCC roof. The results indicate that structural type-1 is most vulnerable for flooding. Besides flood depth, flood duration is also of major importance. Houses from structural type-1 were totally collapsed after 3 days of inundation. Damage of the houses of structural type-2 began after 10 days of inundation.  相似文献   

5.
Building seismic vulnerability assessment plays an important role in formulating pre-disaster mitigation strategies for developing countries. The occurrence of high-resolution satellite sensors has greatly motivated it by providing a promising approach to obtain building information. However, this also brings a big challenge to the accurate building extraction and its coherent integration with the assessment model. The main objective of this paper is to investigate how to extract building attributes from high-resolution remote sensing imagery using the object-based image analysis (OBIA) method, so as to accurately and conveniently assess building seismic vulnerability by the combination of in situ field data. A general framework for the assessment of building seismic vulnerability is presented, including (1) the extraction of building information using OBIA, (2) building height estimation, and (3) the support vector machine (SVM)-based building seismic vulnerability assessment. Particularly, an integrated solution is proposed that merges the strengths of multiple spatial contextual relationships and some typical image object measures, under the unified framework to improve building information extraction at different scale levels as well as for different interest objects. With the aid of 35 building samples from two powerful earthquakes in China, the cloud-free WorldView-2 images and some building structure parameters from field survey were used to quantity the grades of building seismic vulnerability in Wuhan Optics Valley, China. The results show that all 48 buildings among the study area have been well detected with an overall accuracy of 80.67 % and the mean error of heights estimated from building shadow is less than 2 m. This indicates that the integrated analysis strategy based on OBIA is suitable for extracting the building information from high-resolution remote sensing imagery. Additionally, the assessment results using SVM show that the building seismic vulnerability is statistically significantly related to structure types and building heights. Both the proposed OBIA method and its integration strategy with SVM are easily implemented and provide readily interpretable assessment results for building seismic vulnerability. This reveals that the proposed method has a great potential to assist urban planners for making local disaster mitigation planning through the prioritization of intervention measures, such as the reinforcement of walls and the dismantlement of endangered houses.  相似文献   

6.
Within the framework of recent research projects, basic tools for GIS-based seismic risk assessment technologies were developed and applied to the building stock and regional particularities of German earthquake regions. Two study areas are investigated, being comparable by the level of seismic hazard and the hazard-consistent scenario events (related to mean return periods of 475, 2475 and 10000 years). Significant differences exist with respect to the number of inhabitants, the grade and extent of urbanisation, the quality and quantity of building inventory: the case study of Schmölln in Eastern Thuringia seems to be representative for the majority of smaller towns in Germany, the case study of Cologne (Köln) stands for larger cities. Due to the similarities of hazard and scenario intensities, the considerable differences do not only require proper decisions concerning the appropriate methods and acceptable efforts, they enable conclusions about future research strategies and needs for disaster reduction management. Not least important, results can sharpen the focus of public interest. Seismic risk maps are prepared for different scenario intensities recognising the scatter and uncertainties of site-dependent ground motion and also of the applied vulnerability functions. The paper illustrates the impact of model assumptions and the step-wise refinements of input variables like site conditions, building stock or vulnerability functions on the distribution of expected building damage within the study areas. Furthermore, and in contrast to common research strategies, results support the conclusion that in the case of stronger earthquakes the damage will be of higher concentration within smaller cities like Schmölln due to the site-amplification potential and/or the increased vulnerability of the building stock. The extent of damage will be pronounced by the large number of masonry buildings for which lower vulnerability classes have to be assigned. Due to the effect of deep sedimentary layers and the composition of building types, the urban centre of Cologne will be less affected by an earthquake of comparable intensity.  相似文献   

7.
汶川8.0级地震液化震害及特征   总被引:3,自引:1,他引:2  
通过现场详细地调查,归纳总结了汶川地震液化导致的工程震害的现象、分布、规律和特征。结果表明,此次地震液化震害现象显著,位于德阳地区的3个液化区域震害严重,都江堰地区、绵阳游仙区以及江油市区的3个液化区域震害中等,其他地区轻微,液化震害分布与液化分布有一定关系,但二者有所不同;液化场地上房屋均不同程度受损,其中结构性差的房屋会直接倒塌,设有圈梁、构造柱的房屋,液化也会导致其整体倾斜、下沉、开裂;学校液化震害具有典型性,部分校区大面积液化,地裂缝纵横,地基不均匀沉降严重,主体结构开裂、倾斜,功能丧失。这次液化震害具有3个显著特征:(1)只要液化出现的地方,震害均比周围重,没有减震现象;(2)Ⅵ度区不仅有液化现象,而且有明显的液化震害;(3)液化伴随地裂缝,是构成此次地震液化震害的主因。  相似文献   

8.
Seismic risk assessment of buildings in Izmir,Turkey   总被引:1,自引:1,他引:0  
Izmir, the third largest city and a major economic center in Turkey, has more than three million residents and half million buildings. In this study, the seismic risk in reinforced concrete buildings that dominate the building inventory in Izmir is investigated through multiple approaches. Five typical reinforced concrete buildings were designed, modeled and assessed for seismic vulnerability. The sample structures represent typical existing reinforced concrete hospital, school, public, and residential buildings in Izmir. The seismic assessments of the considered structures indicate that they are vulnerable to damage during expected future earthquakes.  相似文献   

9.

Assessment of seismic vulnerability of urban areas provides fundamental information for activities of planning and management of emergencies. The main difficulty encountered when extending vulnerability evaluations to urban contexts is the definition of a framework of assessment appropriate for the specific characteristics of the site and providing reliable results with a reasonable duration of surveys and post-processing of data. The paper proposes a new procedure merging different typologies of information recognized on the territories investigated and for this reason called “hybrid.” Knowledge of historical events influencing urban evolution and analysis of recurrent building technologies are used to evaluate the vulnerability indexes of buildings and building stocks. On the other hand, a vulnerability model is calibrated by means of experimental and numerical investigations on prototype buildings representative of the most recurrent typologies. In the final framework, the vulnerability index, calculated through simplified assessment forms, is linked to the seismic intensity expressed by the peak ground acceleration and associated with an index of damage expressing the economical loss. The procedure has been tested on the urban center of Lampedusa island (Italy) providing as the output vulnerability index maps, vulnerability curves, critical PGA maps, and estimation of the economical damage associated with different earthquake scenarios. The application of the procedure can be suitably repeated for medium-to-small urban areas, typically recurring in the Mediterranean by carrying out each time a recalibration of the vulnerability model.

  相似文献   

10.
Assessment of seismic vulnerability of urban areas provides fundamental information for activities of planning and management of emergencies. The main difficulty encountered when extending vulnerability evaluations to urban contexts is the definition of a framework of assessment appropriate for the specific characteristics of the site and providing reliable results with a reasonable duration of surveys and post-processing of data. The paper proposes a new procedure merging different typologies of information recognized on the territories investigated and for this reason called “hybrid.” Knowledge of historical events influencing urban evolution and analysis of recurrent building technologies are used to evaluate the vulnerability indexes of buildings and building stocks. On the other hand, a vulnerability model is calibrated by means of experimental and numerical investigations on prototype buildings representative of the most recurrent typologies. In the final framework, the vulnerability index, calculated through simplified assessment forms, is linked to the seismic intensity expressed by the peak ground acceleration and associated with an index of damage expressing the economical loss. The procedure has been tested on the urban center of Lampedusa island (Italy) providing as the output vulnerability index maps, vulnerability curves, critical PGA maps, and estimation of the economical damage associated with different earthquake scenarios. The application of the procedure can be suitably repeated for medium-to-small urban areas, typically recurring in the Mediterranean by carrying out each time a recalibration of the vulnerability model.  相似文献   

11.

Northern Algeria has experienced many destructive earthquakes throughout its history. The largest recent events occurred in El Asnam on October 10, 1980 (moment magnitude; Mw = 7.3), in Constantine on October 27, 1985 (surface-wave magnitude; Ms = 6.0), and in Zemmouri–Boumerdes on May 21, 2003 (Mw = 6.8). Because of the high population density and industrialization in these regions, the earthquakes had disastrous consequences and hence highlighted the vulnerability of Algeria to seismic events. To reduce seismic risk in Constantine, the capital city of East Algeria, we present a seismic risk scenario for this city, focusing on the vulnerability of the key historic areas of Coudia, Bellevue–Ciloc, and the Old City. This scenario allows us to assess the maximum ground acceleration using empirical attenuation laws, based on the following considerations: (a) the 1985 Constantine seismic event as an earthquake reference; (b) site effects related to regional geology; (c) damage to buildings, and (d) seismic vulnerability. This study shows the map of peak ground acceleration taking into account the effects of site lithology (Avib). We observe the strongest vibrations along the two rivers “Boumerzoug and Rhumel” and also, we note that the EC8 gives a good estimate acceleration in the image of the three studied areas (Bellevue–Ciloc, Coudia, and Old Town). By correlating with the geology, we observe an acceleration of 0.13 g in the neritic limestone of the rock (Old Town) something that fits with the value obtained 0.14 g (PGA) without taking into consideration the lithology. Moreover, according to the Algerian Earthquake Engineering Code (2003) (RPA), the Wilaya of Constantine is classified in the zone IIa (medium seismicity) with an acceleration data of 0.25 g. This study integrates geographic information system (GIS) data into risk models.

  相似文献   

12.
Northern Algeria has experienced many destructive earthquakes throughout its history. The largest recent events occurred in El Asnam on October 10, 1980 (moment magnitude; Mw = 7.3), in Constantine on October 27, 1985 (surface-wave magnitude; Ms = 6.0), and in Zemmouri–Boumerdes on May 21, 2003 (Mw = 6.8). Because of the high population density and industrialization in these regions, the earthquakes had disastrous consequences and hence highlighted the vulnerability of Algeria to seismic events. To reduce seismic risk in Constantine, the capital city of East Algeria, we present a seismic risk scenario for this city, focusing on the vulnerability of the key historic areas of Coudia, Bellevue–Ciloc, and the Old City. This scenario allows us to assess the maximum ground acceleration using empirical attenuation laws, based on the following considerations: (a) the 1985 Constantine seismic event as an earthquake reference; (b) site effects related to regional geology; (c) damage to buildings, and (d) seismic vulnerability. This study shows the map of peak ground acceleration taking into account the effects of site lithology (Avib). We observe the strongest vibrations along the two rivers “Boumerzoug and Rhumel” and also, we note that the EC8 gives a good estimate acceleration in the image of the three studied areas (Bellevue–Ciloc, Coudia, and Old Town). By correlating with the geology, we observe an acceleration of 0.13 g in the neritic limestone of the rock (Old Town) something that fits with the value obtained 0.14 g (PGA) without taking into consideration the lithology. Moreover, according to the Algerian Earthquake Engineering Code (2003) (RPA), the Wilaya of Constantine is classified in the zone IIa (medium seismicity) with an acceleration data of 0.25 g. This study integrates geographic information system (GIS) data into risk models.  相似文献   

13.
Earthquakes incur the greatest damage compared with all the other natural deleterious occurrences; when occurring in industrialized and densely populated regions, they can prove devastating. In the Russian Federation, we have more than 20 million people living in regions of moderate and high seismicity. The areas that are hit by earthquakes, with events of intensity VII (MMSK-86 scale) or greater occurring, make up approximately 20% of Russia’s area. The present paper addresses the methodological procedures of risk assessment and databases used for risk computations at different levels. The examples of seismic risk assessment and mapping at different levels: country, region and urban, are given. Special attention is paid to information and web technologies used for verification data on built environment inventory and vulnerability.  相似文献   

14.
This paper describes a multi-tiered loss assessment methodology to estimate seismic monetary implications resulting from structural damage to the building population in Greater Cairo. After outlining a ground-shaking model, data on geological structures and surface soil conditions are collated using a considerable number of boreholes to produce a classification of different soil deposits. An inventory database for the existing building stock is also prepared. The seismic vulnerability of representative reinforced concrete building models, designed according to prevalent codes and construction practices, is evaluated. Capacity spectrum methods are utilised for assessing the structural performance through a multi-level damage scale. A simplified methodology for deriving fragility curves for non-ductile reinforced concrete building classes that typically constitute the building population of the city is adopted. In addition, suitable fragility functions for unreinforced masonry constructions are selected and used for completing the loss model for the study area. The results are finally used to build an event-based loss model caused by possible earthquakes in the region.  相似文献   

15.
张伟丽  邓黎  庞于涛  于淼  田建林 《地球科学》2022,47(12):4390-4400
强震作用下土石坝极易出现失稳破坏,从而造成人员伤亡和较大的社会经济损失.由于地震的不确定性,强震作用下土石坝失稳分析通常采用失稳概率表示,目前常用方法是地震易损性分析方法,主要有云图法和增量动力分析(incremental dynamic analysis,IDA)两种方法.IDA方法计算结果准确,但计算效率低,云图法计算效率虽高,但计算精度无法得到有效保证.基于上述问题,提出了一种基于云图法和IDA方法的地震易损性快速精准分析方法(CIHA,cloud-IDA hybrid approach).CIHA方法可兼顾计算效率和计算精度,该方法基于云图法的对数线性回归假设,通过非线性时程分析,并对地震波进行一次放缩来计算相应损伤指标下的地震动强度值,利用地震动强度值得到的均值和方差生成土石坝在各个损伤等级下的易损性曲线.通过对Lower San Fernando土石坝的地震易损性分析,将所提CIHA方法与IDA方法的计算结果进行了对比.结果表明,在计算精度方面,CIHA方法可以获得与IDA方法相近的结果,在计算效率方面,CIHA方法相比IDA方法计算效率有显著提高.   相似文献   

16.
基于GIS重庆岩溶地区生态环境脆弱度评价   总被引:13,自引:3,他引:10  
官冬杰  苏维词 《中国岩溶》2006,25(3):211-218
重庆岩溶区属典型的生态环境脆弱区,宜耕地资源不足,土地退化严重,承受自然灾害能力低,使岩溶地区的社会经济发展和生态环境的协调性差,可持续发展能力弱。本文以重庆市岩溶地区为例,选择碳酸盐岩出露面积、山地面积、旱坡耕地面积、石漠化程度(包括轻度、中度和高度)、森林覆盖率、水土流失面积、土壤侵蚀模数、滑坡体积密度、垦殖指数、人均耕地面积、农业人口密度等13项生态环境脆弱度影响因子作为评价指标,利用层次分析法赋予指标权重,然后构建模糊数学模型对岩溶地区生态环境脆弱度进行评价研究,基于GIS技术对评价结果进行等级划分。结果表明: 重庆25个岩溶区县中潜在脆弱区县3个,轻度脆弱区县10个,中度脆弱区县6个,重度脆弱区县6个。   相似文献   

17.
华北地区距雄安新区300 km范围内包括唐山、邢台和张北三个典型强震区,近50年来,先后发生1966年邢台7.2级、1976年唐山7.8级和1998年张北6.2级强震活动,未来仍具发生破坏性地震的风险。在现今构造应力环境下,3个典型强震区内断裂活动危险性如何、再次发生中强地震对雄安新区地面稳定性有怎样的影响,这些都是要回答的问题。对此,本文首先基于唐山、邢台和张北强震区关键构造部位深孔水压致裂地应力测量数据,依据Byerlee断层滑动失稳摩擦准则,计算各强震区内潜在发震断层的临界失稳状态,探讨断裂活动危险性;之后依据中华人民共和国第五代《中国地震动参数区划图》之《中国大陆及邻区潜在震源区划分图》,厘定雄安新区外围300 km范围内主要潜在震源区和震级上限;最后选取适宜的地震烈度衰减模型,定量计算主要潜在震源区未来发生震级上限地震时对雄安新区地震烈度的影响,进而为雄安新区及重大工程抗震设防提供科学参考。结果表明:(1)唐山、邢台和张北强震区内主要潜在震源区未来发生震级上限地震产生的地震烈度衰减至雄安新区时均位于Ⅳ~Ⅶ度;(2)北京通州及邻区发生8.0级地震、涞水—高碑店沿线发生6.5级地震会在雄安新区产生Ⅶ度地震烈度,震害较轻;(3)其他潜在震源区在雄安新区产生的地震烈度均小于V度,并不会产生显著震害效应。鉴于此,雄安新区抗震设防烈度建议由原Ⅶ度调至Ⅷ度为宜。  相似文献   

18.
In this paper, the extent to which the potentially transit-dependent portion of the population is vulnerable to the effects of a hurricane is estimated. The vulnerability of an area is defined as a composite measure of the proportion of disadvantaged persons, distance to transit, and flooding potential of people within an area. Unlike past studies which have focused on the vulnerability of the population in relatively large geographic areas, this study estimates the vulnerability of the population in 30 m × 30 m areas as defined in the National Land Cover Database. Population estimates from the national census at block level are disaggregated to the 30 m × 30 m units using a modified dasymetric mapping method in ArcGIS. The modified mapping method assigns population to each small areal unit using weights estimated by regressing the area of each land use in a census block against the population in that block. The coefficients in the regression analysis are “weights” associating population with each land use, and are used to distribute the population in each census block to the small geographic units based on their land use. In a case study of New Orleans, the results show that some areas are not well served by the existing transit pickup locations, as evidenced by their high vulnerability scores. Reassignment of pickup point locations to cover higher vulnerability score areas was investigated using integer linear programming. The results show that the optimally located pickup points serve areas with a larger average vulnerability score than the current pickup points in the study area. The method appears to be helpful in identifying vulnerable areas that, subsequently, could receive improved hurricane evacuation service in the future.  相似文献   

19.
Yu Huang  Miao Yu 《Natural Hazards》2013,65(3):2375-2384
Liquefaction, which can be defined as a loss of strength and stiffness in soils, is one of the major causes of damage to buildings and infrastructure during an earthquake. To overcome a lack of comprehensive analyses of seismically induced liquefaction, this study reviews the characteristics of liquefaction and its related damage to soils and foundations during earthquakes in the first part of the twenty-first century. Based on seismic data analysis, macroscopic phenomena of liquefaction (e.g., sand boiling, ground cracking, and lateral spread) are summarized, and several new phenomena related to earthquakes from the twenty-first century are highlighted, including liquefaction in areas with moderate seismic intensity, liquefaction of gravelly soils, liquefaction of deep-level sandy soils, re-liquefaction in aftershocks, liquid-like behavior of unsaturated sandy soils. Additionally, phenomena related to damage in soils and foundations induced by liquefaction are investigated and discussed.  相似文献   

20.
A vectorial modelling of observed macroseismic intensity aimed at the analytical determination of the epicentre is proposed here. The methodology is based on the determination of a plane system of vectors which characterises the macroseismic intensity distribution. The epicentre of each seismic event considered is determined as the centre of this vector system by an analytical expression which is independent from all possible directions of seismic energy propagation. The analysis of the intensity distribution is carried out by a new model called a macroseismic plane, different from the one known as macroseismic field, formed by a set of small areas built around the observed intensity points; hence its name.With the proposed methodology, some earthquakes in southern Italy and eastern Sicily are analysed calculating their epicentres, also for distributions of observed intensity which are particularly complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号