首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The species composition and relative abundance of ichthyoplankton were investigated during summer 1986 at four stations along the salinity gradient in the Manicouagan River estuary, a tributary of the lower St. Lawrence estuary. Physical characteristics of water masses indicated the presence of a strong saline front (>10‰ per km) delineating the freshwater and marine section of the Manicouagan estuary. The estuary supports a depauperate ichthyoplankton community, including four species of pelagic fish eggs and eight species of fish larvae. Species richness increased with salinity. The ichthyoplankton fauna can be divided into two distinct groups: freshwater and marine. These two groups result initially from spawning preferences exhibited by the different species abundance of freshwater larvae was maximal at the head of the estuary and marine larvae were most abundant at the most saline station. The length frequency distribution suggests that marine larvae are not effectively retained within the estuary. The Manicouagan estuary cannot be considered as a major spawning site nor an important nursery zone for any fish found in this area.  相似文献   

2.
The European sturgeon (Acipenser sturio) is an endangered diadromous fish species that spawns in the rivers in late spring and early summer. The juveniles spend their first years in the brackish waters (5‰ to 25‰) of the estuary zone before moving out to sea. This study describes the downstream migration pattern of juvenile sturgeon, belonging to the 1994 cohort, the only one born naturally in the Gironde basin, France since the end of the 1980s. During October 1994 to December 1996 the inland section of the Gironde estuary was sampled monthly by trawl (n=818 tows) and all European sturgeon caught (n=381) were marked and released. The first sturgeon of the 1994 cohort (TL=27 cm) were caught in early March 1995 in the zones furthest upstream. During their second fall of life, juveniles gradually acclimatized, and spread over a wide range of salinity conditions. A first incursion into marine water was also observed (at least for a few fish) by the end of the second winter. During this second period, sturgeon showed preference for two particular zones situated at 18 and 38 km, respectively, from the mouth of the estuary. These zones, belonging to two different salinity sectors of the estuary, did not appear to be any different to their neighbors with regards to depth and type of substrate. There were no significant size differences among estuarine zones. Seasonal movements of sturgeon seem to be motivated by a search for warmer temperatures. After a period of early acclimatization of 15 months, juvenile European sturgeon appear to be highly tolerant of salinity variations.  相似文献   

3.
To harness hydroelectric power, most of the flow of the Santee River, SC was diverted in 1942 into Charleston Harbor, where shoaling promptly became a major problem. For this reason, most of the diverted flow is scheduled to be rediverted to the Santee within the next decade, increasing the mean discharge of the Santee from 74 to 428 m3s?1. To assess the present hydrogrpahy of the Santee estuary under conditions of moderate discharge, we determined 226 vertical profiles of velocity, salinity, and temperature distributed over 17 stations in February, 1975. We found that 73 and 27% of the discharge reached the ocean via the North and South distributaries, respectively. The 1 ppt isohaline was found no further than 8 km upstream from the mouth, indicating the limited extent of the estuarine zone. The Santee is a partially mixed estuary classified as type 2b. The circulation parameter is approximately 3 and the stratification parameter approximately 0.3. The bulk parameters indicate the importance of tidal, mixing and a weakly developed gravitational circulation. When rediversion is completed, the net salinity in the lower Santee River can be expected to decrease drastically, which in turn is likely to terminate the lucrative oyster and clam fishery.  相似文献   

4.
The aquatic macrofauna of the Guadalquivir estuary were sampled (1 mm mesh persiana net) at 5 sampling sites located along the entire (except the tidal freshwater region) estuarine gradient of salinity (outer 50 km). A total of 134 fish and macroinvertebrate species was collected but only 62 were considered common or regularly present in the estuary. Univariate measures of the community structure showed statistically significant differences among sampling sites: species richness, abundance, and biomass decreased in the upstream direction, being positively correlated with the salinity. Temporal differences of these three variables were also statistically significant. While a clear seasonal pattern (minimum densities in winter and maximum in spring-summer) was observed for abundance and biomass, no such pattern existed for the number of species. Mysids was the most dominant group throughout the estuary (96% to 99% of abundance; 49% to 85% of biomass), although fish biomass was also important at the outer estuary (36% to 38%). Multivariate analyses indicated highly significant spatial variation in the macrofaunal communities observed along the salinity gradient. These analyses suggest that the underlying structure was a continuum with more or less overlapping distributions of the species dependent on their ability to tolerate different physicochemical conditions. There were also significant temporal (intermonthly + interannual) variation of the estuarine community; the relative multivariate dispersion indicated that monthly variation was more considerable (relative multivariate dispersion >1) at the outer part of the estuary during the wet year (last 20 km) and was higher in the inner stations during the dry year (32 to 50 km from the river mouth). Since a clear negative exponential relationship was observed between the freshwater input (from a dam located 110 km upstream) and water salinity at all sampling stations, it is concluded that the human freshwater management is probably affecting the studied estuarine communities. While the higher seasonal (long-term) stability of the salinity gradient, due to the human control of the freshwater input, may facilitate the recruitment of marine species juveniles during the meteorologically unstable early-spring, the additional (short-term) salinity fluctuations during the warm period may negatively affect species that complete their lifecycle within the estuary.  相似文献   

5.
The purpose of this study was to determine whether there was a sufficiently high residual salt load in the dry sediments of the St Lucia Estuary to cause salinity problems should it later fill up with either freshwater or seawater. The estuary lakes have suffered the effects of a severe drought since 2002 with the result that many areas were dry, and the salinity of the residual water varied between 4 psu and up to five times that of seawater. Measurements of the salts content in the sediments to a depth of 20 cm showed that more than 2 million tonnes of salt was held in this layer of the sediment in 2006. Recent management of the estuary (since 1970) has ensured that the mouth was not artificially opened. This was to prevent the inflow of seawater, with its salts, that would otherwise enter while the drought was in place. The results of the sediment salinity data showed that if the drought had been broken and the lake area filled with rain and river water, the resulting salinity would be about 6 psu. In March 2007, Cyclone Gamede in the Indian Ocean off the east coast of South Africa produced a wave climate at sea that resulted in the mouth breaching; thus introducing an estimated 12 million tonnes of salts. The high salinity in the system resulting from this breach is expected to have an adverse effect on the ecology of the system, whereas the residual salinity in the sediments would not have caused an environmental problem. If the estuary and lake system were to fill completely with seawater, the residual salts together with seawater will raise the salinity to an initial value higher than 40 psu, which will have the effect of suppressing much of the important submerged vegetation that is vital for sustaining juvenile fish in the system. Many of the large fauna will also suffer from a shortage of freshwater.  相似文献   

6.
The ecology of the St Lucia estuary in South Africa is of unique international importance. During droughts the estuary experiences high salinities, with values above that of seawater. Ion-poor groundwater flowing into the estuary from prominent sand aquifers along its eastern shoreline forms low-salinity habitats for salt-sensitive biota. During droughts, plants and animals can take refuge in the groundwater discharge zone until the condition in the estuary regains tolerable salinity. Simulations of the groundwater discharge indicate that the flow can persist during droughts over at least a decade, and be of great important for the resilience of the estuary. Anthropogenic activities have reduced the river inflow and made the St Lucia estuary more sensitive to droughts. The groundwater has thereby become increasingly important for the estuary’s ecology. Protection of the groundwater discharge along the shoreline itself and actions to increase the groundwater recharge are therefore important management tasks.  相似文献   

7.
The distribution of macroinfauna was quantified in subtidal, soft-bottom habitats, extending from the estuarine mouth to the tidal head of the Gamtoos—a small, shallow, temperate estuary situated on the south coast of South Africa. Sampling covered the full salinity gradient from fresh to marine waters, and all sediment types from marine sands to fluvial silts. A total of 35 taxa was recorded, of which 22 occurred throughout the year. Species richness and diversity declined from the seawater-dominated mouth region toward the fresh water section at the tidal head of the estuary. Sediment type generally bore no clear relation to biotic diversity. A marked drop in salinity between winter and summer sample series (Δ 0.2‰ to 24‰) coincided with a reduction of mean macrofaunal density by 70%, a more seaward relocation, and a compression of axial ranges of most taxa. Numerical classification and ordination of faunistically similar regions and of co-occurring species delineated four habitat zones along the longitudinal axis of the estuary which harbour four distinct macrofaunal assemblages: 1) A tidal inlet area with salinities close to seawater; clean, coarse, marine sands, rich in CaCO3 harbour a stenohaline fauna normally found on adjacent, marine sandy beaches. 2) In the lower reaches, where fine, fluvial silts of high organic content prevail, euryhaline polychaetes dominate the macrozoobenthic community; bottom salinities in this zone seldom dropped below 25‰ 3) The middle reaches, characterized by oligohaline- to polyhaline waters, stretch over sandy sediments of intermediate carbonate, silt, and organic fractions; the fauna comprises typical estuarine forms, which occurred throughout most of the estuary except at its seaward and landward limits. 4) The upper reaches encompass the limnetic waters near the tidal head of the estuary with sediments in this zone being composed mostly of coarse, clean sands, low in CaCO3; the macrobenthos in this region is dominated by taxa of freshwater origin, which generally do not penetrate seaward beyond the oligohaline waters, and by exceptionally euryhaline estuarine species. Salinity appears as the main factor in controlling faunal assemblages at both extremes of the estuarine gradient (i.e., tidal inlet and head), whereas sediment type delineates between communities in the mesohaline to polyhaline reaches. Axial (i.e., from tidal inlet to tidal head of the estuary) zonation patterns of macroinfauna broadly matched those of mesozooplankton and fishes, supporting the notion of a general structure underlying species distribution patterns in the Gamtoos estuary.  相似文献   

8.
Since 1991, the Caernarvon Freshwater Diversion has been reintroducing Mississippi River water into a previously hydrologically isolated estuary in an effort to restore wetlands. To determine the effect of freshwater inflow on estuarine nekton community structure, a Before?CAfter?CControl?CImpact study design was applied. As a result of the opening, salinities in the impact area decreased, and the nekton community structure in the estuary changed significantly. Species of economical or ecological importance either increased in biomass or exhibited no response to the opening of the diversion. Higher abundances of small fish were observed in the area receiving freshwater flow, which is an indication that the area serves as a refuge from large marine predators. Because a salinity gradient was established, as opposed to a uniform but lower salinity regime, aquatic habitat was available to nekton species from a wide spectrum of salinity tolerances.  相似文献   

9.
Mangrove wetland ecosystems in Ganges-Brahmaputra delta in Bangladesh   总被引:1,自引:0,他引:1  
The Sundarbans is one of the productive mangrove wetland ecosystems in the Ganges-Brahmaputra delta in Bangladesh. The delta is undergoing rapid ecological changes due to human activity. In the present study, surface water salinity data from 13 rivers of the Sundarbans were collected in order to investigate the saline water intrusion in the mangrove wetlands. Results demonstrate that saline water has penetrated the upstream area as river water salinity has increased significantly in 1976 compared to the year 1968. The soil and river water salinity data also shows that it has crossed the water salinity threshold line in most parts of the Sundarbans wetlands. These observations are due to the construction of Farakka Barrage in 1975, which reduced the water discharge of the Ganges River from 3700 m3/s in 1962 to 364 m3/s in 2006. The shortage of freshwater discharge to the deltaic area is trailing active ecosystems function, especially in the dry season in the south western region in Bangladesh. The objective of this study is to understand and analyze the present degraded mangrove wetland ecosystems and their negative impacts. The findings of this study would contribute to the formulation of the mangrove wetland ecosystems management plan in the Ganges delta of Bangladesh.  相似文献   

10.
The Swan River estuary, Western Australia, has undergone substantial hydrological modifications since pre-European settlement. Land clearing has increased discharge from some major tributaries roughly 5-fold, while weirs and reservoirs for water supply have mitigated this increase and reduced the duration of discharge to the estuary. Nutrient loads have increased disproportionately with flow and are now approximately 20-times higher than pre-European levels. We explore the individual and collective impacts of these hydrological changes on the Swan River estuary using a coupled hydrodynamic-ecological numerical model. The simulation results indicate that despite increased hydraulic flushing and reduced residence times, increases in nutrient loads are the dominant perturbation producing increases in the incidence and peak biomass of blooms of both estuarine and freshwater phytoplankton. Changes in salinity associated with altered seasonal freshwater discharge have a limited impact on phytoplankton dynamics.  相似文献   

11.
Systematic seasonal variations of suspended particulate matter (SPM) along a 44-km transect of the Mandovi estuary reveal that the concentrations of SPM are low at river-end stations, increase generally seaward, and are highest at sea-end stations of the estuary. An estuarine turbidity maximum (ETM) occurs at sea-end stations during June–September when river discharge is high and also in February–May when river discharge is low. These are the two windiest times of year, the former associated with the southwest monsoon and the latter characterized by a persistent sea breeze. The salinity vs. SPM plot shows that high SPM is a seaward deposit and skewed landward. Suspended matter comprised of floccules, fecal pellets, and aggregates that consist of clay and biogenic particles occur everywhere in the estuary. Diatoms are the most common and are of marine type at the sea-end and freshwater-dominated at river-end stations of the estuary. SPM is characterized by kaolinite- and smectite-rich clay mineral suites at the river- and sea-end stations, respectively. Smectite concentrations increase seawards with the increase in SPM content and are not influenced by salinity. Wind-driven waves and currents and biogeochemical processes at the mouth of estuary likely play an important role in the formation of ETM in resuspension and transformation of SPM into floccules and aggregates and in their upkeep or removal.  相似文献   

12.
Will lowering estuarine salinity increase Gulf of Mexico oyster landings?   总被引:1,自引:0,他引:1  
Previous studies provide conflicting opinions on whether lower than average salinities in Gulf of Mexico (GOM) estuaries are likely to increase or decrease oyster harvests (Crassostrea virginica), which represented 69% and 54% of the United States oyster landings by weight, and dockside value, respectively, in 2003. The present study examined a 54-yr record (1950–2003) of oyster harvests and river discharge in five major estuaries in GOM states (Florida, Alabama, Mississippi, Louisiana, and Texas). Oyster landings were inversely related to freshwater inflow. Peaks in landings, 21 of 23 in West Florida, Alabama, Mississippi, and Texas combined, were coincidental with lows in river discharge from the major rivers in the estuaries. Lows in landings in these states (17 of 19) coincided with peaks in discharge of the major rivers feeding their estuaries. Landings in Breton Sound, Louisiana, were also inversely related to river discharge. The only exception to this pattern was for landings in the Plaquemines Parish, Louisiana, part of the Breton Sound estuary, where there were higher landings following increased Mississippi River discharge. The Bonnet Carré spillway, completed in 1931, diverts flood waters from the Mississippi River to Lake Pontchartrain, and it has been opened to reduce flood heights in 1937, 1950, 1973, 1975, 1979, 1983, and 1997. Twenty-five of 28 times after the spillway was opened, oyster landings in Mississippi were lower than in the other four states. The inverse relationship between freshwater inflow and oyster landings suggests that the proposed Bonnet Carré Freshwater Project, designed to reduce estuarine salinity, cannot be justified on the basis of anticipated higher oyster yields in Mississippi or Louisiana. Manipulating estuarine salinity in the GOM should be done within the context of the whole estuary and not just part of the estuary.  相似文献   

13.
Estuarine habitat occupied by Alligator mississippiensis, a primarily freshwater species, is spatially and temporally heterogeneous largely due to a salinity gradient that fluctuates. Using long-term night light survey data, we examined seasonal patterns in alligators’ habitat use by size classes in midstream and downstream estuary zones of Shark River, Everglades National Park, in southern Florida. We observed predominantly large-sized alligators (total length?≥?1.75 m); observations of alligators in the small size classes (0.5 m?≤?total length?<?1.25 m) were rare especially in the higher-salinity downstream zone. The density of alligators in the downstream zone was lower than that of the midstream zone during the dry season when salinity increases due to reduced precipitation. Conversely, the density of the large size alligators was higher in the downstream zone than in the midstream zone during the wet season, likely because of reduced salinity. We also found a significant declining trend over time in the number of alligators in the dry season, which coincides with the reported decline in alligator relative density in southern Florida freshwater wetlands. Our results indicated high adaptability of alligators to the fluctuating habitat conditions. Use of estuaries by alligators is likely driven in part by physiology and possibly by reproductive cycle, and our results supported their opportunistic use of estuary habitat and ontogenetic niche shifts.  相似文献   

14.
To assess changes in abiotic and biotic factors between flood and ebb tides, we investigated the seasonal phytoplankton dynamics and environmental conditions along a salinity gradient at 14 stations in the Seomjin River estuary (SRE), Korea, and conducted bioassays to investigate the effect of nutrient addition (+N, +P, and +NP) on phytoplankton growth. Saltwater intrusion upstream was greatly dependent on the amount of freshwater discharge resulting from seasonal rainfall. There was a strong negative correlation between salinity and the nitrate+nitrite concentration (p?<?0.001), and between salinity and the silicate concentration (p?<?0.001), but no clear correlation between salinity and the ammonium concentration, or salinity and the phosphate concentration (p?>?0.01). This indicates that the N and Si loading increased as a result of freshwater input. The algal bioassays showed that high phytoplankton growth rates were usually recorded in response to the +NP treatment, but in the saltwater zone, the phytoplankton community also responded rapidly to the +N treatment, and to the +P treatment in the freshwater zone. The range of nutrient limitation depended on freshwater discharge. The seasonal and horizontal distribution of phytoplankton communities changed along the salinity gradient. The significant differences in abiotic factors between flood and ebb tides play important roles in controlling the biotic factors, including the occurrence of aquatic organisms including microalgae.  相似文献   

15.
In response to legislative directives beginning in 1975, the Texas Water Development Board (TWDB) and the Texas Parks and Wildlife Department (TPWD) jointly established and currently maintain a data collection and analytical study program focused on determining the effects of and needs for freshwater inflows into the state's 10 bay and estuary systems. Study elements include hydrographic surveys, hydrodynamic modeling of circulation and salinity patterns, sediment analyses, nutrient analyses, fisheries analyses, freshwater inflow optimization modeling, and verification of needs. For determining the needs, statistical regression models are developed among freshwater inflows, salinities, and coastal fisheries. Results from the models and analyses are placed into the Texas Estuarine Mathematical Programming (TxEMP) model, along with information on salinity viability limits, nutrient budgets, fishery biomass ratios, and inflow bounds. The numerical relationships are solved within the constraints and limits, and optimized to meet state management objectives for maintenance of biological productivity and overall ecological health. Solution curves from the TxEMP model are verified by TWDB’s hydrodynamic simulation of estuarine circulation and salinity structure, which is evaluated against TPWD’s analysis of species abundance and distribution patterns in each bay and estuary system. An adequate system-wide match initially verifies the inflow solution. Long-term monitoring is recommended in order to verify that implementation of future water management strategies maintain ecological health of the estuaries and to provide an early warning of needs for adaptive management strategies.  相似文献   

16.
Shallow water habitats within estuarine systems are believed to be important areas for small fish. While a wide variety of shallow habitats have been studied, the land that becomes inundated by the damming effect after the closure of intermittently open mouths has previously been overlooked. Fish were sampled monthly from both the main channel and flood zone of an intermittently open estuary between July 2004 and June 2005 using minifyke nets during the day and at night. A total of 7,787 fish were collected during the study representing 13 species and 11 families. Philypnodon grandiceps was the most abundant species and, together with Atherinosoma microstoma, Pseudogobius olorum, and Galaxias maculatus, made up 94% of the total catch. Inundation of the flood zone occurred in two discrete forms associated with mouth condition, which consisted of sporadic flooding while the mouth was open, to long-term flooding for 6 months after its closure. Large numbers of fish were captured on the flood zone, which included nine species; however, A. microstoma dominated the catch. A distinct shift in the flood zone fish assemblage occurred between the two mouth conditions, which is likely associated with changes in hydro-period and food availability of the flood zone and physico-chemical parameters in the main channel. There was no longitudinal variation in the fish assemblage in both the main channel and flood zone; similarly, the diel period was found to have little effect on the fish assemblage. The total catch per unit effort did not vary across seasons and suggests that fish abundance within the estuary is stable throughout the year. Unlike other estuarine systems where shallow water fish assemblages may be structured by variations in tide and elevation within the Surrey, freshwater inflow and, more importantly, mouth condition appear to have the greatest influence in composition of the shallow water flood zone fish assemblage of intermittently open estuaries.  相似文献   

17.
A box model based on salinity distributions and freshwater inflow measurements was developed and used to estimate net non-tidal physical circulation and hydraulic residence times for Patuxent River estuary, Maryland, a tributary estuary of Chesapeake Bay. The box model relaxes the usual assumption that salinity is at steady-state, an important improvement over previous box model studies, yet it remains simple enough to have broad appeal. Average monthly 2-dimensional net non-tidal circulation and residence times for 1986–1995 are estimated and related to river flow and salt water inflow as estimated by the box model. An important result is that advective exchange at the estuary mouth was not correlated with Patuxent River flow, most likely due to effects of offshore salinity changes in Chesapeake Bay. The median residence time for freshwater entering at the head of the estuary was 68 d and decreased hyperbolically with increasing river flow to 30 d during high flow. Estimates of residence times for down-estuary points of origin showed that, from the head of the estuary to its mouth, control of flushing changed from primarily river flow to other factors regulating the intensity of gravitational circulation.  相似文献   

18.
The hydrography and circulation of the Chubut River were investigated under exceptionally low river discharge. The frontal zone formed by the entrance of the tide in the estuary may be observed as far as 4.5 km from the mouth, showing that the salt intrusion due to tidal effects reaches further inland than during normal river discharge. Based on the classification of Hansen and Rattray (1966), the estuary corresponds to Type 1 with some vertical stratification observed on the seaward side of the frontal zone. A lateral salinity gradient was found, which was not the result of Coriolis force. The general morphology of the estuary and the consequent secondary circulation due to meanders and interchannel bars may explain the lateral variation. Wind effect is a major component of the circulation and mixing of this shallow estuary.  相似文献   

19.
三峡水库初期蓄水对长江口淡水资源的影响   总被引:13,自引:2,他引:13       下载免费PDF全文
2003年6月1~15日和同年10月20~31日三峡水库进行了初期蓄水。6月份水库蓄水后使下游大通流量减少了37%,长江口的淡水资源的持续时数降低了40%,最大盐度增加了3倍,平均盐度增加了6倍;10月份水库蓄水使大通流量减少了1/2,淡水资源的持续时间呈现下降趋势,最大盐度增加了3倍左右,平均盐度也有类似的表现。再从流量的沿程变化、流量的变化程度、影响河口淡水的持续时间、河口淡水资源影响因子方面进行了讨论,认为三峡蓄水是这两次河口淡水资源减少的主要原因。  相似文献   

20.
Salinity is an important determinant of estuarine faunal composition; previous studies, however, have indicated conflicting accounts of continuous vs. relatively rapid change in community structure at certain salinities from geographically distinct estuaries. This study uses a large fisheries monitoring database (n?>?5,000 samples) to explore evidence for estuarine salinity zonation by nekton in the lower St. Johns River estuary (LSJR). There was little evidence to support the presence of estuarine salinity zones except at the extremes of the salinity gradient (i.e., 0.1?C1.0 and 34?C39). The LSJR estuarine nekton community exhibits progressively slow ecological change throughout most of the salinity gradient with rapid change at the interfaces with fresh and marine waters??an ecoline bounded by ecotones. This study affirms the rapid change that occurs at the extremes of the salinity spectrum in certain estuaries and is relevant to efforts to manage surface water resources and estuarine ecosystems. Given the disparity in the results of the studies examining biological salinity zones in estuaries, it would be wise to have, at minimum, a regional understanding of how communities are structured along the gradient from freshwater to marine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号