首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sediment cores collected along a transect in Crooked Pond, southeastern Massachusetts, provide evidence of water-level changes between 15,000 cal yr B.P. and present. The extent of fine-grained, detrital, organic accumulation in the basin, inferred from sediment and pollen stratigraphies, varied over time and indicates low water levels between 11,200 and 8000 cal yr B.P. and from ca. 5300 to 3200 cal yr B.P. This history is consistent with the paleohydrology records from nearby Makepeace Cedar Swamp and other sites from New England and eastern Canada and with temporal patterns of regional changes in effective soil moisture inferred from pollen data. The similarities among these records indicate that (1) regional conditions were drier than today when white pine (Pinus strobus) grew abundantly in southern New England (11,200 to 9500 cal yr B.P.); (2) higher moisture levels existed between 8000 and 5500 cal yr B.P., possibly caused by increased meridonal circulation as the influence of the Laurentide ice sheet waned; and (3) drier conditions possibly contributed to the regional decline in hemlock (Tsuga) abundances at 5300 cal yr B.P. Although sea-level rise may have been an influence, moist climatic conditions during the late Holocene were the primary reason for a dramatic rise in water-table elevations.  相似文献   

2.
The landscapes of northern New England and adjacent areas of Canada changed greatly between 14,000 and 9000 yr B.P.: deglaciation occurred, sea levels and shorelines shifted, and a vegetational transition from tundra to closed forest took place. Data from 51 14C-dated sites from a range of elevations were used to map ice and sea positions, physiognomic vegetational zones, and the spread of individual tree taxa in the region. A continuum of tundra-woodland-forest passed northeastward and northward without major hesitation or reversal. An increased rate of progression from 11,000 to 10,000 yr B.P. suggests a more rapid warming than in the prior 2000–3000 yr. Elevational gradients controlled the patterns of deglaciation and vegetational change. The earliest spread of tree taxa was via the lowlands of southern Vermont and New Hampshire, and along a coastal corridor in Maine. Only after 12,000 yr B.P. did the taxa spread northward through the rest of the area. Different tree species entered the southern part of the area at different times and continued their spread at different rates. The approximate order of arrival follows: poplars (13,000–12,000 yr B.P. in the south), spruces, paper birch, and jack pine, followed by balsam fir and larch, and possibly ironwood, ash, and elm, and somewhat later by oak, maple, white pine, and finally hemlock (10,000–9000 yr B.P. in the south).  相似文献   

3.
Two sediment cores from Kaiyak and Squirrel lakes in northwestern Alaska yielded pollen records that date to ca. 39,000 and 27,000 yr B.P., respectively. Between 39,000 and 14,000 yr B.P., the vegetation around these lakes was dominated by Gramineae and Cyperaceae with some Salix and possibly Betula nana/glandulosa forming a local, shrub component of the vegetation. Betula pollen percentages increased about 14,000 yr B.P., indicating the presence of a birchdominated shrub tundra. Alnus pollen appeared at both sites between 9000 and 8000yr B.P., and Picea pollen (mostly P. mariana) arrived at Squirrel Lake about 5000 yr B.P. The current foresttundra mosaic around Squirrel Lake was established at this time, whereas shrub tundra existed near Kaiyak Lake throughout the Holocene. When compared to other pollen records from north-western North America, these cores (1) represent a meadow component of lowland. Beringian tundra between 39,000 and 14,000 yr B.P., (2) demonstrate an early Holocene arrival of Alnus in northwestern Alaska that predates most other Alnus horizons in northern Alaska or northwestern Canada, and (3) show an east-to-west migration of Picea across northern Alaska from 9000 to 5000 yr B.P.  相似文献   

4.
Mutual Climatic Range (MCR) analysis was applied to 20 fossil beetle assemblages from 11 sites dating from 14,500 to 400 yr B.P. The fossil sites represent a transect of the Rocky Mountain region from northern Montana to central Colorado. The analyses yielded estimates of mean July and mean January temperatures. The oldest assemblage (14,500 yr B.P.) yielded mean July values of 10–11°C colder than present and mean January values 26–30°C colder than present. Postglacial summer warming was rapid, as indicated by an assemblage dating 13,200 yr B.P., with mean July values only 3–4°C cooler than modern. By 10,000 yr B.P., several assemblages indicate warmer-than-modern mean summer and winter values. By 9000 yr B.P., MCR reconstructions indicate that both summer and winter temperatures were already declining from an early Holocene peak. Mean July values remained above modern levels and mean January values remained below modern levels until 3000 yr B.P. A series of small-scale oscillations followed.  相似文献   

5.
Continuous pollen and sediment records from two ∼8.5-m-long cores document late Pleistocene and Holocene sedimentation and vegetation change in the Ballston Lake basin, eastern New York State. Pebbles at the base of both cores and the geomorphology of the watershed reflect the presence of the Mohawk River in the basin prior to ∼12,900 ± 70 cal yr B.P. Ballston Lake formed at the onset of the Younger Dryas (YD) by an avulsion of the Mohawk River. The transition from clay to gyttja with low magnetic susceptibility (MS), low bulk density, and high organic carbon indicates rapid warming and increased lake productivity beginning 11,020 cal yr B.P. MS measurements reveal that the influx of magnetic particles, associated with pre-Holocene clastic sedimentation, ceased after ∼10,780 cal yr B.P. The pollen record is subdivided into six zones: BL1 (12,920 to 11,020 cal yr B.P.) is dominated by boreal forest pollen; BL2 (11,020 to 10,780 cal yr B.P.) by pine (Pinus) forest pollen; BL3 (10,780 to 5290 cal yr B.P.) by hemlock (Tsuga) and mixed hardwood pollen; BL4 (5290 to 2680 cal yr B.P.) by mixed hardwood pollen; BL5a (2680 cal yr B.P. to 1030 cal yr B.P.) by conifer and mixed hardwood pollen; and BL5b (1030 cal B.P. to present) by increasing ragweed (Ambrosia) pollen. A 62% decrease in spruce (Picea) pollen in <320 cal years during BL1 reflects rapid warming at the end of the YD. Holocene pollen zones record more subtle climatic shifts than occurred at the end of the YD. One of the largest changes in the Holocene pollen spectra began ∼5300 cal yr B.P., and is characterized by a marked decline in hemlock pollen. This has been noted in other pollen records from the region and may record preferential selection of hemlock by a pathogen or parasites.  相似文献   

6.
Vegetation history during the Holocene is interpreted from the pollen and sedimentary records of nine sections of peat deposits located in sedge tundra at sites in the northern and northwestern parts of the Prince William Sound region. Basal radiocarbon ages of the deposits are between 10,015 and 580 yr B.P. Modern surface pollen data from these and 25 additional sites, ranging from lowlands to an altitude of 675 m in the alpine tundra, were used to aid in the interpretation of the fossil records. Both frequency and influx pollen diagrams of the oldest section disclose a sequence of communities beginning with sedge tundra, containing thickets of willow and alder, followed by alder, which became predominant at about 8300 yr B.P. Later, alder declined, and an inferred growth of sedge tundra and the establishment of colonies of mountain hemlock and Sitka spruce with some western hemlock occurred about 2680 yr B.P. Finally, regrowth of sedge tundra accompanied by the development of forest communites took place over the past 2000 yr. The influence of glacier advances on the vegetation in the fjords occurred during Neoglacial episodes dated at 3200–2500 yr B.P. and during recent centuries. Regional Holocene tectonic activity was also an influential factor, especially at the time of the 1964 earthquake.  相似文献   

7.
New cross sections and dates from along the Pomme de Terre River clarify the complex local history of valley development and floodplain sedimentation. The observed history begins with a series of ancient bedrock strath terraces that record past bedrock valley positions at 15.5 to more than 58 m above the modern bedrock floor. Each strath is capped by 1–2 m of channel gravel and sand permeated by red clay. Sometime previous to ca. 140,000 yr B.P., a much lower bedrock valley only about 5–6 m above the modern level was excavated. By 140,000 yr B.P., accumulation of red and gray mottled silty clay had commenced, and had reached to 8.5 m above the modern floodplain before 48,900 ± 900 14C yr B.P. Sometime between ca. 49,000 and 45,000 14C yr B.P., erosion caused abandonment of an oxbow meander, and lowered the bedrock valley to about its present depth. Younger yellowish-red and gray mottled silty clay alluvium then began accumulating. This mid-Wisconsinan fill reached to 2.5 m above the modern floodplain sometime before 31,800 ± 1340 14C yr B.P., at which time another erosional phase was in progress. A late Wisconsinan olive clay accumulated between 27,480 ± 1950 and ca. 23,000 14C yr B.P., followed by approximate stability until 13,550 ± 400 14C yr B.P. After stability, an erosional episode began, but by 10,200 ± 330 14C yr B.P., deposition of a distinctive brown clayey silt was underway. This early Holocene fill reached to about the same level as the mid-Wisconsinan fill by 8100 ± 140 14C yr B.P. Erosion occurred between this date and 7490 ± 170 14C yr B.P., but the former floodplain level was rapidly reattained, and was apparently stable until ca. 5000 14C yr B.P. Finally, erosional unconformities and 17 dates from the brown clayey silt, and from younger grayish-brown silty sand underlying the modern floodplain, record subsequent episodes of floodplain erosion at ca. 5000, 2900, 1500 and 350 14C yr B.P. The timing of Pomme de Terre floodplain sedimentary regimes, characterized by net aggradation, erosion, or stability, may have been controlled by climate. In particular, both periods of stability appear to have been coeval to times of strongly zonal upper atmospheric circulation. Intensified zonal circulation would have resulted in less frequent large floods and an increased dominance by floods of small to moderate size. In contrast, there are no obvious parallels to be drawn between this local alluvial history and sea level or glacial outwash induced baselevel changes.  相似文献   

8.
Controlled by a local base level of downfaulted Edwards and Comanche Peak limestone, and aided by landsliding in Glen Rose marl, the Sabinal River and its tributaries have developed a large valley in the Edwards Plateau. Extensive soil-covered pediments that cut Glen Rose bedrock and Pleistocene terrace gravels are present along each side of the valley. Six alluvial deposits of late Pleistocene and Holocene age were recognized in the upper Sabinal River valley. The Holocene series is represented by three deposits. The oldest of these exhibits a Stage II calcic horizon and appears to have been deposited before ca. 5000 yr B.P. The Pleistocene deposits have a calcrete zone (calcic Stage IV and III horizon) in the upper 3-4 m. The Holocene alluviums, locally beveled by stream action, parallel the river's course and contain Archaic and younger artifacts, which in central Texas range in age from about 8000-350 yr B.P. One of the Holocene deposits (Q2) is correlated with the Georgetown and Fort Hood alluviums of the Cowhouse Creek at Fort Hood, which range in age from 11,000 yr B.P. to 5200 yr B.P., with the Wilson-Leonard terrace site in the Lampasas Cut Plain that ranges from about 11,000 to 5000 yr B.P., and with Unit E of Blum and Valastro (1989) in the Pedernales River valley, ranging from 10,550 to 7150 yr B.P. Modern climate in the valley is drought-prone, and fluctuates from semiarid to dry subhumid. Paleoclimate has ranged from much drier during the Middle Holocene to much cooler and wetter during the Late Pleistocene.  相似文献   

9.
A predictive model for locating early Holocene archaeological sites in southern Southeast Alaska was developed based on shell‐bearing raised marine deposits. Fieldwork included coring of select‐raised marine strata, measuring their elevations, and radiocarbon dating the associated shell samples within the cores. A subset of the data was used to produce a relative sea‐level curve spanning the Holocene. The relative sea‐level curve suggests that sites favorable for habitation between 9200 and 7000 14C yr B.P. should be found 16–22 ± 1 m above present zero tide. The sea‐level curve and new high‐resolution digital elevation models allowed reconstruction of past shorelines at various elevations. Surveys to test the model found and recorded over 70 archaeological sites from present sea level up to 32 m above present zero tide. Eleven new sites were within the targeted elevation range and radiocarbon dated to 9280–6890 14C yr B.P. Initial investigations indicate these older sites are rich in microblade and pebble tool technology. The new early Holocene sites indicate more extensive early maritime settlement of Alaska than implied by previous studies and contribute to our understanding of the early movement of people into North America.  相似文献   

10.
Radiocarbon dates of organic alluvium beneath as much as 40 m of dune sand along the Dismal River have led to the suggestion that the Nebraska Sandhills date from the Holocene rather than the last glacial period. On the other hand, the basal layers of lake and marsh deposits in interdune depressions at three localities date in the range of 9000 to 12,000 yr B.P., implying a pre-Holocene age for the sand dunes. A pollen diagram for one of these sites, Swan Lake, indicates prairie vegetation throughout the last 9000 yr, with no suggestion that the landscape was barren enough to permit the shaping of the massive dunes characterizing the area. Sand was not transported across the site during the Holocene, either during the marsh phase, which lasted until 3700 yr B.P., or during the subsequent lake phase. The sand that buries the alluvium along the Dismal River may represent only local eolian activity, or it may indicate that the younger of the two main dune series identified by H. T. U. Smith (1965, Journal of Geology73, 557–578) is Holocene in age, and the older one Late Wisconsin in age.  相似文献   

11.
The mid-Holocene eastern hemlock [Tsuga canadensisL. (Carr.)] decline has been recently attributed to the activity of insect defoliators. N. Bihiry and L. Filion,Quaternary Research45,312–320 (1996). In this study, soil hydromorphic conditions were investigated for the period 6800–3200 yr B.P. using micromorphological data from a peat section from a swale in a paludified dunefield in southern Québec. After a short period of plant colonization in shallow pools between 6800 and 6400 yr B.P., mesic conditions predominated in the interdune before the decline (6400–4900 yr B.P.), as evidenced by strong bioturbation and abundance of excrements from the soil fauna. During the decline, a shift from mesic to wet conditions occurred (4900–4100 yr B.P.), although xeric to mesic conditions persisted on dune ridges until at least 4200 yr B.P. Wetness culminated when beaver occupied the site (4100–3750 yr B.P.). Hemlock needles with chewing damage typical of hemlock looper (Lambdina fiscellaria) feeding were identified at levels dated 4900, 4600, and 4200 yr B.P., respectively, implying that the hemlock decline was associated with at least three defoliation events. The ca. 400-yr interval between these events likely represents the time required for this late-sucessional tree species to recover.  相似文献   

12.
This study examines the Holocene history of a glacially-sculpted Maine embayment using both geological and archaeological data bases. High-resolution seismic profiling, in combination with vibracores and Holocene sea-level curves, were used to develop the Holocene stratigraphy and paleogeographic evolution of Johns Bay and Pemaquid Beach, Maine. These geological databases were, whenever possible, integrated with the Johns Bay archaeological database and general archaeological settlement paradigms for coastal Maine. As sea level has risen from its -65 m lowstand at the beginning of the Holocene, Johns Bay has evolved from a narrow fluvial system, to an estuary, to its present form of an open embayment. Over roughly the last 4000 years, the Pemaquid Beach area has changed from a forested upland, to a bedrock-pinned freshwater wetland, to a pocket barrier fronting a small salt marsh. The barrier continues to migrate over the salt marsh, which is transgressing the freshwater environments. The first evidence of human settlement in Johns Bay is at 4000–5000 yr B.P. Archaeological site distribution around Johns Bay has been examined in light of an estuarine embayment evolution model developed for the Maine coast. Sites are concentrated in zone 1 (the inner embayment). This zone is currently experiencing sediment accumulation. Zone 2 (middle embayment) is undergoing erosion, and zone 3 (outer embayment) has been stripped of sediment. Archaeological sites in these outer areas have been eroded. The Pemaquid Beach area has a history of occupation dating back 4000–5000 years. The last 2000 years of this record is found in stratigraphic context in the Nahanada site. The first 3000 years is represented by a collection of artifacts found out of context on the beach in front of the Nahanada site. The artifacts, dated by morphology, present a time continuum from 4000–5000 yr B.P. until the occupation of the Nahanada site. Thus, it is suggested that the Nahanada site represents the back of a chronologically shingeled settlement area that extended to the 5000 yr B.P. shoreline. Finally, a model for the development of chronologically shingled sites is suggested.  相似文献   

13.
Pollen and charcoal analysis of radiocarbon-dated sediment cores from Duck Pond in the Cape Cod National Seashore provide a continuous 12,000-yr vegetation and climate history of outer Cape Cod. A Picea-Hudsonia parkland and then a Picea-Pinus banksiana-Alnus crispa boreal forest association grew near the site between 12,000 and 10,000 yr B.P. This vegetation was replaced by a northern conifer forest of Pinus strobus-P. banksiana, and, subsequently, by a more mesophytic forest (Pinus strobus, Tsuga, Quercus, Fagus, Acer, Ulmus, Fraxinus, Ostrya) as the climate became warmer and wetter by 9500 yr B.P. By 9000 yr B.P. a Pinus rigida-Quercus association dominated the landscape. High charcoal frequencies from this and subsequent levels suggest that the pine barrens association developed during a warmer and drier climate that lasted from 9000 to about 5000 yr B.P. Increased percentages of Pinus strobus pollen indicate a return to moister and cooler conditions by about 3500 yr B.P. A doubled sedimentation rate, increased charcoal, and increased herb pollen suggest land disturbance near the pond before European settlement. These results suggest a rapid warming in the northeast in the early Holocene and support a hypothesis of a rapid sea level rise at that time. Comparison of the pollen results from Duck Pond with those from Rogers Lake, Connecticut, illustrates the importance of edaphic factors in determining the disturbance frequency and vegetation history of an area.  相似文献   

14.
Charcoal analysis for paleoenvironmental interpretation: A chemical assay   总被引:1,自引:0,他引:1  
Pollen and charcoal analysis of radiocarbon-dated sediment cores from Duck Pond in the Cape Cod National Seashore provide a continuous 12,000-yr vegetation and climate history of outer Cape Cod. A Picea-Hudsonia parkland and then a Picea-Pinus banksiana-Alnus crispa boreal forest association grew near the site between 12,000 and 10,000 yr B.P. This vegetation was replaced by a northern conifer forest of Pinus strobus-P. banksiana, and, subsequently, by a more mesophytic forest (Pinus strobus, Tsuga, Quercus, Fagus, Acer, Ulmus, Fraxinus, Ostrya) as the climate became warmer and wetter by 9500 yr B.P. By 9000 yr B.P. a Pinus rigida-Quercus association dominated the landscape. High charcoal frequencies from this and subsequent levels suggest that the pine barrens association developed during a warmer and drier climate that lasted from 9000 to about 5000 yr B.P. Increased percentages of Pinus strobus pollen indicate a return to moister and cooler conditions by about 3500 yr B.P. A doubled sedimentation rate, increased charcoal, and increased herb pollen suggest land disturbance near the pond before European settlement. These results suggest a rapid warming in the northeast in the early Holocene and support a hypothesis of a rapid sea level rise at that time. Comparison of the pollen results from Duck Pond with those from Rogers Lake, Connecticut, illustrates the importance of edaphic factors in determining the disturbance frequency and vegetation history of an area.  相似文献   

15.
Data from a transect of four cores collected in the Makepeace Cedar Swamp, near Carver, Massachusetts, record past changes in deposition, vegetation, and water level. Time series of palynological data provide a 14,000-yr record of regional and local vegetation development, a means for biostratigraphic correlation and dating, and information about changes in water level. Differences in records among cores in the basin show that water level decreased at least 1.5 m between 10,800 and 9700 cal yr B.P., after which sediment accumulation was slow and intermittent across the basin for about 1700 yr. Between 8000 and 5600 cal yr B.P., water level rose 2.0 m, after which slow peat accumulation indicates a low stand about the time of the hemlock decline at 5300 ± 200 cal yr B.P. Dry conditions may have continued after this time, but by 3200 cal yr B.P., the onset of peat accumulation in shallow cores indicates that water level had risen to close to its highest postglacial level, where it is today. Peat has accumulated across the whole basin since 3200 cal yr B.P. Data from Makepeace and the Pequot Cedar Swamp, near Ledyard, Connecticut, indicate an early Holocene dry interval in southern New England that began 11,500 yr ago near the end of the Younger Dryas interval. The dry conditions prevailed between 10,800 and 8000 cal yr B.P. and coincide with the arrival and later rise to dominance of white pine trees (Pinus strobus) both regionally and near the basins. Our results indicate a climatic cause for the “pine period” in New England.  相似文献   

16.
We present new results for relative sea‐level change for southern Greenland for the interval from 9000 cal. yr BP to the present. Together with earlier work from the same region this yields a nearly complete record from the time of deglaciation to the present. Isolation and/or transgression sequences in one lake and five tidal basins have been identified using lithostratigraphic analyses, sedimentary characteristics, magnetic susceptibility, saturated induced remanent magnetisation (SIRM), organic and carbonate content, and macrofossil analyses. AMS radiocarbon dating of macrofossils and bulk sediment samples provides the timescale. Relative sea level fell rapidly and reached present‐day level at ~9300 cal. yr BP and continued falling until at least 9000 cal. yr BP. Between 8000 and 6000 cal. yr BP sea level reached its lowest level of around ~10 m below highest astronomical tide. At around 5000 cal. yr BP, sea level had reached above 7.8 m below highest astronomical tide and slowly continued to rise, not reaching present‐day sea level until today. The isostatic rebound caused rapid isolation of the basins that are seen as distinct isolation contacts in the sediments. In contrast, the late Holocene transgressions are less well defined and occurred over longer time intervals. The late Holocene sea‐level rise may be a consequence of isostatic reloading by advancing glaciers and/or an effect of the delayed response to isostatic rebound of the Laurentide ice sheet. One consequence of this transgression is that settlements of Palaeo‐Eskimo cultures may be missing in southern Greenland. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
An ∼8000-cal-yr stratigraphic record of vegetation change from the Sierra de Apaneca, El Salvador, documents a mid-Holocene warm phase, followed by late Holocene cooling. Pollen evidence reveals that during the mid-Holocene (∼8000-5500 cal yr B.P.) lowland tropical plant taxa were growing at elevations ∼200-250 m higher than at present, suggesting conditions about 1.0°C warmer than those prevailing today. Cloud forest genera (Liquidambar, Juglans, Alnus, Ulmus) were also more abundant in the mid-Holocene, indicating greater cloud cover during the dry season. A gradual cooling and drying trend began by ∼5500 cal yr B.P., culminating in the modern forest composition by ∼3500 cal yr B.P. A rise in pollen from weedy plant taxa associated with agriculture occurred ∼5000 cal yr B.P., and pollen from Zea first appeared in the record at ∼4440 cal yr B.P. Human impacts on local vegetation remained high throughout the late Holocene, but decreased abruptly following the Tierra Blanca Joven (TBJ) eruption of Volcán Ilopango at ∼1520 cal yr B.P. The past 1500 years are marked by higher lake levels and periodic depositions of exogenous inorganic sediments, perhaps indicating increased climatic variability.  相似文献   

18.
Pollen evidence from a 350-cm section of a fen in a moraine belt at Rucañancu (39°33′S, 72°18′W) bears on the controversy regarding interpretation of late-glacial and Holocene climate in midlatitude Chile. Earlier pollen studies, indicating a cooling trend between approximately 11,000 and 10,000 yr B.P., disagreed with observations of glacier fluctuations which show continuous glacier wastage and, by inference, warming after 12,500 yr B.P. and possibly earlier, up until Neoglaciation, beginning after 6850 yr B.P. Fossil beetle assemblage data in this time range support the interpretation of climate made from the observed glacier behavior. At Rucañancu, a pollen assemblage containing upper montane podocarp (Podocarpus andinus) in quantities reaching 34% and dating between 10,440 and 10,000 yr B.P. implies a cold climate with summer temperatures possibly 5–8°C lower than today's. Holocene warming began afterward, later than the glacier and beetle records indicate, and continued until at least 8350 yr B.P., as suggested by the sequence of assemblages dominated by Myrtaceae, by Aextoxicon punctatum, and by Gramineae. A subsequent assemblage of Nothofagus obliqua type implies an increase of moisture until 6960 yr B.P., following which N. dombeyi type, under a cool and humid Neoglacial climate, became dominant.  相似文献   

19.
Sedimentological, malacological, and pollen analyses from 14C-dated alluvial sections from the Luján River provide a detailed record of environmental changes during the Holocene in the northeastern Pampas of Argentina. From 11,200 to 9000 14C yr B.P., both sedimentary and biological components suggest that the depositional environment was eutrophic, alkaline, and freshwater to brackish shallow water bodies without significant water circulation. During this time, bioclastic sedimentation was dominant and the shallow water bodies reached maximum development as the climate became more humid, suggesting an increase in precipitation. Short-term fluctuations in climate during the last stage of this interval may have been sufficient to initiate changes in the water bodies, as reduction of the volume alternated with periods of flooding. The beginning of the evolution of shallow swamps in the wide floodplain or huge wetlands was contemporaneous with a sea level lower than the present one. From 9000 and 7000 14C yr B.P., mesotrophic, alkaline, brackish, probably anoxic swamps existed. Between 7000 and 3000 14C yr B.P., anoxic calcareous swamps were formed, with subaerial exposure and development of the Puesto Berrondo Soil (3500-2900 14C yr B.P.). A trend to a reduction of water bodies is recorded from 9000 to ca. 3000 14C yr B.P., with a significant reduction after ca. 7000 14C yr B.P. A shift to subhumid-dry climate after 7000 14C yr B.P. appears to be the main cause. During this time, an additional external forcing toward higher groundwater levels was caused by Holocene marine transgression causing changes in the water bodies levels. The climate became drier during the late Holocene (ca. 3000 yr B.P.), when clastic sedimentation increased, under subhumid-dry conditions. Flood events increased in frequency during this time. From ca. A.D. 1790 to present, the pollen record reflects widespread disturbance of the vegetation during the European settlement.  相似文献   

20.
The highest shoreline features of paleo-Lake Malheur are undated gravelly barrier beaches south of Harney Lake that lie ca. 3.5 m higher than the hydrographic outlet of Harney Basin at Malheur Gap (1254 m). The earliest Quaternary record for Lake Malheur consists of occurrences of water-deposited tephra dated to ca. 70,000–80,000 yr ago. The next identified lake interval is dated by shells with ages of ca. 32,000 and 29,500 yr B.P. No dates are available for the terminal-Pleistocene Lake Malheur. Lake(s) were present between ca. 9600 and 7400 yr B.P., although periodic low levels or desiccation are suggested by a paleosol dated as ca. 8000 yr B.P. The lake system probably dried further after 7400 yr B.P., although dates are lacking for the period between ca. 7400 and 5000 yr B.P. Dune deposits on the lake floor are ca. 5000 yr old and indicate generally dry conditions. Fluctuating shallow lakes have probably characterized the last 2000 years. A date of 1000 yr B.P. gives a maximum age for beach deposits at 1254 m, near the basin threshold elevation. Thus, the Malheur Lake system may have drained to the Pacific Ocean by way of Malheur Gap during the latest Holocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号