首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
An innovative mode of groundwater recharge to a buried esker aquifer is considered. The current conceptual model affords a natural safeguard to underlying aquifers from the overlying muds. A hypothesis of groundwater recharge to a buried esker aquifer via preferential pathways across its overlying muds is tested here by heuristic numerical one-dimensional and two-dimensional modeling simulations. The hypothesis has been tested against two other conventionally accepted scenarios involving: (1) distal esker outcrop areas and (2) remote shallow-bedrock recharge areas. The main evidence comes from documented recharge pressure pulses in the overlying mud aquitard and in the underlying esker hydraulic-head time series for the Vars-Winchester esker aquifer in Eastern Ontario, Canada. These perturbations to the potentiometric surface are believed to be the aquifer response to recharge events. The migration rate of these pressure pulses is directly related to the hydraulic diffusivity of the formation. The measured response time and response amplitude between singular radar precipitation events and well hydrographs constituted the heuristic model calibration targets. The main evidence also includes mud-layering deformation (water escape features) which was observed in seismic surveys of the over-esker muds. These disturbed stratigraphic elements provide a realistic mechanism for migrating water to transit through the muds. The effective hydraulic conductivities of these preferential pathways in the muds were estimated to be between 2?×?10?6 and 7?×?10?6 m/s. The implications of these findings relate to the alleged natural safeguard of these overlying muds.  相似文献   

2.
The current study aimed to evaluate hydrogeologically the Nubian sandstone aquifer in El-Bahariya Oasis. It represents the main water-bearing horizon in the study area and consists of continental elastic sediments, mainly sandstone alternating with shale and clays. The general flow lines are directed from SW to NE direction, as detected from the constructed potentiometric head contour map. The piezometric surface reaches 149 m in El-Heiz area at the southern part, while it reaches 90 m at the northern, reflecting higher pressure head of the aquifer in the southern part. The map also illustrates that the southern part is considered as the most promising location for development. The structural elements play an important role in the deposition and distribution of the sedimentary succession of the Nubian sandstone sediments. Consequently, this sedimentary pattern affects the occurrences and movements of the groundwater within the aquifer system. Along the structurally high areas, in the study area, the piezometric head increases, while the reverse is recorded along the structurally low areas. The step-drawdown tests data were carried out by calculating the aquifer loss coefficient (B) and the well loss constant (C). The B values are smaller compared with C values, indicating that the aquifer under pressure has a behavior of leaky aquifer; therefore, it shows hydraulic connection with surrounding formation. The values of well efficiency range from 78.50% to 87.76%. Analysis of 12 pumping test data (constant discharge tests) was carried out in order to calculate the Nubian aquifer hydraulic parameters (transmissivity, hydraulic conductivity, and storage coefficient). The transmissivity values decrease from 3,045 m2/day in the southern part (El-Heiz area) to 236 m2/day in the northeastern part (El-Harra area). Accordingly, the aquifer classified as a high to moderate potentiality. Transmissivity contour map observes gradual increase of transmissivity values from the southern to northeastern direction. This may be due to the increase of shale or clay content in the concerned aquifer in that direction. The storage coefficient values range between 1.04 × 10?4 and 5.22 × 10?3, as obtained from the results of pumping test analysis, which ensure that the Nubian sandstone aquifer is classified as semi-confined to confined aquifer type. The S values show a decrease from southwest to northeast direction as detected from S-map. The hydraulic conductivity values vary from to 0.46 m/day in the northern part to 10.88 m/day in the southern part with an average of 5.67 m/day. According to the classification based on K values, the aquifer is mainly composed of coarse sand.  相似文献   

3.
Shear wave velocity (V S) estimation is of paramount importance in earthquake hazard assessment and other geotechnical/geo engineering studies. In our study, the shear wave velocity was estimated from ground roll using multichannel analysis of surface wave (MASW) technique making use of dispersive characteristics of Rayleigh type surface waves followed by imaging the shallow subsurface basaltic layers in an earthquake-prone region near Jabalpur, India. The reliability of MASW depends on the accurate determination of phase velocities for horizontally traveling fundamental mode Rayleigh waves. Inversion of data from surface waves resulted in a shear wave velocity (V S) in the range of 200–1,200 m/s covering the top soil to weathering and up to bedrock corresponding to a depth of 10–30 m. The P-wave velocity (V P) obtained from refraction seismic studies at these locations found to be comparable with V S at an assumed specific Poisson’s ratio. A pair of selected set of V S profiles over basalt which did not result in a hazardous situation in an earthquake of moderate magnitude are presented here as a case study; in other words, the shear wave velocity range of more than 200 m/s indicate that the area is highly unlikely prone to liquefaction during a moderate or strong earthquake. The estimated depth to basalt is found to be 10–12 m in both the cases which is also supported by refraction studies.  相似文献   

4.
The architecture and evolution of the subglacial hydrological system plays a key role in modulating ice flow. Eskers provide an opportunity to understand subglacial hydrology at a broader perspective than contemporary studies. Recent research has established a morphogenetic classification for eskers, but these studies have been limited to topographically simple regions of a single ice sheet. We present an updated map of esker distribution in Northern Ireland based on 5-m resolution elevation data. We also present a high-resolution map of the glacial geomorphology of SW Northern Ireland, based on ~ 0.4-m resolution elevation data. Ground Penetrating Radar data from four sites along the > 20-km long Evishanoran Esker system in central Northern Ireland are combined with geomorphological observations to provide insight into depositional processes and controls on esker formation. Esker architecture indicates two styles of deposition, including an initial high energy flow event in a subglacial conduit and delta foreset deposition close to the ice sheet margin during ice margin retreat. These delta foreset deposits can be used to reconstruct former ice margins. We identify that local topographic complexity and geological structures (e.g., faults) are important controls on esker formation. The broad-scale esker architecture remains the same despite variable esker planform morphology, suggesting hydrological conditions alone cannot explain esker morphology. This study provides further evidence that morphogenetic relationships cannot be based solely on remote sensing data and must be supported by robust field observations, especially where post-glacial processes may distort esker morphology (e.g., peat infilling).  相似文献   

5.
《地学前缘(英文版)》2020,11(3):765-781
The uplift of the Tibetan Plateau significantly affected the global climate system.However,the timing of its uplift and the formation of its vast expanse are poorly understood.The occurrence of two types of leucogranites(the two-mica leucogranites and garnet-bearing leucogranites) identified in the Ailaoshan-Red River(ASRR) shear zone suggests an extension event in the southeastern Tibetan Plateau.The age of these leucogranites could be used to constrain the timing of uplift and southeastward expansion of the plateau.Petrography,geochronology and geochemistry investigations,including Sr-Nd isotope analysis,were conducted on the two-mica leucogranites and garnet-bearing leucogranites from the ASRR shear zone.LA-ICP-MS zircon U-Pb dating indicates that these rocks were emplaced at ~27 Ma,implying that the Tibetan Plateau had already achieved maximum uplift prior to the late Oligocene.It subsequently started to expand southeastward as a result of crustal flow.Compared to classic metapelite-derived leucogranites from Himalaya,the two-mica leucogranites show high K_2 O/Na_2 O(1.31-1.92),low Rb/Sr,CaO,lower ~(87)Sr/~(86)Sr ratios(0.7089-0.7164) and higher ε_(Nd)(t)(-8.83 to-3.10).This whole-rock geochemical characteristics likely indicates a mixing source origin,composed predominantly of amphibolite with subordinated metapelite,which is also evidenced by ~(87)Sr/~(86)Sr vs.ε_(Nd)(t) diagram.However,The garnetbearing leucogranites with high SiO_2 contents(72.25-74.12 wt.%) have high initial ~(87)Sr/~(86)Sr ratios(0.7332-0.7535) and low ε_(Nd)(t)(-16.36 to 18.98),indicating that they are derived from the source comprised of metapelite and results of fluexed muscovite melting under lower crustal level,which is also evidenced by the Rb-Sr-Ba systematics.These leucogranites formed from partial melting of the thickened lower crust,which resulted in the formation of granitic melt that weakened the crust.The weakened crust aided the left-lateral strikeslip movement of the ASRR shear zone,triggering the escape of the Indochina terrane in the southeastern Tibetan Plateau during the late Oligocene.  相似文献   

6.
The scaling relationships for stress drop and corner frequency with respect to magnitude have been worked out using 159 accelerograms from 34 small earthquakes (M w 3.3–4.9) in the Kachchh region of Gujarat. The 318 spectra of P and S waves have been analyzed for this purpose. The average ratio of P- to S-wave corner frequency is found to be 1.19 suggestive of higher corner frequency for P wave as compared to that for S wave. The seismic moments estimated from P waves, M 0(P), range from 1.98 × 1014 N m to 1.60 × 1016 N m and those from S waves, M 0(S), range from 1.02 × 1014 N m to 3.4 × 1016 N m with an average ratio, M 0(P)/M 0(S), of 1.11. The total seismic energy varies from 1.83 × 1010 J to 2.84 × 1013 J. The estimated stress drop values do not depend on earthquake size significantly and lie in the range 30–120 bars for most of the events. A linear regression analysis between the estimated seismic moment (M 0) and corner frequency (f c) gives the scaling relation M 0 f c 3  = 7.6 × 1016 N m/s3. The proposed scaling laws are found to be consistent with similar scaling relations obtained in other seismically active regions of the world. Such an investigation should prove useful in seismic hazard and risk-related studies of the region. The relations developed in this study may be useful for the seismic hazard studies in the region.  相似文献   

7.
To model the development of karst channels from primary fissures in limestone, a computer simulation of solutional widening of a fracture by calcite agressive water is proposed. The parameters defining the problem are the initial width a0 of the fracture, its length l, and the hydraulic gradient i driving water through it. The dissolution rates limestone determine how fast enlargement of the fractures proceeds. At a calcite concentration, c, far from equilibrium, the dissolution follows a first-order rate law, F(1)0(ceq-c); close to the equilibrium concentration, ceq, a slow fourth-order rate law F(4)0(ceq-c)4 is valid. The results show that, at the time of initiation, the water flow through the karst channels increases slowly in time until an abrupt increase occurs. After this moment of breakthrough, the channel enlarges rapidly and evenly over its entire length by first-order kinetics. Breakthrough times have been calculated for karstification under natural conditions for low hydraulic gradients as functions of a0, l, and i. Special attention is given to karstification in the vicinity of hydraulic structures where hydraulic gradients are high (>0.5) and channel lengths are below 200 m. We find that the breakthrough event will occur in less than 100 years, if: (i/l) > (5.3·10?8a0 ?2.63PCO2 ?0.77) where l is in m and a0 is in cm, (i/l) is given in m-1, and PCO2[atm] is the CO2 pressure of the water entering the fracture. After this event, the channels will widen to a width of about 1 cm within only 10 years, which can cause considerable leakage near or through hydraulic structures. Finally, critical values of the parameters i, l, a0, which give the conditions of failure in various types of hydraulic structures are discussed.  相似文献   

8.
Sulfate transport in a Coastal Plain confining unit, New Jersey, USA   总被引:1,自引:0,他引:1  
 A transient 1-D, two-pathway non-equilibrium deterministic advective dispersion model was used to examine the distribution of chloride (43–100 mg/L) and sulfate (57–894 mg/L) concentrations in the 35-m-thick section of the Lower confining unit, Atlantic Coastal Plain, New Jersey, USA. The model was used to constrain hypotheses about how pore-water chemistry changed over time. Explanations of the solute concentrations were explored by inverse and direct methods given a few known constraints, including concentrations of pore-water constituents from 12 core samples, reported simulated flow rates, and estimated hydrogeologic properties. The hypothesis that is best supported by the model results is that the distribution of chloride and sulfate concentrations in the confining unit reflect the history of the aquifer system since it was filled with seawater at the last eustatic high, about 84×103yr BP. The model simulates fresh-water flushing of the seawater-permeated silts at a steady upward pore-water flow velocity of 8.8×10–6 m/d, with a dispersion coefficient of 9.2×10–7 m2/d, a dimensionless partition expression for chloride, βCl=0.981, and a dimensionless exchange coefficient, ωCl=0.31×10–2. Sulfate concentrations were simulated over the flow path using flow and dispersion values calculated for chloride transport plus a retardation term. Parameters for sulfate transport include retardation coefficient=4.51, βSO4=0.994, and ωSO4=0.31×10–2. Sensitivity analysis indicates that the model is most sensitive to flow velocity, and that fresh-water flushing of the confining unit is best simulated by having seawater concentration levels at the inflow boundary of the confining unit exponentially decrease with a concentration half-life rate of 825 yr. Received, January 1997 / Revised, April 1998, October 1998, January 1999 / Accepted, January 1999  相似文献   

9.
The nature of flow, sediment transport and bed texture and topography was studied in a laboratory flume using a mixed size-density sediment under equilibrium and non-equilibrium (aggradational, degradational) conditions and compared with theoretical models. During each experiment, water depth, bed and water surface elevation, flow velocity, bed shear stress, bedload transport and bed state were continuously monitored. Equilibrium, uniform flow was established with a discharge of about 0.05 m3 s?1, a flow depth of about 0.01 m, a flow velocity of about 0.81–0.88 m s?1, a spatially averaged bed shear stress of about 1.7–2.2 Pa and a sediment transport rate of about 0.005–0.013 kg m?1 s?1 (i.e. close to the threshold of sediment transport). Such equilibrium flow conditions were established prior to and at the end of each aggradation or degradation experiment. Pebble clusters, bedload sheets and low-lying bars were ubiquitous in the experiments. Heavy minerals were relatively immobile and occurred locally in high concentrations on the bed surface as lag deposits. Aggradation was induced by (1) increasing the downstream flow depth (flume tilting) and (2) sediment overloading. Tilt-induced aggradation resulted in rapid deposition in the downstream half of the flume of a cross-stratified deposit with downstream dipping pebbles (pseudo-imbricated). and caused a slight decrease in the equilibrium mean water surface slope and total bedload transport rate. These differences between pre- and post-aggradation equilibrium flow conditions are due to a decrease in the local grain roughness of the bed. Sediment overloading produced a downstream fining and thinning wedge of sediment with upstream dipping pebbles (imbricated), whereas the equilibrium flow and sediment transport conditions remained relatively unchanged. Degradation was induced by (1) decreasing the downstream flow depth (flume tilting) and (2) cutting off the sediment feed. Tilt-induced degradation produced rapid downstream erosion and upstream deposition due to flow convergence with little change to the equilibrium flow and sediment transport conditions. The cessation of sediment feed produced degradation and armour development, a reduction in the mean water surface slope and flow velocity, an increase in flow depth, and an exponential decrease in bedload transport rate as erosion proceeded. A bedload transport model predicted total and fractional transport rates extremely well when the coarse-grained (or bedform trough) areas of the bed are used to define the sediment available to be transported. A sediment routing model, MIDAS, also reproduced the equilibrium and non-equilibrium flow conditions, total and fractional bedload transport rates and changes in bed topography and texture very well.  相似文献   

10.
This study highlights the distribution of hydraulic conductivity (K) in the regional aquiferous Ajali Formation of SE-Nigeria on one hand and assesses the possible influences of textural and geochemical characteristics on the hydraulic conductivity on the other hand. The investigation approach involved field sampling and collection of 12 sandstone samples from different outcrop locations, followed by laboratory studies such as grain-size analysis (GSA), constant head permeameter test and geochemical analysis of major and trace elements using X-ray fluorescence method. GSA and textural studies show that the sandstones range from fine to medium sands, constituting about <75–99% sand fraction, with graphic mean grain size of 0.23–0.53 mm. Other parameters such as coefficient of uniformity (Cu) range from 1.58 to 5.25 (av. 2.75), while standard deviation (sorting) values of 0.56Ø–1.24Ø imply moderately well sorted materials. In addition, the order of the estimated K values is Kpermeameter>KBeyer>KHazen>KKozeny-Carmen>KFair-Hatch with average values of 1.4×10?3, 4.4×10?4, 3.8×10?4, 2.2×10?4 and 8.1×10?5m/s, respectively. These values fall within the range of 10?5 and 10?3m/s for fine to medium sands. However, multivariate factor analysis of the data revealed significant positive dependence of the empirically determined K values on graphic mean grain size and percentage sand content and much less dependence on sorting and total porosity. Geochemical profiles of the fresh samples are dominated by quartz with corresponding SiO2 content of 76.1–98.2% (av. 89.7%) while other major oxides are generally below 1.0wt.% in the fresh samples. However, the ferruginized samples exhibited elevated concentrations of Al2O3 (3.50–11.60wt.%) and Fe2O3 (1.80–3.60wt.%), which are clear indications of weathering/ferruginization processes with attendant trace metal release/enrichment (2.5mg/l Cu, 7.5mg/l Pb, 6.5mg/l Zn, 3.9mg/l Ni and 19.6mg/l Cr) call for concern in respect of the chemical quality of the groundwater system. The associated groundwater is generally soft, slightly acidic, and with low dissolved solids (EC=14–134μs/cm) dominated by silica; implying water from clean sandy aquifer devoid of labile and weatherable minerals. Nonetheless, most of the metals (with exception of Si, Fe and Mn) exhibited higher degree of mobility (2–12 folds), which can be attributed to reduction of Fe-/Mn-oxyhydroxides as sinks/hosts for trace metals. Consequently, infiltration-induced geochemical reactions (redox, ferruginization and leaching processes) signify potential environmental impact in terms of groundwater quality as well as borehole/aquifer management, especially under humid tropical environment of the study area.  相似文献   

11.
Optical constituents as suspended particulate matter (SPM), chlorophyll (Chl-a), colored dissolved organic matter (CDOM), and grain sizes were obtained on a transect in the arctic fjord-type estuary Kangerlussuaq (66°) in August 2007 along with optical properties. These comprised diffuse attenuation coefficient of downwelling PAR (K d(PAR)), upwelling PAR (K u(PAR)), particle beam attenuation coefficient (c p), and irradiance reflectance R(−0, PAR). PAR is white light between 400 and 700 nm. The estuary receives melt water from the Greenland Inland Ice and stations covered a transect from the very high turbid melt water outlet to clear marine waters. Results showed a strong spatial variation with high values as for suspended matter concentrations, CDOM, diffuse attenuation coefficient K d(PAR), particle beam attenuation coefficients (c p), and reflectance R(−0, PAR) at the melt water outlet. Values of optical constituents and properties decreased with distance from the melt water outlet to a more or less constant level in central and outer part of the estuary. There was a strong correlation between inorganic suspended matter (SPMI) and diffuse attenuation coefficient K d(PAR) (r 2 = 0.92) and also for particle beam attenuation coefficient (c p; r 2 = 0.93). The obtained SPMI specific attenuation—K d*(PAR) = 0.13 m2 g−1 SPMI—and the SPMI specific particle beam attenuation—c p* = 0.72 m2 g−1—coefficients were about two times higher than average literature values. Irradiance reflectance R(−0, PAR) was comparatively high (0.09−0.20) and showed a high (r 2 = 0.80) correlation with K u(PAR). Scattering dominated relative to absorption—b(PAR)/a(PAR) = 12.3. Results strongly indicated that the high values in the optical properties were related to the very fine particle sizes (mean = 2–6 μm) of the suspended sediment. Data and results are discussed and compared to similar studies from both temperate and tropical estuaries.  相似文献   

12.
A regional strategy for safety disposal of low- and intermediate-level radioactive wastes (LILW) has been implemented in China to protect humans and the environment. A joint onsite and laboratory investigation was conducted for a field site in southern China to assess the probability for safe disposal of LILW, which requires the understanding of long-term radionuclide transport behaviors under field conditions. This study presents the field-scale modeling of radionuclide transport through weathered granites for a conservative, a weakly sorbing and a strongly sorbing tracer by incorporating laboratory and field data. The field-scale radionuclide transport model was developed on the basis of a validated long-term groundwater flow model and field-measured dispersion coefficient, as well as laboratory-characterized strontium and cesium distribution coefficients in the weathered granites. The model was then used to perform the long-term transport prediction and risk assessment of radionuclide pollution for both the natural site setting and the graded site setting. Model simulation reveals that the numerical sensitivities of calculated concentrations are tracer dependent and changing with time. The conservative radionuclide is most sensitive to changes in hydraulic conductivity (K) while slightly sensitive to changes in effective porosity (φ), specific yield (μ) and longitudinal dispersion coefficient (D L), indicating advection is the main transport process of conservative radionuclide. The weakly and strongly sorbing tracers, on the other hand, are most sensitive to changes in the distribution coefficient (K d) and less sensitive to changes in the rest of model parameters, revealing that sorption is the main process for controlling the transport of sorbing tracers. A conservative radionuclide plume moves at an average velocity of about 54 m/a, which is too fast to be considered as safe disposal under the natural site setting. However, the plume of the conservative radionuclide could be slowed down to a velocity around 5.3 m/a due to the reduction of the hydraulic gradient under the graded site setting. Therefore, the conservative radioactive wastes could be disposed at the mid-eastern part of the site under the graded site setting because the transport path has been prolonged and thus no conservative radionuclides could migrate out of the site in a reasonable timeframe. For the sorbing tracers, however, results of the computed transport distance are 40 and 2 m at 500 years, respectively. Therefore, they can be disposed safely at the site under both natural and graded site settings. This study provides an insight to the field-scale long-term behaviors of radionuclide transport. The integrated modeling method presented in this study is most useful for the environmental impact assessment of the site conditions relevant to the safe disposal of hazardous wastes.  相似文献   

13.
A preliminary hydrogeological evaluation was undertaken on the gas potential of shallow coals in the Pembina–Warburg exploration area in the Alberta Basin, Alberta Canada. Regional data for the Late Cretaceous–Tertiary Ardley Coal Zone (ACZ) were compiled and supplemented with site-specific data collected from a key test- well drilled as part of a regional exploration program. Limited regional pressure data suggest hydraulic communication between the uppermost Ardley with the overlying Paskapoo Formation. A comparison between hydraulic head and topography suggests that flow, at least in part of the Ardley–Paskapoo, is gravity driven. However, a decoupling of the hydraulic regime appears evident from pressure test data in beds stratigraphically below the uppermost Scollard (Ardley) and above the base of Scollard at least in the eastern part of the study area where the test-well was drilled. The decoupling is evident in regional pressure data but the precise stratigraphic position may vary.Regionally, formation waters typically are Na–HCO3 type with salinities (as TDS) of less than 2000 mg/L. Anomalously high bicarbonate (dissolved inorganic carbon or DIC) concentrations exceeding 1500 mg/L with δ13CDIC + 22.50‰ and dissolved methane identified in formation waters collected directly from Ardley coal in test-well 103 point to the presence of secondary biogenic gas. The 13C isotopes for DIC, coupled with 18O and 2H isotopes for associated groundwater and regional hydraulic data, suggest that the uppermost Ardley Coal Zone in the eastern part of the study area is part of a regional, topographically driven, dynamic flow system in which methanogenic processes are modifying groundwater chemistry and gas charging parts of the area. Whether or not biogenic gas-charging in the Ardley is pervasive is uncertain. The relatively small coal data set requires that further exploration in the study area should consider the presence of microbial gas and the potential for hydrogeological controls on its distribution. However, further detailed testing will be necessary to develop a consistent and useful database for exploration and development.  相似文献   

14.
Saturated hydraulic conductivity (K s) is one of the most important parameters determining groundwater flow and contaminant transport in both unsaturated and saturated porous media. The hand-held air permeameter technique was investigated for high-resolution hydraulic conductivity determination on borehole cores using a spatial resolution of ~0.05 m. The suitability of such air permeameter measurements on friable to poorly indurated sediments was tested to improve the spatial prediction of classical laboratory-based K s measurements obtained at a much lower spatial resolution (~2 m). In total, 368 K s measurements were made on ~350 m of borehole cores originating from the Campine basin, northern Belgium, while ~5,230 air permeability measurements were performed on the same cores, resulting in a K s range of seven orders of magnitude. Cross-validation demonstrated that, using air permeameter data as the secondary variable for laboratory based K s measurements, the performance increased from R 2?=?0.35 for ordinary kriging (laboratory K s only) to R 2?=?0.61 for co-kriging. The separate treatment of horizontal and vertical hydraulic conductivity revealed considerable anisotropy in certain lithostratigraphical units, while others were clearly isotropic at the sample scale. Air permeameter measurements on borehole cores provide a cost-effective way to improve spatial predictions of traditional laboratory based K s.  相似文献   

15.
A regional lithostratigraphic and hydraulic interpretation is presented for the upper 0–300 m of the Benin Formation where groundwater is abstracted in the Rivers State, Nigeria.The aquifers are predominantly sand beds with minor clays, lignite, and conglomerate intercalations. The sands are very fine to coarse grained, subangular to subrounded, poor to fairly well sorted and mostly lithic arenites. A maximum thickness greater than 50 m is developed in places and vertical stacking is common. Most of the conglomerate beds have a matrix support fabric and appear restricted to the east as the lignite beds. An east-west trending belt, about central to the state, seems to contain more clay interbeds.The transmissivity values for the aquifers range from 1.05 × 10–2 to 11.3 × 10–2 m2/sec, while the coefficient of storage varies between 1.07 × 10–4 and 3.53 × 10–4 and specific capacity values lie between 19.01 and 139.8 m3/h/m drawdown. These values suggest that the aquifers have very good capacity to transmit groundwater. The static water level map shows a north-to-south regional groundwater flow pattern except in the northeast (Imo River catchment area) where the flow is northeast to southwest. The groundwater quality is very good and compares favorably with WHO standards for drinking water. However, relatively high iron and chloride values are localized in time and space.Deposition of the aquifer materials is thought to have occurred in alluvial fan, fluvial channel, tidal channel, intertidal flat, beach, and related microenvironments.  相似文献   

16.
Soil saturated hydraulic conductivity (Ks) is considered as soil basic hydraulic property, and its precision estimation is a key element in modeling water flow and solute transport processes both in the saturated and vadose zones. Although some predictive methods (e.g., pedotransfer functions, PTFs) have been proposed to indirectly predict Ks, the accuracy of these methods still needs to be improved. In this study, some easily available soil properties (e.g., particle size distribution, organic carbon, calcium carbonate content, electrical conductivity, and soil bulk density) are employed as input variables to predict Ks using a fuzzy inference system (FIS) trained by two different optimization techniques: particle swarm optimization (PSO) and genetic algorithm (GA). To verify the derived FIS, 113 soil samples were taken, and their required physical properties were measured (113 sample points?×?7 factors?=?791 input data). The initial FIS is compared with two methods: FIS trained by PSO (PSO-FIS) and FIS trained by GA (GA-FIS). Based on experimental results, all three methods are compared according to some evaluation criteria including correlation coefficient (r), modeling efficiency (EF), coefficient of determination (CD), root mean square error (RMSE), and maximum error (ME) statistics. The results showed that the PSO-FIS model achieved a higher level of modeling efficiency and coefficient of determination (R2) in comparison with the initial FIS and the GA-FIS model. EF and R2 values obtained by the developed PSO-FIS model were 0.69 and 0.72, whereas they were 0.63 and 0.54 for the GA-FIS model. Moreover, the results of ME and RMSE indices showed that the PSO-FIS model can estimate soil saturated hydraulic conductivity more accurate than the GA-FIS model with ME?=?10.4 versus 11.5 and RMSE?=?5.2 versus 5.5 for PSO-FIS and GA-FIS, respectively.  相似文献   

17.
The risk of groundwater contamination by chromate at a former chromite ore processing industrial site in Rivera (Switzerland) was assessed by determining subsoil Cr(VI) concentrations and tracking naturally occurring Cr(VI) reduction with Cr isotopes. Using a hot alkaline extraction procedure, a total Cr(VI) contamination of several 1000 kg was estimated. Jarosite, KFe3((SO4)x(CrO4)1−x)2(OH)6, and chromatite (CaCrO4) were identified as Cr(VI) bearing mineral phases using XRD, both limiting groundwater Cr(VI) concentrations. To track assumed Cr(VI) reduction at field scale δ53Cr values of contaminated subsoil samples in addition to groundwater δ53Cr data are used for the first time. The measurements showed a fractionation of groundwater δ53Cr values towards positive values and subsoil δ53Cr towards negative values confirming reduction of soluble Cr(VI) to insoluble Cr(III). Using a Rayleigh fractionation model, a current Cr(VI) reduction efficiency of approximately 31% along a 120 m long flow path was estimated at an average linear groundwater velocity of 3.3 m/d. Groundwater and subsoil δ53Cr values were compared with a site specific Rayleigh fractionation model proposing that subsoil δ53Cr values can possibly be used to track previous higher Cr(VI) reduction efficiency during the period of industrial activity. The findings strongly favor monitored natural attenuation to be part of the required site remediation measures.  相似文献   

18.
ABSTRACT In situ measurements of lakebed sediment erodibility were made on three sites in Hamilton Harbour, Lake Ontario, using the benthic flume Sea Carousel. Three methods of estimating the surface erosion threshold (τc(0)) from a Carousel time series were evaluated: the first method fits measures of bed strength to eroded depth (the failure envelope) and evaluates threshold as the surface intercept; the second method regresses mean erosion rate (Em) with bed shear stress and solves for the floc erosion rate (Ef) to derive the threshold for Em = Ef = 1 × 10?5 kg m?2 s?1; the third method extrapolates a regression of suspended sediment concentration (S) and fluid transmitted bed shear stress (τ0) to ambient concentrations. The first field site was undisturbed (C) and acted as a control; the second (W) was disturbed through ploughing and water injection as part of lakebed treatment, whereas the third site (OIP) was disturbed and injected with an oxidant used for remediation of contaminated sediment. The main objectives of this study were: (1) to evaluate the three different methods of deriving erosion threshold; (2) to compare the physical behaviour of lacustrine sediments with their marine estuarine counterparts; and (3) to examine the effects of ploughing and chemical treatment of contaminated sediment on bed stability. Five deployments of Sea Carousel were carried out at the control site. Mean erosion thresholds for the three methods were: τc(0) = 0·5 (±0·06), 0·27 (±0·01) and 0·34 (±0·03) Pa respectively. Method 1 overpredicted bed strength as it was insensitive to effects in the surface 1–2 mm, and the fit of the failure envelope was also highly subjective. Method 2 exhibited a wide scatter in the data (low correlation coefficients), and definition of the baseline erosion rate (Ef) is largely arbitrary in the literature. Method 3 yielded stable (high correlation coefficients), reproducible and objective results and is thus recommended for evaluation of the erosion threshold. The results of this method correlated well with sediment bulk density and followed the same trend as marine counterparts from widely varying sites. Mass settling rates, expressed as a decay constant, k, of S(t), were strongly related to the maximum turbidity at the onset of settling (Smax) and were also in continuity with marine counterparts. Thus, it appears that differences in salinity had little effect on mass settling rates in the examples presented, and that biological activity dominated any effects normally attributable to changes in salinity. Bedload transport of eroded aggregates (2–4 mm in diameter) took place by rolling below a mean tangential flow velocity (Uy) of 0·32 ms?1 and by saltation at higher velocities. Mass transport as bedload was a maximum at Uy = 0·4 ms?1, although bedload never exceeded 1% of the suspended load. The proportion of material moving as bedload was greatest at the onset of erosion but decreased as flow competence increased. Given the low bulk density and strength of the lakebed sediment, the presence of a bedload component is notable. Bedload transport over eroding cohesive substrates should be greater in estuaries, where both sediment density and strength are usually higher. Significant differences between the ploughed and control sites were apparent in both the erosion rate and the friction coefficient (φ), and suggest that bed recovery after disruption is rapid (< 24 h). τc(0) increased linearly with time after ploughing and recovered to the control mean value within 3 days. The friction coefficient was reduced to zero by ploughing (diagnostic of fluidization), but increased linearly with time, regaining control values within 6 days. No long‐term reduction in bed strength due to remediation was apparent.  相似文献   

19.
广东河台金矿金的迁移形式及沉淀机制的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

20.
Oxygen diffusion in albite has been determined by the integrating (bulk 18O) method between 750° and 450° C, for a P H2O of 2 kb. The original material has a low dislocation density (<106 cm?2), and its lattice diffusion coefficient (D 1), given below, agrees well with previous determinations. A sample was deformed at high temperature and pressure to produce a uniform dislocation density of 5 × 109 cm?2. The diffusion coefficient (D a) for this deformed material, given below, is about 0.5 and 0.7 orders of magnitude larger than D 1 at 700° and 450° C, respectively. This enhancement is believed due to faster diffusion along the cores of dislocations. Assuming a dislocation core radius of 4 Å, the calculated pipe diffusion coefficient (D p), given below, is about 5 orders of magnitude larger than D 1. These results suggest that volume diffusion at metamorphic conditions may be only slightly enhanced by the presence of dislocations. $$\begin{gathered} D_1 = 9.8 \pm 6.9 \times 10^{ - 6} (cm^2 /\sec ) \hfill \\ {\text{ }} \cdot \exp [ - 33.4 \pm 0.6(kcal/mole)/RT] \hfill \\ \end{gathered} $$ $$\begin{gathered} D_a = 7.6 \pm 4.0 \times 10^{ - 6} (cm^2 /\sec ) \hfill \\ {\text{ }} \cdot \exp [ - 30.9 \pm 1.1(kcal/mole)/RT] \hfill \\ \end{gathered} $$ $$\begin{gathered} D_p \approx 1.2 \times 10^{ - 1} (cm^2 /\sec ) \hfill \\ {\text{ }} \cdot \exp [ - 29.8(kcal/mole)/RT]. \hfill \\ \end{gathered} $$   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号