首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 761 毫秒
1.
Energetic solar electrons in the interplanetary medium   总被引:3,自引:0,他引:3  
R. P. Lin 《Solar physics》1985,100(1-2):537-561
ISEE-3 measurements extending down to 2 keV energy have provided a new perspective on energetic solar electrons in the interplanetary medium. Impulsive solar electron events are observed, on average, several times a day near solar maximum, with 40% detected only below 15 keV. The electron energy spectra have a nearly power-law shape extending smoothly down to 2 keV, indicating that the origin of these events is high in the corona. These coronal flare-like events often produced 3He-rich particle events.In large solar flares which accelerate electrons and ions to relativistic energies, the electron spectrum appears to be modified by a second acceleration which results in a double power-law shape above 10 keV with a break near 100 keV and flattening from 10–100 keV. Large flares result in long-lived (many days) streams of outflowing electrons which dominate the interplanetary fluxes at low energies. Even in the absence of solar activity, significant fluxes of low energy electrons flow out from the Sun.Solar type-III radio bursts are produced by the escaping 2–102 keV electrons through a beam-plasma instability. The detailed ISEE-3 measurements show that electron plasma waves are generated by the bump-on-tail distribution created by the faster electrons running ahead of the slower ones. These plasma waves appear to be converted into radio emission by nonlinear wave-wave interactions.  相似文献   

2.
We present two large flares which were exceptional in that each produced an extensive chain of H emission patches in remote quiet regions more than 105 km away from the main flare site. They were also unusual in that a large group of the rare type III reverse slope bursts accompanied each flare.The observations suggest that this is no coincidence, but that the two phenomena are directly connected. The onset of about half of the remote H emission patches were found to be nearly simultaneous with RS bursts. One of the flares (August 26, 1979) was also observed in hard X-rays; the RS bursts occurred during hard X-ray spikes. For the other flare (June 16, 1973), soft X-ray filtergrams show coronal loops connecting from the main flare site to the remote H brightenings. There were no other flares in progress during either flare; this, along with the X-ray observations, indicates that the RS burst electrons were generated in these flares and not elsewhere on the Sun. The remote H brightenings were apparently not produced by a blast wave from the main flare; no Moreton waves were observed, and the spatially disordered development of the remote H chains is further evidence against a blast wave. From geometry, time and energy considerations we propose: (1) That the remote H brightenings were initiated by direct heating of the chromosphere by RS burst electrons traveling in closed magnetic loops connecting the flare site to the remote patches; and (2) that after onset, the brightenings were heated by thermal conduction by slower thermal electrons (kT1 keV) which immediately follow the RS burst electrons along the same loops.  相似文献   

3.
R. P. Lin 《Solar physics》1970,12(2):266-303
Observations of prompt 40 keV solar flare electron events by the IMP series of satellites in the period August, 1966 to December, 1967 are tabulated along with prompt energetic solar proton events in the period 1964–1967. The interrelationship of the various types of energetic particle emission by the sun, including relativistic energy electrons reported by Cline and McDonald (1968) are investigated. Relativistic energy electron emission is found to occur only during proton events. The solar optical, radio and X-ray emission associated with these various energetic particle emissions as well as the propagation characteristics of each particle species are examined in order to study the particle acceleration and emission mechanisms in a solar flare. Evidence is presented for two separate particle acceleration and/or emission mechanisms, one of which produces 40 keV electrons and the other of which produces solar proton and possibly relativistic energy electrons. It is found that solar flares can be divided into three categories depending on their energetic particle emission: (1) small flares with no accompanying energetic phenomena either in particles, radio or X-ray emission; (2) small flares which produce low energy electrons and which are accompanied by type III and microwave radio bursts and energetic ( 20 keV) X-ray bursts; and (3) major solar flare eruptions characterized by energetic solar proton production and type II and IV radio bursts and accompanied by intense microwave and X-ray emission and relativistic energy electrons.  相似文献   

4.
Three low-energy particle events (35–1600 keV) associated with interplanetary shocks, detected at 1 AU by ISEE-3, have been identified as originating in solar disappearing filaments instead of large flares. This increases to fourteen the number of events of this kind presently known. The observational characteristics of these non-flare generated events are similar to the ones of the other eleven events already known (i.e., absence of type II or IV bursts, weak X-ray emission, H brightening in the surroundings of the filament disappearance, frequent presence of a double-ribbon event, slow propagation of the generated interplanetary shock, lack of shock deceleration).  相似文献   

5.
We have re-evaluated the association of type II solar radio bursts with flares and/or coronal mass ejections (CMEs) using the year 2000 solar maximum data. For this, we consider 52 type II events whose associations with flares or CMEs were absent or not clearly identified and reported. These events are classified as follows; group I: 11 type IIs for which there are no reports of GOES X-ray flares and CMEs; group II: 12 type IIs for which there are no reports of GOES X-ray flares; and group III: 29 type IIs for which the flare locations are not reported. By carefully re-examining their association from GOES X-ray and H, Yohkoh SXT and EIT-EUV data, we attempt to answer the following questions: (i) if there really were no X-ray flares associated with the above 23 type IIs of groups I and II; (ii) whether they can be regarded as backside events whose X-ray emission might have been occulted. From this analysis, we have found that two factors, flare background intensity and flare location, play important roles in the complete reports about flare–type II–CME associations. In the above 23 cases, for more than 50% of the cases in total, the X-ray flares were not noticed and reported, because the background intensity of X-ray flux was high. In the remaining cases, the X-ray intensity might be greatly reduced due to occultation. From the H flare data, Yohkoh SXT data and EIT-EUV data, we found that ten cases out of 23 might be frontside events, and the remaining are backside events. While the flare–type II association is found to be nearly 90%, the type II–CME association is roughly around 75%. This analysis might be useful to reduce some ambiguities regarding the association among type IIs, flares and CMEs.  相似文献   

6.
We have studied a series of flares in McMath 11482, 1972 August 19–22, with particular reference to the basis for the flares and comparison with dekameter radio data. We find that the flares were produced by rapid ( 1000 km h–1) westward motion of a large new p spot. Many flares occur just in front of the spot, and they cease when the motion stops. All flares occurring in front of the spot produce type III bursts, while even strong flares elsewhere in the region produce little or no type III. The time of type III emission agrees perfectly with the start of the H flare. Thus type III bursts are only produced in favorable configurations.Simultaneous K-line movies are compared with H films and show little difference in flare appearance.  相似文献   

7.
The planetary radio astronomy experiment on the Voyager spacecraft observed several type II solar radiobursts at frequencies below 1.3 MHz; these correspond to shock waves at distances between 20R and 1 AU from the Sun. We study the characteristics of these bursts and discuss the information that they give on shock waves in the interplanetary medium and on the origin of the high energy electrons which give rise to the radioemission. The relatively frequent occurence of type II bursts at large distances from the Sun favors the hypothesis of the emission by a longitudinal shockwave. The observed spectral characteristics reveal that the source of emission is restricted to only a small portion of the shock. From the relation between type II bursts, type III bursts and optical flares, we suggest that some of the type II bursts could be excited by type III burst fast electrons which catch up the shock and are then trapped.  相似文献   

8.
An extensive analysis is made of the theory of flare stars based on the fast electron hypothesis, in the light of the latest observational evidence. It is shown that an adequate agreement of theory with the observations obtains regarding the internal regular features in the flare amplitude data inUBV rays, as well as the changes of the colour characteristics of stars during the flares; in the latter case the analysis is made not only in respect of the UV Cet-type stars, but flare stars as well, forming a part of the Orion association. Problems bearing on the negative flare and the screening effect are dealt with. New properties of the light curves of flares are revealed, based on the above theory.Particular emphasis is laid on the X-ray radiation from flare stars. It is shown that the observed spectrum of X-ray radiation of flare stars differs sharply from that of X-ray radiation both of the stellar corona and solar X-ray flares. At the same time, the observed X-ray spectrum of flares is in complete harmony with the previously calculated theoretical spectrum corresponding to nonthermal bremsstrahlung with the energy of monoenergetic fast electrons 1.5 MeV. The durations of X-ray flares should be essentially shorter than that of the optical flares. The very high momentary intensities of the X-ray brightness with the exceedingly small duration at the curve maximum is predicted. It is shown that the gamma-ray bursts recorded so far have no relation whatever to flare stars.  相似文献   

9.
Type III radio bursts observed at kilometric wavelengths ( 0.35 MHz) by the OGO-5 spacecraft are compared with > 45 keV solar electron events observed near 1 AU by the IMP-5 and Explorer 35 spacecraft for the period March 1968–November 1969.Fifty-six distinct type III bursts extending to 0.35 MHz ( 50 R equivalent height above the photosphere) were observed above the threshold of the OGO-5 detector; all but two were associated with solar flares. Twenty-six of the bursts were followed 40 min later by > 45 keV solar electron events observed at 1 AU. All of these 26 bursts were identified with flares located west of W 09 solar longitude. Of the bursts not associated with electron events only three were identified with flares west of W 09, 18 were located east of W 09 and 7 occurred during times when electron events would be obscured by high background particle fluxes.Thus almost all type III bursts from the western half of the solar disk observed by OGO-5 above a detection flux density threshold of the order of 10–13 Wm–2 Hz–1 at 0.35 MHz are followed by > 45 keV electrons at 1 AU with a maximum flux of 10 cm–2 s–1 ster–1. If particle propagation effects are taken into account it is possible to account for lack of electron events with the type III bursts from flares east of the central meridian. We conclude that streams of 10–100 keV electrons are the exciting agent for type III bursts and that these same electrons escape into the interplanetary medium where they are observed at 1 AU. The total number of > 45 keV electrons emitted in association with a strong kilometer wavelength type III burst is estimated to be 5 × 1032.  相似文献   

10.
The amount of circular polarization of the total solar radio emission at 7 GHz present permanent changes after the occurrence of certain radio bursts associated with larger flares. For isolated S-components, associated with such flares the changes of the polarization degree sranges between 0.004 to 0.1, and appears to be a function of the flare importance. A semi-qualitative interpretation associates swith magnetic field reductions at the S-component, agreeing fairly well with a flare mechanism based on collisionless dissipation of magnetic energy, corresponding to energies in the range of 1030 to 1032 ergs, assuming an average model for the coronal condensations.  相似文献   

11.
We analyze hard and soft X-ray, microwave and meter wave radio, interplanetary particle, and optical data for the complex energetic solar event of 22 July 1972. The flare responsible for the observed phenomena most likely occurred 20° beyond the NW limb of the Sun, corresponding to an occultation height of 45 000 km. A group of type III radio bursts at meter wavelengths appeared to mark the impulsive phase of the flare, but no impulsive hard X-ray or microwave burst was observed. These impulsive-phase phenomena were apparently occulted by the solar disk as was the soft X-ray source that invariably accompanies an H flare. Nevertheless essentially all of the characteristic phenomena associated with second-stage acceleration in flares - type II radio burst, gradual second stage hard X-ray burst, meter wave flare continuum (FC II), extended microwave continuum, energetic electrons and ions in the interplanetary medium - were observed. The spectrum of the escaping electrons observed near Earth was approximately the same as that of the solar population and extended to well above 1 MeV.Our analysis of the data leads to the following results: (1) All characteristics are consistent with a hard X-ray source density n i 108 cm–3 and magnetic field strength 10 G. (2) The second-stage acceleration was a physically distinct phenomenon which occurred for tens of minutes following the impulsive phase. (3) The acceleration occurred continuously throughout the event and was spatially widespread. (4) The accelerating agent was very likely the shock wave associated with the type II burst. (5) The emission mechanism for the meter-wave flare continuum source may have been plasma-wave conversion, rather than gyrosynchrotron emission.  相似文献   

12.
Data are presented from the IMP-4 satellite of 0.3–12 MeV electrons from the Sun between May 24, 1967 and May 2, 1969. Correlations with contemporary proton intensity increases at energies above 1 MeV are studied. Classical solar flare events such as those frequently observed from 30°W–60°W in solar longitude are not discussed. Categories of unusual events are defined and examples of each type are given. Discussion of these events centers around the emission and propagation of energetic particles from the point of origin on the Sun to the Earth. The results of this study are the following: (1) The differential electron energy spectrum (0.3–12 keV) from solar flares appears to be a constant of the flare process, with the spectral index = (-)3.0 ± 0.2. (2) Particle emission from solar flares contains a prompt component, which is injected into the interplanetary medium beyond the Sun and which is responsible for the diffusion characteristics of solar particle events, and a delayed component which is effectively contained in the lower solar atmosphere where it diffuses typically ± 100° in longitude and gradually escapes into interplanetary space. The delayed component gives rise to the corotating features commonly observed after the impulsive and diffusive onset from the prompt component. This is not the same as the two component model discussed by Lin (1970a) in which 40 keV electrons are often observed as a separate phenomenon and frequently precede higher energy particles observed at 1 AU. (3) Storage of electrons > 300 keV and protons > 1 MeV is essential to explain emission and propagation characteristics of solar particle events. In some rare cases the storage mechanism appears to be very efficient, culminating in a catastrophic decay of the trapping region. (4) The events with low proton/electron ratios all occur at least three weeks after the previous relativistic electron producing flare.  相似文献   

13.
A new series of solar flare energetic X-ray events has been detected by an ionization chamber on the OGO-I and OGO-III satellites in free space. These X-rays lie in the range 10–50 keV, and a study has been made of their relationship to 3 and 10 cm radio bursts and with the emission of electrons and protons observed in space. The onset times, times of maximum intensity and total duration are very similar for the radio and X-ray emission. Also, the average decay is similar and usually follows an exponential type behavior. However, this good correlation applies most often to the flash phase of flares, whereas subsequent surges of activity from the same eruption may produce microwave emission or further X-ray bursts not closely correlated. An approximate proportionality is found between the total energy content of the X-rays and of the 3 and 10 cm integrated radio fluxes. These measurements suggest that the X-ray and microwave emission have a common energizing process which determines the time profile of both. The recording of electrons greater than 40 keV by the Interplanetary Monitoring Probe (IMP satellite) has been found to correlate very well with flares producing X-ray and microwave emission provided the propagation path to the sun is favorable. There is evidence that the acceleration of solar protons may not be closely associated with the processes responsible for the production of microwaves, X-rays, and interplanetary electrons.The OGO ionization chamber responds to energies (10–50 keV) intermediate between the soft X-rays giving SID disturbances (1–10 keV) and energetic quanta previously measured with balloons (50–500 keV). Proposed source mechanisms should be capable of covering this range of energies including the most energetic quanta occasionally observed.  相似文献   

14.
We attempt to study the origin of coronal shocks by comparing several flare characteristics for two groups of flares: those with associated metric type II bursts and coronal mass ejections (CMEs) and those with associated metric type II bursts but no CMEs. CMEs accompany about 60% of all flares with type II bursts for solar longitudes greater than 30°, where CMEs are well observed with the NRL Solwind coronagraph. H flare areas, 1–8 Å X-ray fluxes, and impulsive 3 cm fluxes are all statistically smaller for events with no CMEs than for events with CMEs. It appears that both compact and large mass ejection flares are associated with type II bursts. The events with no CMEs imply that at least many type II shocks are not piston-driven, but the large number of events of both groups with small 3 cm bursts does not support the usual assumption that type II shocks are produced by large energy releases in flare impulsive phases. The poor correlation between 3 cm burst fluxes and the occurrence of type II bursts may be due to large variations in the coronal Alfvén velocity.Sachs/Freeman Associates, Inc., Bowie, MD 20715, U.S.A.  相似文献   

15.
We study the association of type III bursts related to H flares in different magnetic environments in the period 1970–1981. Special attention is paid to flares which partly cover a major spot umbra (Z-flares). In particular we consider the location of the spots in the active regions and the magnetic field intensities of spots covered by a ribbon. The association rate with type III bursts decreases to 17% when the flare is located inside the bipolar pattern of a large active region, compared with an association rate of 54% when the flare is situated outside it. The association rate increases with the magnetic field intensity of the spot covered by H emission; this is most clearly revealed for the flares occurring outside the bipolar pattern of active regions. Ninety-three percent of the flare-associated type III burst were accompanied by 10 cm radio bursts. For the most general case in which a flare is developing anywhere in an active region, the association with type III bursts generation increases with the increasing magnetic field intensity of the main spot of the group.  相似文献   

16.
The fundamental hypothesis by Alfvén and Carlqvist (1967) that solar flares are related to electrical currents in the solar chromosphere and low corona is investigated in the light of modern observations. We confirm the important role of currents in solar flares. There must be tens of such current loops (flux threads) in any flare, and this explains the hierarchy of bursts in flares. We summarize quantitative data on energies, numbers of particles involved and characteristic times. A special case is the high-energy flare: this one may originate in the same way as less energetic ones, but it occurs in regions with higher magnetic field strength. Because of the high particle energies involved their emission seats live only very briefly; hence the area of emission coincides virtually with the seat of the instability. These flares are therefore the best examples for studying the primary instability leading to the flare. Finally, we compare the merits of the original Alfvén-Carlqvist idea (that flares originate by current interruption) with the one that they are due to interaction (reconnection) between two or more fluxthreads. We conclude that a final decision cannot yet be made, although the observed extremely short time constants of flare bursts seem to demand a reconnection-type instability rather than interruption of a circuit.Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988.  相似文献   

17.
Flare-associated soft X-ray bursts (8–12 Å) are examined for 283 events observed by OSO-III. These bursts are shown to be predominantly thermal in nature. Their time-profiles are roughly similar to those of the associated H flares, although the X-ray burst begins about two minutes earlier, on the average. The strength of the soft X-ray burst is directly related to the area and brilliance of the flare, the age and flare-richness of the associated plage, and the general level of solar activity at the time of the burst. The peak enhancements in the soft X-ray and H emission rates during flares are of the same order of magnitude, as are the total flare energies radiated at these wavelengths. We estimate that soft X-radiation accounts for up to 10% of a flare's total electromagnetic emission.NRC/NAS Resident Research Associate.  相似文献   

18.
Umbral flares     
Frances Tang 《Solar physics》1978,60(1):119-122
H flare patches usually do not occur in sunspot umbrae. Presented here are cases of a type of umbral flare in which the flare patch originated in, and was confined to, the p spot umbra. All are H subflares. Two of the four flares were accompanied by type III radio bursts. The simplicity and similarity of the magnetic fields of these regions were striking.  相似文献   

19.
C. S. Li  Q. J. Fu  H. W. Li 《Solar physics》1991,131(2):337-350
Recent observations show that the rapid fluctuations in radio, hard X-ray, and H emissions are closely associated with type III and microwave (or decimetric) bursts during the impulsive and/or preimpulsive phases of solar flares.In order to clarify the physical processes of these observed phenomena, this paper proposes a tentative model of two acceleration regions A (source of type III bursts) and B (source of microwave or decimetric bursts) formed in the neutral sheet and at the top of a flaring loop, respectively; and also suggests that the electron beams streaming from region A and/or region B downward to the chromosphere are responsible for the rapid fluctuations in the different emissions mentioned above during the impulsive and/or pre-impulsive phases of solar flares.  相似文献   

20.
A solar flare of importance 1B which occurred at 06:36 UT on April 27, 1979 on the solar disk (N 20, E 16) produced intense radio bursts. The most interesting feature of this event is the observation of a strong continuum radiation (type IV) starting at 06:53 UT and lasting for about 10 min in the decametric range. This continuum radiation displayed sharp low frequency cut-off, which varied from about 40 to 30 MHz in a quasiperiodic manner and could be attributed to Razin effect. The perturbation of this cut-off frequency is interpreted as that induced by the passing MHD shock wave through the region of the trapped energetic electrons. Assuming model electron density values and using the observed cut-off frequency, the magnitude of coronal magnetic field around 2R from Sun center works out to be about 6 G.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号