首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the early morning (1:47 Taiwan time) of September 21, 1999, the largest earthquake of the century in Taiwan (Mw=7.6, ML=7.3) struck this island country. The earthquake killed more than 2400 people and caused great destruction to buildings, bridges, dams, highways, and railways. One of the causes for heavy damages to the structures is soil liquefaction and ground settlement during the earthquake. In this paper, investigation of soil liquefaction and case histories of liquefaction are presented. Three CPT-based simplified methods, the Robertson method, the Olsen method, and the Juang method, are examined using the case histories derived from the Chi-Chi earthquake. The results of the comparison show that the Juang method is more accurate than the two methods in predicting liquefaction potential of soils based on the cases derived from the Chi-Chi earthquake, although all three methods are quite comparable in accuracy.  相似文献   

2.
The 1999 Chi–Chi, Taiwan, earthquake provides case histories of ground failure and non-ground failure that are valuable to the ongoing development of liquefaction susceptibility, triggering and surface manifestation models because the data occupy sparsely populated parameter spaces (i.e. high cyclic stress ratio and high fines content with low to moderate soil plasticity). In this paper, we document results from several large site investigation programs conducted in Nantou, Wufeng and Yuanlin, Taiwan. The seismic performance of the investigated sites include non-ground failure building and free-field sites, building sites with partial foundation bearing failures, free-field lateral spread sites, and free-field level ground sites with sediment boils. Field and laboratory investigation protocols for the sites are described, including cone penetration testing (some with pore pressure and shear wave velocity measurements) and rotary wash borings with standard penetration testing (including energy measurements). Implications of the SPT energy measurements with respect to established guidelines for the estimation of SPT energy ratio (including short rod corrections) are presented. Finally, data for three example sites are shown that illustrate potential applications of the data set, and which also demonstrate a condition where existing liquefaction analysis procedures fail to predict the observed field performance.  相似文献   

3.
This paper investigates the effect of nature of the earthquake on the assessment of liquefaction potential of a soil deposit during earthquake loading. Here, the nature of the earthquake is included via the parameter V, the ‘pseudo-velocity’, that is the gross area under the acceleration record of the earthquake at any depth below the ground surface. By analysing a number of earthquake records from different parts of the world, a simple method has been outlined to assess the liquefaction potential of a soil deposit based on the pseudo-velocity. For many earthquakes occurred in the past, acceleration records are available or can be computed at the ground level or some other depth below the ground surface. Therefore, this method is a useful tool at the preliminary design stage to determine the liquefaction potential before going into a detailed analysis. Validation of the method is carried out using a database of case histories consisting of standard penetration test values, acceleration records at the ground surface and field observations of liquefaction/non-liquefaction. It can be seen that the proposed method has the ability to predict soil liquefaction potential accurately, despite its simplicity.  相似文献   

4.
An energy-based liquefaction potential evaluation method (EBM) previously developed was applied to a uniform sand model shaken by seismic motions recorded at different sites during different magnitude earthquakes. It was also applied to actual liquefaction case histories in Urayasu city during the 2011 M9.0 Tohoku earthquake and in Tanno-cho during the 2003 M8.0 Tokachi-oki earthquake. In all these evaluations, the results were compared with those by the currently used stress-based method (SBM) under exactly the same seismic and geotechnical conditions. It was found that EBM yields similar results with SBM for several ground motions of recent earthquakes but has easier applicability without considering associated parameters. In Urayasu city, the two methods yielded nearly consistent results by using an appropriate coefficient in SBM for the M9.0 earthquake, though both overestimated the actual liquefaction performance, probably because effects of plasticity and aging on in situ liquefaction strength were not taken into account. In Tanno-cho, EBM could evaluate actual liquefaction performance due to a small-acceleration motion during a far-field large magnitude earthquake while SBM could not.  相似文献   

5.
It is recognized that soil improvement techniques are not economically feasible for mitigation of liquefaction-induced lifeline damages because of the large areas served. Instead, it is more practical to execute an emergency action immediately after an earthquake in order to prevent or minimize possible lifeline failures caused by the soil liquefaction. Essential element in the implementation of such a plan is the real-time identification of liquefied sites, which can be successfully achieved by analyzing surface strong motion records. In this paper, the thresholds of two ground motion parameters—the peak surface velocity and horizontal shaking frequency of the ground—that are associated with the soil liquefaction are assessed utilizing the theory of one-dimensional wave propagation in linearly elastic medium. Obtained simple expressions for both parameters are used to estimate their ranges and are examined against several case histories. Minimum level of peak ground velocity (PGV) is verified by experimental data from shaking-table test. Linear relationships between amplitude ground motion parameters at liquefied-soil sites are also developed. Results suggest that liquefaction is likely to take place when PGV exceeds 0.10 m/s and that the upper bound of horizontal ground vibration frequency after liquefaction occurrence is 1.3–2.3 Hz.  相似文献   

6.
Downhole records of seismically-induced soil liquefaction are a valuable source of information on the associated mechanisms of stiffness degradation and lateral spreading. In this paper, free-field downhole array seismic records are employed to identify and model the recorded response at Wildlife Refuge (California, USA) and Port Island (Kobe, Japan) sites. The Wildlife Refuge site was instrumented in 1982 with a two-accelerometer array and six piezometers that recorded a case of seismically induced site liquefaction. At Port Island, a four-accelerometer down-hole array recorded strong motion during the recent 1995 Hyogoken-Nanbu earthquake. This earthquake resulted in widespread liquefaction and major ground deformations at Port Island. Using the recorded downhole accelerations at these two sites, the actual seismic shear stress-strain histories are directly evaluated. These histories provide valuable insight into the mechanisms of site liquefaction and associated loss of stiffness and strength. Based on the identified dynamic soil behaviors, computational simulations of the observed seismic response are performed. Optimization techniques are employed to estimate the necessary computational modeling parameters. This document constitutes the second part of a set of two companion papers about site amplification and liquefaction.  相似文献   

7.
The destructive 1999 Chi–Chi earthquake (Mw 7.5) was the largest inland earthquake in Taiwan in the 20th century. Several observations witness the non-linear seismic soil response in sediments during the earthquake. In fact, large settlements as well as evidence of liquefaction attested by sand boils and unusual wet ground surface were observed at some sites. In this paper, we present a seismic response simulation performed with CyberQuake software on a site located within the Chang-Hwa Coastal Industrial Park during the 1999 Chi–Chi earthquake in Taiwan. A non-linear multi-kinematic dynamic constitutive model is implemented in the software. Computed NS, EW and UP ground accelerations obtained with this model under undrained and two-phase assumptions, are in good agreement with the corresponding accelerations recorded at seismic station TCU117, either for peak location, amplitudes or frequency content. In these simulations, liquefaction occurs between depths 1.3 and 11.3 m, which correspond to the observed range attested by in place penetration tests and other liquefaction analyses. Moreover, the computed shear wave velocity profile is very close to post-earthquake shear wave velocity profile derived from correlations with CPT and SPT data. Finally, it is shown that in non-linear computations, even though a 1D geometry is considered, it is necessary to take into account the three components of the input motion.  相似文献   

8.
Estimating the possible region of liquefaction occurrence during a strong earthquake is highly valuable for economy loss estimation, reconnaissance efforts and site investigations after the event. This study identified and compiled a large amount of liquefaction case histories from the 2008 Wenchuan earthquake, China, to investigate the relationship between the attenuation of seismic wave energy and liquefaction distance limit during this earthquake. Firstly, we introduced the concept of energy absorption ratio, which is defined as the absorbed energy of soil divided by the imparted energy of seismic waves at a given site, and the relationship between the energy absorption ratio and the material damping ratio was established based on shear stress–strain loop of soil element and the seismic wave propagation process from the source to the site. Secondly, the threshold imparted seismic energy of liquefaction was obtained based on existing researches of absorbed energy required to trigger liquefaction of sandy soils and the ground motion attenuation characteristics of the 2008 Wenchuan earthquake, and the liquefaction distance limit of this earthquake was estimated according to the proposed magnitude–energy–distance relationship. Finally, the field liquefaction database of 209 sites of the 2008 Wenchuan earthquake was used to validate such an estimation, and the field observed threshold imparted seismic energy to cause liquefaction in recent major earthquakes worldwide was back-analyzed to check the predictability of the present method, and several possible mechanisms were discussed to explain the discrepancy between the field observations and the theoretical predictions. This study indicates that seismic energy attenuation and liquefaction distance limit are regional specific and earthquake dependent, and 382 J/m3 is the average level of threshold imparted seismic energy to cause liquefaction for loose saturated sandy soils, and the corresponding liquefaction distance limit is approximately 87.4 km in fault distance for a Mw?=?7.9 event in the Chengdu Plain. The proposed regional energy attenuation model and threshold imparted seismic energy may be considered as an approximate tool in evaluating the liquefaction hazard during potential earthquakes in this area.  相似文献   

9.
The horizontal ground displacement generated by seismically induced liquefaction is known to produce significant damage to engineered structures. A backpropagation neural network model is developed to predict the horizontal ground displacements. A large database containing the case histories of lateral spreads observed in eight major earthquakes is used. The results of this study indicate that the neural network model serves as a reliable and simple predictive tool for the amount of horizontal ground displacement. As more data become available, the model itself can be improved to make more accurate displacement prediction for a wider range of earthquake and site conditions.  相似文献   

10.
Seismic downhole-array data provide a unique source of information on actual soil (and overall site) behavior over a wide range of loading conditions that are not readily covered by in-situ or laboratory experimentation procedures. In this paper, free-field downhole-array seismic records are employed to identify and model the recorded response at the Lotung (Taiwan) and Treasure Island (California) sites. At Lotung, a five-accelerometer array recorded the site response during 18 earthquakes (1985–1986). The Treasure Island site was instrumented in 1992 with an array of six accelerometers that recorded a low amplitude earthquake in 1993. Using this downhole data, correlation and spectral analyses are performed to evaluate shear wave propagation characteristics, variation of shear wave velocity with depth and site resonant frequencies and model configurations. In addition, the actual seismic shear stress-strain histories are directly evaluated from the recorded downhole accelerations. These histories provide valuable insight into the mechanisms of site amplification, damping and pore-pressure build-up. Computational simulations of these case histories are performed based on the identified mechanisms of site response. In a companion paper, two additional case histories of site liquefaction are analyzed using records of downhole seismic response.  相似文献   

11.
Five empirical equations are presented, describing initiation of liquefaction in fully saturated sands, in terms of standard penetration values and initial overburden stress on level ground. These equations are based on 90 case histories of liquefaction, and relate empirically the pore pressure increase to earthquake magnitude, epicentral distance, energy of strong motion at the site, peak ground velocity, Fourier amplitude of velocity and duration of strong motion. The results are given in terms of raw standard penetration values corrected for overburden pressure. For all the models presented, the standard deviation of the residuals, representing the differences between the observed and predicted penetration values is less than six blow counts.  相似文献   

12.
Gravelly soil is generally recognized to have no liquefaction potential. However, liquefaction cases were reported in central Taiwan in the 1999 Chi-Chi Taiwan earthquake and in the 1988 Armenia earthquake. Thus, further studies on the liquefaction potential of gravelly soil are warranted. Because large particles can impede the penetration of both standard penetration test and cone penetration test, shear wave velocity-based correlations and large hammer penetration tests (LPT) are employed to evaluate the liquefaction resistance of gravelly soils. A liquefied gravelly deposit site during the Chi-Chi earthquake was selected for this research. In situ physical properties of soil deposits were collected from exploratory trenches. Instrumented LPT and shear wave velocity (Vs) measurements were performed to evaluate the liquefaction resistance. In addition, large-scale cyclic triaxial tests on remolded gravelly soil samples (15 cm in diameter, 30 cm in height) were conducted to verify and improve LPT-based and Vs-based correlations. The results show that the LPT and shear wave velocity methods are reasonably suitable for liquefaction assessment of gravelly soils.  相似文献   

13.
For sites susceptible to liquefaction induced lateral spreading during a probable earthquake, geotechnical engineers often need to know the undrained residual shear strength of the liquefied soil deposit to estimate lateral spreading displacements, and the forces acting on the piles from the liquefied soils in order to perform post liquefaction stability analyses. The most commonly used methods to estimate the undrained residual shear strength (Sur) of liquefied sand deposits are based on the correlations determined from liquefaction induced flow failures with SPT and CPT data. In this study, 44 lateral spread case histories are analyzed and a new relationship based on only lateral spread case histories is recommended, which estimates the residual shear strength ratio of the liquefiable soil layer from normalized shear wave velocity. The new proposed method is also utilized to estimate the residual lateral displacement of an example bridge problem in an area susceptible to lateral spreading in order to provide insight into how the proposed relationship can be used in geotechnical engineering practice.  相似文献   

14.
Estimating severity of liquefaction-induced damage near foundation   总被引:1,自引:2,他引:1  
An empirical procedure for estimating the severity of liquefaction-induced ground damage at or near foundations of existing buildings is established. The procedure is based on an examination of 30 case histories from recent earthquakes. The data for these case histories consist of observations of the damage that resulted from liquefaction, and the subsurface soil conditions as revealed by cone penetration tests. These field observations are used to classify these cases into one of three damaging effect categories, ‘no damage’, ‘minor to moderate damage’, and ‘major damage’. The potential for liquefaction-induced ground failure at each site is calculated and expressed as the probability of ground failure. The relationship between the probability of ground failure and the damage class is established, which allows for the evaluation of the severity of liquefaction-induced ground damage at or near foundations. The procedure presented herein represents a significant attempt to address the issue of liquefaction effect. Caution must be exercised, however, when using the proposed model and procedure for estimating liquefaction damage severity, because they are developed based on limited number of case histories.  相似文献   

15.
Study on liquefaction of saturated loess by in-situ explosion test   总被引:1,自引:1,他引:1  
Liquefaction testing at a saturated loess site was performed under the simulated earthquake ground motion induced by artificial explosions with micro-time intervals. The time histories of ground acceleration, pore water pressure and the ultimate value of residual strain were recorded and measured. The modified FEQdrain computation software was used to analyze the liquefaction. Both the test and the analysis confirm the objective occurrence of loess liquefaction. Furthermore, the reliability of the method of the loess liquefaction analysis based on FEQdrain and the model of pore water pressure development of saturated loess are examined. Supported by: China Ministry of Science and Technology (Granted No.2000-35), Registration No.for Publications of Lanzhou Institute of Seismology, CSB:LC2002-001.  相似文献   

16.
The use of MASW method in the assessment of soil liquefaction potential   总被引:4,自引:0,他引:4  
The multi-channel analysis of surface wave (MASW) method is a non-invasive method recently developed to estimate shear wave velocity profile from surface wave energy. Unlike conventional SASW method, multi-station recording permits a single survey of a broad depth range and high levels of redundancy with a single field configuration. An efficient and unified wavefield transform technique is introduced for dispersion analysis and on site data quality control. The technique was demonstrated in the assessment of soil liquefaction potential at a site in Yuan Lin, Taiwan. The shear wave velocity and liquefaction potential assessments based on MASW method compares favorable to that based on SCPT shear wave measurements. Two-dimensional shear wave velocity profiles were estimated by occupying successive geophone spreads at several sites in central western Taiwan, at some of which sand boils or ground cracks occurred during 1999 Chi Chi earthquake. Liquefaction potential analysis based on MASW imaging was shown to be effective for estimating the extent of potential liquefaction hazard.  相似文献   

17.
As the profession moves toward the performance-based earthquake engineering design, it becomes more important and pressing to examine the uncertainty of the limit state model used for liquefaction potential evaluation. In this paper, the uncertainty of the Robertson and Wride model, a simplified model for liquefaction resistance and potential evaluation based on cone penetration test, is investigated in detail for its model uncertainty in the framework of first-order reliability analysis. The uncertainties of the parameters used in the Robertson and Wride model are also examined. The model uncertainty is estimated by calibration with a fairly large set of case histories. The results show that the uncertainty of the Robertson and Wride model may be characterized with a mean-to-nominal of 0.94 and a coefficient of variation of 0.15 based on the case histories examined.  相似文献   

18.
The linear and non-linear responses of surface soil layers have been predicted through the simultaneous simulation test against the observed ground motions at the six sites in Kobe City during the 1995 Hyogo-ken Nanbu earthquake. The total stress analysis method and the effective stress analysis method have been applied for the rough and detailed verification of the predicted non-linear dynamic behavior at the PIS and RKI sites including the liquefaction phenomenon. The shear strain distribution along depth, the ratio of excess pore water pressure to initial effective stress, the liquefaction strength parameters to initial effective stress, and the stress–strain curve during the earthquake at the PIS site have been investigated when the predicted ground motion could simulate successfully the observed acceleration time histories and response spectra in the non-linear range.  相似文献   

19.
The 1999 earthquakes in Turkey and Taiwan, offering a variety of case histories with structures subjected to large tectonic displacements, have refueled the interest of the earthquake engineering community on the subject. While several structures were severely damaged or even collapsed, there were numerous examples of satisfactory performance. Even more astonishingly, in specific cases the surface fault rupture was effectively diverted due to the presence of a structure. For the purpose of developing deeper insights into the main mechanisms controlling this fascinating interplay, this article documents selected field case histories of fault rupture–foundation interaction from (a) the Mw 7.4 Kocaeli (August 17) 1999 earthquake in Turkey, (b) the Mw 7.1 Düzce-Bolu (November 12) 1999 earthquake in Turkey, (c) the Mw 7.6 Chi–Chi (September 21) 1999 earthquake in Taiwan, and (d) surface faulting in Mount Etna. A subset of the case histories presented herein is analysed numerically, using the methods developed in the companion paper. It is shown that relatively “heavy” or stiff structures supported by continuous and rigid foundations may divert the fault rupture. Such structures are subjected to rigid body rotation, without substantial structural distress. In contrast, structures on structurally–resilient foundation systems or on isolated supports are prone to substantial damage.  相似文献   

20.
2013年6月2日台湾南投地震强地面运动模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
2013年6月2日台湾省南投县发生一次里氏6.5级地震,这次地震是最近几年内发生的最大的一次地震,台湾大部分地区以及中国大陆东南沿海城市均有明显震感.为了更深入的理解此次地震的地震波能量传播过程以及强地面运动过程,本文采用三维有限差分方法对此次地震的强地面运动过程进行了模拟.结果显示,台湾中央山脉起伏的地形对此次地震的强地面运动分布特征具有较大的影响,出现了比较明显的地形放大效应;此外,台湾的平原和盆地中的沉积层也对地震波有较强的放大效应.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号