首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have performed experiments to constrain the effect of sulfur fugacity (fS2) and sulfide saturation on the fractionation and partitioning behavior of Pt, Pd and Au in a silicate melt–sulfide crystal/melt–oxide–supercritical aqueous fluid phase–Pt–Pd–Au system. Experiments were performed at 800 °C, 150 MPa, with oxygen fugacity (fO2) fixed at approximately the nickel–nickel oxide buffer (NNO). Sulfur fugacity in the experiments was varied five orders of magnitude from approximately log fS2 = 0 to log fS2 = −5 by using two different sulfide phase assemblages. Assemblage one consisted initially of chalcopyrite plus pyrrhotite and assemblage two was loaded with chalcopyrite plus bornite. At run conditions pyrrhotite transformed compositionally to monosulfide solid solution (mss), chalcopyrite to intermediate solid solution (iss), and in assemblage two chalcopyrite and bornite formed a sulfide melt. Run-product silicate glass (i.e., quenched silicate melt) and crystalline materials were analyzed by using both electron probe microanalysis and laser ablation inductively coupled plasma mass spectrometry. The measured concentrations of Pt, Pd and Au in quenched silicate melt in runs with log fS2 values ranging from approximately 0.0 to −5.0 do not exhibit any apparent dependence on fS2. The measured Pt, Pd and Au concentrations in mss do vary as a function of fS2. The measured Pt, Pd and Au concentrations in iss do not appear dependent on fS2. The data suggest that fS2, working in concert with fO2, via the determinant role that these variables play in controlling the magmatic sulfide phase assemblage and the solubility of Pt, Pd and Au as lattice bound components in magmatic sulfide phases, is a controlling factor on the budgets of Pt, Pd and Au during the evolution of magmatic systems.  相似文献   

2.
Summary The crystal structure of curite, of which until now only the arrangement of the U and Pb atoms was known, has been redetermined with a synthetic crystal using three-dimensional X-ray techniques.R=0.043 for 1270 observed reflections. Curite is orthorhombic, space groupPnam-D 2h 16 ,a=12.513,b=13.002,c=8.373 ,Z=6.56 PbO·16UO3·9.44H2O. The structure consists of a novel type of washboard like puckered layers 2 [(UO2)8O8 (OH)6]6– formed by tetragonal bipyramidal [(UO2)O3(OH)] and pentagonal bipyramidal [(UO2)O3 (OH)2] polyhedra. The layers are parallel to {100} and are directly connected by hydrogen bonds. Lead atoms and oxygen atoms (H2O+OH) are located in folds between the layers, helping to connect them. The interlayer atomic positions are slightly disordered and one of them is partially occupied. The variable concentrations of the interlayer atoms are responsible for the changes in chemical composition.The structural formula [Pb8–x (OH)4–2x (H2O)2x ] [(UO2)8(OH)6]2 is suggested for curite;x=1.44 for the investigated synthetic curite. Within the three different U–O polyhedra the axial U–O distances are 1.81–1.88 , the equatorial 2.14–2.57 . The two different Pb atoms have ionic coordinations, each by ten oxygens with Pb–O distances of 2.46–3.32 , on the average 2.82 .
Die Kristallstruktur von Curit, [Pb 6,56 (H 2 O, OH) 4 ] [(UO 2)8 O 8(OH)6]2
Zusammenfassung Die Kristallstruktur von Curit, von der bisher nur die Lagen der Uran- und Bleiatome bekannt waren, wurde anhand eines künstlichen Kristalls mit dreidimensionalen Röntgendaten neu bearbeitet und für 1270 Reflexe aufR=0,043 verfeinert. Curit kristallisiert rhombisch, RaumgruppePnam-D 2h 16 ,a=12,513,b=13,002,c=8,373 ,Z=6,56 PbO·16 UO3·9,44 H2O. Die Struktur enthält gewellte Schichten eines neuen Typs, 2 [(UO2)8O8(OH)6]6–, die sich aus tetragonal bipyramidalen [(UO2)O3(OH)]- und pentagonal-bipyramidalen [(UO2)O3(OH)2]-Polyedern zusammensetzen. Die Schichten verlaufen parallel {100} und sind über Wasserstoffbrücken miteinander unmittelbar verknüpft. Zwischen den Schichten befinden sich Bleiatome und zusätzliche Sauerstoffatome (H2O+OH). Diese Atome weisen zum Teil Fehlordnung auf; eine der beiden Pb-Lagen ist nur partiell besetzt. Für Schwankungen in der chemischen Zusammensetzung von Curit ist der unterschiedliche Gehalt an Zwischenschichtatomen verantwortlich. Aufgrund dieser Untersuchung wird die Strukturformel [Pb8–x (OH)4–2x (H2O)2x ] [(UO2)8O8(OH)6]2 vorgeschlagen; für den untersuchten Curit istx=1,44. Die drei verschiedenen U–O-Polyeder der Struktur besitzen axiale bzw. äquatoriale U–O-Abstände von 1,81–1,88 bzw. 2,14–2,57 . Die zwei Arten von Bleiatomen besitzen eine ionische Koordination; beide sind von 10 Sauerstoffatomen in Abständen von 2,46–3,32 (Mittelwert 2,82 ) umgeben.


With 3 Figures  相似文献   

3.
In pelitic rocks, under conditions of low f O 2 and low f H 2 O, the stability of the mineral pair cordierite-garnet is limited by five univariant reactions. In sequence from high pressure and low temperature to high temperature and low pressure these are: cordierite+garnet hypersthene+sillimanite+quartz, cordierite+garnet hypersthene+sapphirine+quartz, cordierite+garnet hypersthene+spinel+quartz and cordierite+garnet olivine+spinel +quartz. In this sequence of reactions the Mg/Mg+Fe2+ ratio of all ferro-magnesian minerals involved decreases continuously from the first reaction to the fifth. The five univariant boundaries delimit a wide P-T range over which cordierite and garnet may coexist.Two divariant equilibria in which the Mg/Mg+ Fe2+ ratio of the coexisting phases are uniquely determined by pressure and temperature have been studied in detail. P-T-X grids for the reactions cordierite garnet+sillimanite+quartz and cordierite+hypersthene garnet+quartz are used to obtain pressure-temperature estimates for several high grade metamorphic areas. The results suggest temperatures of formation of 700–850° C and load pressures of 5–10 kb. In rare occasions temperatures of 950–1000° C appear to have been reached during granulite metamorphism.On the basis of melting experiments in pelitic compositions it is suggested that Ca-poor garnet xenocrysts found in calc-alkaline magmas derive from admixed pelitic rocks and did not equilibrate with the calc-alkaline magma.  相似文献   

4.
The current formulations of the Fe–Ti oxide thermobarometer (titanomagnetite–ilmenitess) fail to reproduce experimental results, in particular at the high temperatures that are relevant for basaltic assemblages. With the aim of improving the experimental basis of the calibration in the Fe–Ti–O system, we have synthesised assemblages of titanomagnetite–ilmenitess (Tmt–Ilmss), ilmenitess–pseudobrookitess (Ilmss–Psbss) and single-phase samples under a wide range of fO2 (fixed with CO/CO2 mixtures or by solid oxygen buffers) in sub-solidus conditions (1,000–1,300°C) at 1 bar. Runs lasted 24 h at 1,300°C and up to 240 h at 1,000°C and were terminated by quenching in water. All run products are polycrystalline, roughly equigranular aggregates, with grain sizes of 10–50 m. They were examined and analysed with the SEM and EMP. Tmt compositions are broadly in accordance with the current models at moderate fO2, but significantly richer in Ti at low fO2 and high T, due to cationic vacancies. Ilmss compositions depart from the predicted values practically at all fO2 and T conditions, which is related to unsatisfactory thermodynamic models for the rhombohedral oxide. For Ilmss–Psbss assemblages the best agreement between our data and current calculations is at 1,000°C and moderately high fO2. Otherwise, experimental and calculated data strongly disagree. The experimental data set on the three Fe–Ti oxide solid solutions presented here is intended to support new versions of both the titanomagnetite–ilmenitess thermo-oxybarometer and the ilmenitess–pseudobrookitess oxybarometer.  相似文献   

5.
Summary This paper deals with some unsolved crystal chemical questions concerning a group of alkali iron hydrated sulphates based on clusters of composition [Fe 3 3+ O(SO4)6(H2O3]5– Taking the experimental chemical formulae, X-ray data and known crystal structures into account it is possible to establish the theoretical boundaries of the Na–K diadochy in metavoltine and also to define the influence of the Na–K replacement on the structure of -Maus' salt. These considerations allow us to propose more general crystal chemical formulae, both for metavoltine and -Mous' salt. Finally, the causes which affect the stability of metavoltine and and -Maus' salt are discussed.
Kristallchemische Überlegungen zu einigen wasserführenden Alkali-Sulphaten
Zusammenfassung Diese Arbeit befaßt sich mit einigen noch ungelösten kristallchemischen Fragen einer Gruppe von wasserführenden Alkali-Eisen-Sulphaten, die auf Gruppierungen der Zusammensetzung [Fe 3 3+ O(SO4)6(H2O)3]5– basieren. Aufgrund der experimentall ermittelten chemischen Formeln, Röntgendaten und der bekannten Kristallstrukturen ist es möglich, die theoretischen Grenzen der Na–K Diadochie in Metavoltin zu ermitteln. Außerdem gelang es, den Einfluß des Na–K Ersatzes auf die Struktur des -Maus'schen Salzes zu definieren. Diese Überlegungen führten dazu, allgemeine chemische Formeln sowohi für Metavoltin wie für -Maus'sches Salz vorzuschlagen. Schließlich werden die Faktoren diskutiert, die die Stabilität von Metavoltin sowie von und -Maus'schem Salz bestimmen.


With 6 Figures  相似文献   

6.
We have developed a new technique for the experimental determination of the activities of oxide components in melts and minerals using the equilibrium between Pd alloy, oxygen, and the oxide component in the sample of interest. If a melt or mineral sample is equilibrated with Pd metal at fixed P, T, and f O 2, a small amount of each constituent oxide will reduce to metal and dissolve into the Pd, forming an alloy. Due to the extraordinary stability of dilute alloys of Pd with Mg, Al, and Si, these metals dissolve into the Pd in amounts easily measured with the electron microprobe at f O 2 s that can be achieved with conventional gas-mixing techniques. We determined the activity-composition relations for Pd–Mg, –Al, and –Si alloys by equilibrating Pd at fixed f O 2and T with periclase, corundum, and cristobalite (a oxide1). Because Mg, Al, and Si have constant activity coefficients in Pd at low concentrations, the activity of the oxide of each metal is a simple function of the ratio of the concentration of the metal in Pd in equilibrium with the sample to that in Pd in equilibrium with the pure oxide. Therefore, if Pd plus a melt or mineral and Pd plus pure oxide standards are equilibrated simultaneously at fixed T and f O 2, the precision of the analytical technique is the major limitation on the determination of oxide activities. We used Pd-oxide equilibration to explore activities in silicate melts analogous to Type B Ca–Al-rich inclusions (CAIs) from carbonaceous chondrites; the measured activities deviate systematically from model valves but agree to within 1–30%. The activities imply that Type B CAIs did not condense as liquids from a gas of solar composition, and that only very aluminous compositions are potential liquid condensates from the solar nebula. We also used Pd-oxide equilibration to determine the free energy of formation from the oxides, G f /O , of the spinel end-member MgAl2O4 at 1150 to 1400°C to a precision of 2–19% (1). Because the technique reflects equilibration at high temperature, the G f /O s accurately represent the mineral with equilibrium Mg–Al disorder at temperature, a feature not true of drop calorimetric results because of partial reordering during quenching. Our results indicate more negative G f Emphasis>/O and hence higher entropy of formation, S f Emphasis>/O , than given in most compilations of thermodynamic data for spinel.Division of Geological and Planetary Sciences Contribution #5278  相似文献   

7.
The apparent equilibrium constant for the exchange of Fe and Ni between coexisting olivine and sulfide liquid (KD = (XNiS/XFeS)liquid/(XNiSi12O2/XFeSi12O2)olivine; Xi = mole fraction) has been measured at controlled oxygen and sulfur fugacities (fO2 = 10−8.1 to 10−10 and fS2 = 10−0.9 to 10−1.7) over the temperature range 1200 to 1385°C, with 5 to 37 wt% Ni and 7 to 18 wt% Cu in the sulfide liquid. At log fO2 of −8.7 ± 0.1, and log fS2 of −0.9 to −1.7, KD is relatively insensitive to sulfur fugacity, but comparison with previous results shows that KD increases at very low sulfur fugacities. KD values show an increase with the nickel content of the sulfide liquid, but this effect is more complex than found previously, and is greatest at log fO2 of −8.1, lessens with decreasing fO2, and KD becomes independent of melt Ni content at log fO2 ≤ −9.5. The origin of this variation in KD with fO2 and fS2 is most likely the result of nonideal mixing of Fe and Ni species in the sulfide liquid. Such behavior causes activity coefficients to change with either melt oxygen content or metal/sulfur ratio, effects that are well documented for metal-rich sulfide melts.Application of these experimental results to natural samples shows that the relatively large dispersion that exists in KD values from different olivine + sulfide-saturated rock suites can be interpreted as arising from variations in fO2, fS2, and the nickel content of the sulfide liquid. Estimates of fO2 based on KD and sulfide melt composition in natural samples yields a range from fayalite-magnetite-quartz (FMQ)-1 to FMQ-2 or lower, which is in good agreement with previous values determined for oceanic basalts that use glass ferric/ferrous ratios. Anomalously high KD values recorded in some suites, such as Disko Island, probably reflect low fS2 during sulfide saturation, which is consistent with indications of low fO2 for those samples. It is concluded that the variation in KD values from natural samples reflects olivine-sulfide melt equilibrium at conditions within the T-fO2-fS2 range of terrestrial mafic magmas.  相似文献   

8.
The discrepancy between the tabulated Gibbs Energies of Formation for Al2SiO5 and corundum relative to muscovite and kaolinite is considered to lie principally with the latter two minerals. New values for heat of formation of gibbsite [Gbs] will affect the tabulated H f 0 , G f(298,1) 0 for the other aluminous minerals which are referred to gibbsite as calorimetric aluminum reference. Gibbs Energy Difference Functions, calculated from phase equilibria in the system CaO-Al2O3-SiO2-(H2O-CO2), can be used to estimate consistent H f 0 , G f(298,1) 0 values for aluminous minerals. A self consistent data set is presented referred to G f(298,1) 0 [Corundum]=–378.08 kcal mol–1. Two independent values for G f(298,1) 0 [Anorthite]=–961.52 and –960.29 kcal, from a recalculation of the H f 0 [Anor] based upon the revised H f(298,1) 0 [Gbs]=–309.325 kcal mol–1 and from measurement of silica activity on the anorthite-saturated part of the CaO-Al2O3-SiO2 liquidus, respectively, are considered to show the magnitude of the discrepancy and are used in the calculations.  相似文献   

9.
The Mogan and Fataga formations on the island of Gran Canaria, Canary Islands, represent a sequence of approximately 30 intercalated pyroclastic and lava flows (total volume about 500 km3 dense-rock equivalent) including subalkaline rhyolitic, peralkaline rhyolitic and trachytic pyroclastic flows, nepheline trachyte lavas and a small volume of alkali basaltic lavas and tephra deposits. The eruption of the intermediate to silicic rocks of the Mogan and Fataga formations follows the roughly 4 Ma duration of basaltic shield volcanism. The most common assemblage in the evolved (Mogan and Fataga) rocks is anorthoclase+ edenitic amphibole+ilmenite+magnetite±augite±hypersthene +apatite+pyrrhotite. A few flows also contain plagioclase, biotite, or sphene. Coexisting Fe-Ti oxides yield equilibrium temperatures between 835 and 930° C and log between –11.2 and –12.6. The lowermost pyroclastic flow of the Mogan formation is zoned from a rhyolitic base (848° C) to a basaltic top (931° C). Unit P1 has an oxygen isotope feldspar-magnetite temperature (850° C) very close to its Fe-Ti oxide temperature. One of the youngest Mogan flows is zoned from a comendite (836° C) at the base to a comenditic trachyte (899° C) at the top. The Fataga formation pyroclastic flows show only slight compositional zonation, and one flow has the same Fe-Ti oxide compositions at top and base.Calculations using the reaction 1/3 magnetite+SiO2 (melt)=ferrosilite+1/6 O2 indicate total pressures of 1–4 (±3) kb for six of the Mogan flows and one of the Fataga flows. For four of the pyroclastic flows, equilibria involving tremolite-SiO2-diopside-enstatite-H2O and phlogopite-SiO2-sanidine-enstatite-H2O imply water contents of 0.9 to 2.6 (±0.5) wt% and between 80 and 610 bars, which indicates that magma within the Tejeda reservoir was H2O-undersaturated throughout the entire history of Mogan to Fataga volcanism. The fluorine contents of amphibole, biotite, and apatite, and chlorine contents of apatite reveal thatf HF/ andf HCl/ high compared to most igneous rocks and are consistent with the peralkaline nature of most of the volcanics. Thef HCl estimate for one flow is 10–2 to 10–1 bars andf HF for six of the flows ranges from about 10–1 to 6 bars. Pyrrhotite compositions yield estimates for log between –1 and –3, log between –2 and 1.5, and log between 0.5 and 3, which fall in the range of most intermediate to silicic systems. The lack of a systematic trend with time for magma composition, Fe-Ti oxide temperatures, water contents, phenocryst abundances, and ferromagnesian phase composition indicate that the Tejeda magmatic system was open and kept at nearly the same conditions by the periodic addition of more primitive melts.The intensive thermodynamic parameters estimated from coexisting phenocryst equilibria are used to constrain the eruption dynamics based on solution of the conservation equations for a vapor plus pyroclast mixture. The estimates of magma reservoir temperature, pressure, and water concentration, when combined with a one-dimensional fluid dynamical model of a pyroclastic eruption, imply that the velocities of the ash flows at the vent exit were on the order of 100 to 200 m s–1, and the mass flow rates were about 107 kg s–1 for an assumed vent radius of 10 m.  相似文献   

10.
Monomineralic domains of chlorite, corundum and Cr muscovite coexist over a kilometer scale within ultramafic schists of the Harare greenstone belt (2.73 Ga). This exotic lithological association includes the conjunction of some of the most aluminous (Al2O388 wt%) and potassic (K2O10 wt%) rocks known. The paragenetic sequence developed from chloritecorundumcorundum+ diaspore: Cr muscovite variably overprinted both the corundum and chloritite domains. Terminal stages were marked by sporadic production of andalusite+quartz, and finally margarite.Chlorite (Cr2O3=0.31–2.65 wt%), corundum (0.79–2.66 wt%), and diaspore are all Cr-rich varieties. The chromian (Cr2O33.86 wt%) paragonitic muscovite incorporates up to 17% of the paragonite molecule, and significant Mg and Fe substitutions.The suite of rocks are characterized by chondritic Ti/Zr ratios (–x=107), systematically enhanced Cr (up to 14000 ppm) and Ni (up to 1200 ppm) abundances, low levels of the alteration-insensitive incompatible elements Th, Ta, Nb. Chlorite, corundum and Cr muscovite represent progressive stages in the incremental metasomatic alteration of a komatiite precursor. Mass balance calculations, constrained by the isochemical behaviour of Ti, Zr and Hf reveal that the komatiite chloritite transformation involved volumetric contractions of 60% by hydrothermal leaching of Si, Fe, Mn, Ca and Na. Reaction of chloritite to corundum involved further volumetric reductions of 50% due to essentially quantitative loss of Si, Fe, Mn, Mg, K and Ca. Conversion of corundum to muscovite required additions of Si, K, Fe, Mn, Mg, Rb and Ba at 50–200% dilation. K, Rb, Ba, Li and Cs are enriched by up to 2×103 over background abundances in ultramafic rocks, and the suite is also enriched in B, Se, Te, Bi, As, Sb and Au. REE were extensively leached during chloritite-corundum stages, whereas LREE additions accompany development of muscovite. Ti, Zr, Hf and Al were all concentrated by selective leaching of mobile components, but absolute additions of Al accompanied development of the corundum domains due to Al precipitation in response to depressurization.Corundum ( 18O=3.5–4.8), muscovite ( 18O=6.7–7.5) and chlorite (4.5–5.6) are isotopically uniform and formed at 380–520° C from a fluid where 18O=5.6–6.9. The corundum is 18O depleted relative to either igneous or anatectic counterparts (Ocor=7.6–8.2), or to gibbsitic laterites ( 18O=12–17).Previous genetic schemes involving metamorphism of exhalites or bauxite, or Si-undersaturation of magmas, can all be ruled out from the data. The chloritite, corundum, Cr-muscovite association represents sequential alteration products of ultramafic rocks by high temperature, low pH hydrothermal solutions carrying LIL-elements, and in which excursions of pH and/or degree of quartz undersaturation account for the mineralogical transitions. A deep level acid epithermal system, or fluid advection across steep inverted thermal gradients in a thrust regime could account for required hydrothermal conditions.  相似文献   

11.
The assemblage paragonite + quartz is encountered frequently in low- to medium-grade metamorphic rocks. With rising grade of metamorphism they react mutually to yield the condensed assemblage albite + Al2SiO5.The univariant curve pertaining to the equilibrium paragonite + quartz=albite + andalusite + H2O has been located experimentally. The reversed P H 2 O-T data are: 1 kb: 470–490° C 2 kb: 510–530° C 3 kb: 540–560° C 4 kb: 560–580° C 5 kb: 590–600° C The univariant curve pertaining to the equilibrium paragonite + quartz=albite + kyanite + H2O runs through the following P H 2 O-T-intervals: 5 kb: 570–625° C 6 kb: 600–630° C 7 kb: 620–640° C Thermodynamic calculations of S 298 0 , H f,298 0 and G f,298 0 of the phase paragonite from the experimental data presented above and those obtained from the equilibria of the reaction paragonite=albite + corundum + H2O (Chatterjee, 1970), agree within the limits of uncertainty. This prompts the idea that Zen's (1969) suggestion of a possible error of approximately 7 kcal in G f,298 0 of the Al2SiO5 polymorphs may in fact be due to an error of similar magnitude in G f,298 0 of corundum.A best estimate of S 298 0 , H f,298 0 and G f,298 0 of paragonite based on these considerations yield: S 298 0 : 67.61±3.9 cal deg–1 gfw–1 H f,298 0 : –1411.4±2.7 kcal gfw–1 G f,298 0 : –1320.9±4.0 kcal gfw–1 These numbers will be subject to change when better thermochemical data on corundum and albite are available.In medium-grade metamorphic rocks the assemblage paragonite + quartz is commonly found in stable coexistence with such other phases as muscovite, staurolite, andalusite, kyanite, but not with cordierite or sillimanite. However, the assemblage paragonite-sillimanite has been reported to be stable in the absence of quartz. All these petrologic observations can be explained on the basis of the stability data of the phases and phase assemblages concerned.  相似文献   

12.
Calc-alkaline granitoid rocks of the Oligocene-Pliocene Chilliwack batholith, North Cascades, range from quartz diorites to granites (57–78% SiO2), and are coeval with small gabbroic stocks. Modeling of major element, trace element, and isotopic data for granitoid and mafic rocks suggests that: (1) the granitoids were derived from amphibolitic lower crust having REE (rare-earth-element) and Sr-Nd isotopic characteristics of the exposed gabbros; (2) lithologic diversity among the granitoids is primarily the result of variable water fugacity during melting. The main effect of fH 2 O variation is to change the relative proportions of plagioclase and amphibole in the residuum. The REE data for intermediate granitoids (quartz diorite-granodiorite; Eu/Eu*=0.84–0.50) are modeled by melting with fH 2 O<1 kbar, leaving a plagioclase + pyroxene residuum. In contrast, data for leucocratic granitoids (leuco-granodiorites and granites; Eu/Eu* =1.0–0.54) require residual amphibole in the source and are modeled by melting with fH 2 O=2–3 kbar. Consistent with this model, isotopic data for the granitoids show no systematic variation with rock type (87Sr/86Sri =0.7033–0.7043; Nd(0)=+3.3 to +5.5) and overlap significantly with data for the gabbroic rocks (87Sr/86Sri =0.7034–0.7040; Nd(0)=+3.3 to +6.9). The fH 2 O variations during melting may reflect additions of H2O to the lower crust from crystallizing basaltic magmas having a range of H2O contents; Chillwack gabbros document the existence of such basalts. One-dimensional conductive heat transfer calculations indicate that underplating of basaltic magmas can provide the heat required for large-scale melting of amphibolitic lower crust, provided that ambient wallrock temperatures exceed 800°C. Based on lithologic and geochemical similarities, this model may be applicable to other Cordilleran batholiths.  相似文献   

13.
A solution model is developed for rhombohedral oxide solid solutions having compositions within the ternary system ilmenite [(Fe 2+ s Ti 4+ 1–s ) A (Fe 2+ 1–s Ti 4+ s ) B O3]-geikielite [(Mg 2+ t Ti 4+ 1–t ) A (Mg 2+ 1–t Ti 4+ t ) B O3]-hematite [(Fe3+) A (Fe3+) B O3]. The model incorporates an expression for the configurational entropy of solution, which accounts for varying degrees of structural long-range order (0s, t1) and utilizes simple regular solution theory to characterize the excess Gibbs free energy of mixing within the five-dimensional composition-ordering space. The 13 model parameters are calibrated from available data on: (1) the degree of long-range order and the composition-temperature dependence of the transition along the ilmenite-hematite binary join; (2) the compositions of coexisting olivine and rhombohedral oxide solid solutions close to the Mg–Fe2+ join; (3) the shape of the miscibility gap along the ilmenite-hematite join; (4) the compositions of coexisting spinel and rhombohedral oxide solid solutions along the Fe2+–Fe3+ join. In the course of calibration, estimates are obtained for the reference state enthalpy of formation of ulvöspinel and stoichiometric hematite (–1488.5 and –822.0 kJ/mol at 298 K and 1 bar, respectively). The model involves no excess entropies of mixing nor does it incorporate ternary interaction parameters. The formulation fits the available data and represents an internally consistent energetic model when used in conjuction with the standard state thermodynamic data set of Berman (1988) and the solution theory for orthopyroxenes, olivines and Fe–Mg titanomagnetite-aluminate-chromate spinels developed by Sack and Ghiorso (1989, 1990a, b). Calculated activity-composition relations for the end-members of the series, demonstrate the substantial degree of nonideality associated with interactions between the ordered and disordered structures and the dominant influence of the miscibility gap across much of the ternary system. The predicted shape of the miscibility gap, and the orientation of tie-lines relating the compositions of coexisting phases, display the effects of coupling between the excess enthalpy of solution and the degree of long-range order. One limb of the miscibility gap follows the composititiontemperature surface corresponding to the ternary second-order transition.  相似文献   

14.
The partition of Ni between olivine and monosulfide-oxide liquid has been investigated at 1300–1395° C, =10–8-9–10–6.8, and =10–2.0–10–0.9, over the composition range 20–79 mol. % NiS. The product olivine compositions varied from Fo98 to Fo59 and from 0.06 to 3.11 wt% NiO. The metal/sulfur ratio of the sulfide-oxide liquid increases with increase in , decrease in , and increase in NiS content. The Ni/Fe exchange reaction has been perfectly reversed using natural olivine and pure forsterite as starting materials. The FeO and NiO contents of olivine from runs equilibrated at the same and form isobaric distributions with NiS content, which, to a first approximation, are dependent at constant temperature and total pressure on a variable term, –0.5 log ( / ). The Ni/Fe distribution coefficient (K D3) exhibits only a weak decrease from 35 to 29 with increase in from the IW buffer to close to the FMQ buffer. At values higher than FMQ, the sulfide-oxide liquid has the approximate composition (Ni,Fe)3±xS2K D358. The present K D3 vs O/(S+O) data define a trend which extrapolates to K D320 at 10 wt% oxygen in the sulfide-oxide liquid. The compositions of olivine and Ni-Cu sulfides associated with early-magmatic basic rocks and komatiites are consistent, at 1400° C, with a value of -log ( / ) of about 7.7, which is equivalent to 0.0 wt% oxygen in the hypothesized immiscible sulfide-oxide liquid. Therefore, K D3 would not be reduced significantly from the 30 to 35 range for sulfide-oxide liquids with low oxygen contents.  相似文献   

15.
The partitioning of Pt in sulphide melt (matte) has been studied as a function of fS2 and fO2 at 1200 and 1300 °C. The results show that the solubility of Pt in mattes increases strongly with increasing fS2 and decreases weakly with increasing fO2. The increase in Pt solubility with increasing fS2 is attributed to Pt dissolving in the melt as a sulphide species and the weak inverse dependence of Pt solubility on fO2 to the diluting effect of increasing O in the melt at high fO2. These results, coupled with measurements of Pt solubility in silicate melts taken from the literature, allow the calculation of Pt matte/silicate-melt partition coefficients () for a range of conditions pertinent to the formation of Pt-rich horizons in layered intrusions. The calculated values range between 107 and 1011, depending on fO2 and fS2, several orders of magnitude higher than previously published values. Our preferred value for for conditions appropriate to the Merensky Reef is 107 and for the Stillwater Pt-rich horizon 108. The new results are consistent with the magmatic hypothesis for Pt-rich horizons in layered intrusions.  相似文献   

16.
In order to elucidate the formation mechanism of low‐sulfidation epithermal gold deposit, the adsorption of [Au(S2O3)2]3? (a model compound for gold(I) complex ion) on alumina gel (a model compound for the aluminum‐bearing minerals) and change in chemical state of [Au(S2O3)2]3? after adsorption on the surface of alumina gel were investigated as a basic model experiment. In the pH range from 4 to 6, the amount of [Au(S2O3)2]3? adsorbed on alumina gel decreased with increasing pH and decreased drastically between pH 6 and 7, and then approached zero above pH 8 at 30°C. At 60°C, the amount of gold adsorbed above pH 7 was enhanced compared with that at 30°C. This adsorption tendency indicates that [Au(S2O3)2]3? is mainly adsorbed by electrostatic interaction between negative charges of [Au(S2O3)2]3? and positive charges of alumina gel because of its isoelectric point around pH 9. The chemical state of gold after adsorption of [Au(S2O3)2]3? on alumina gel was examined using X‐ray absorption near edge structure (XANES). The result showed that [Au(S2O3)2]3? was spontaneously reduced to elemental gold even in the absence of specific reducing agents after adsorption on alumina gel. This reduction reaction might occur by two steps: (i) disproportionation of the adsorbed [Au(S2O3)2]3? at the surface of alumina gel, and (ii) spontaneous reduction of the resulting gold(III) complex ions on the surface of alumina gel. The experimental results suggest that aluminum plays an important role in the concentration of gold(I) complex ions and subsequent reduction of gold during the formation of low‐sulfidation epithermal gold deposits.  相似文献   

17.
The carbon isotopic fractionation between CO2 vapour and sodamelilite (NaCaAlSi2O7) melt over a range of pressures and temperatures has been investigated using solid-media piston-cylinder high pressure apparatus. Ag2C2O4 was the source of CO2 and experimental oxygen fugacity was buffered at hematite-magnetite by the double capsule technique. The abundance and isotopic composition of carbon dissolved in sodamelilite (SM) glass were determined by stepped heating and the 13C of coexisting vapour was determined directly by capsule piercing. CO2 solubility in SM displays a complex behavior with temperature. At pressures up to 10 kbars CO2 dissolves in SM to form carbonate ion complexes and the solubility data suggest slight negative temperature dependence. Above 20 kbars CO2 reacts with SM to form immiscible Na-rich silicate and Ca-rich carbonate melts and CO2 solubility in Na-enriched silicate melt rises with increasing temperature above the liquidus. Measured values for carbon isotopic fractionation between CO2 vapour and carbonate ions dissoived in sodamelilite melt at 1200°–1400° C and 5–30 kbars average 2.4±0.2, favouring13C enrichment in CO2 vapour. The results are maxima and are independent of pressure and temperature. Similar values of 2 are obtained for the carbon isotopic fractionation between CO2 vapour and carbonate melts at 1300°–1400° C and 20–30 kbars.  相似文献   

18.
XANES analyses at the sulfur K-edge were used to determine the oxidation state of S species in natural and synthetic basaltic glasses and to constrain the fO2 conditions for the transition from sulfide (S2−) to sulfate (S6+) in silicate melts. XANES spectra of basaltic samples from the Galapagos spreading center, the Juan de Fuca ridge and the Lau Basin showed a dominant broad peak at 2476.8 eV, similar to the spectra obtained from synthetic sulfide-saturated basalts and pyrrhotite. An additional sharp peak at 2469.8 eV, similar to that of crystalline sulfides, was present in synthetic glasses quenched from hydrous melts but absent in anhydrous glasses and may indicate differences in sulfide species with hydration or presence of minute sulfide inclusions exsolved during quenching. The XANES spectra of a basalt from the 1991 eruption of Mount Pinatubo, Philippines, and absarokitic basalts from the Cascades Range, Oregon, USA, showed a sharp peak at 2482.8 eV, characteristic of synthetic sulfate-saturated basaltic glasses and crystalline sulfate-bearing minerals such as hauyne. Basaltic samples from the Lamont Seamount, the early submarine phase of Kilauea volcano and the Loihi Seamount showed unequivocal evidence of the coexistence of S2− and S6+ species, emphasizing the relevance of S6+ to these systems. XANES spectra of basaltic glasses synthesized in internally-heated pressure vessels and equilibrated at fO2 ranging from FMQ − 1.4 to FMQ + 2.7 showed systematic changes in the features related to S2− and S6+ with changes in fO2. No significant features related to sulfite (S4+) species were observed. These results were used to construct a function that allows estimates of S6+/ΣS from XANES data. Comparison of S6+/ΣS data obtained by S Kα shifts measured with electron probe microanalysis (EPMA), S6+/ΣS obtained from XANES spectra, and theoretical considerations show that data obtained from EPMA measurements underestimate S6+/ΣS in samples that are sulfate-dominated (most likely because of photo-reduction effects during analysis) whereas S6+/ΣS from XANES provide a close match to the expected theoretical values. The XANES-derived relationship for S6+/ΣS as a function of fO2 indicates that the transition from S2− to S6− with increasing fO2 occurs over a narrower interval than what is predicted by the EPMA-derived relationship. The implications for natural systems is that small variation of fO2 above FMQ + 1 will have a large effect on S behavior in basaltic systems, in particular regarding the amount of S that can be transported by basaltic melts before sulfide saturation can occur.  相似文献   

19.
Glassy orthopyroxene granodiorite-tonalite (named pincinite after type locality) was described from basaltic lapilli tuffs of the Pliocene maar near Pinciná village in the Slovakian part of the Pannonian Basin. Two pincinite types exhibit a qualitatively similar mineral composition (quartz, An20–55 plagioclase, intergranular silicic glass with orthopyroxene and ilmenite, ±K-feldspar), but strongly different redox potential and formation PT conditions. Peraluminous pincinite is reduced (6–7% of total iron as Fe3+ in corundum-normative intergranular dacitic glass) and contains ilmenite with 8–10 mol% Fe2O3 and orthopyroxene dominated by ferrosilite. High-density (up to 0.85 g/cm3) primary CO2 inclusions with minor H2, CH4, H2S, CO and N2 (<2 mol% total) are present in Qtz and Plg. Equilibrium PT conditions inferred from the intergranular Opx–Ilm–Glass assemblage and fluid density correspond to 1,170±50°C, 5.6±0.4 kbar, respectively. Metaluminous pincinite is more oxidised (25–27% of total iron as Fe3+ in diopside-normative intergranular glass of rhyolite–trachyte–dacite composition) and contains Fe2O3-rich ilmenite (17–29 mol%) associated with enstatite. Fluid inclusions are composed of CO2–H2O mixtures with up to 38 mol% H2O. Raman spectroscopy revealed H2S along with dominant CO2 in the carbonic phase. Equilibrium PT parameters for the intergranular Opx–Ilm–Glass assemblage correspond to 740±15°C, 2.8±0.1 kbar, respectively. Reducing gas species (<2 mol% total) in the CO2-inclusions of the peraluminous pincinite resulted from hydrogen diffusion due to fH2 gradient imposed during decrease of redox potential from the log fO2 values near QFM during Qtz + Plg growth, to QFM-2 incidental to the superimposed Opx + Ilm assemblage in the intergranular melt. The decrease in oxygen fugacity was recorded also in the metaluminous pincinite, where log fO2 values changed from ~QFM + 2.6 to QFM + 0.4, but hydrogen diffusion did not occur. Absence of OH-bearing minerals, major and trace element abundances (e.g. REE 300–320, Nb 55–57, Th 4–31, Zr 240–300 ppm, FeOtot/MgO up to 11), and Sr–O isotope ratios in the pincinites are diagnostic of high-temperature anorogenic magmas originated by dehydration melting of biotite in quartz-feldspathoid crust (87Sr/86Sr>0.705–0.706, 18O>9 V-SMOW) around alkali basalt reservoir in depths between 17 and 20 km, and around late stage derivatives of the basalt fractionation, intruding the crust up to depths of 10–11 km. Low water activity in the pincinite parental melt was caused by CO2-flux from the Tertiary basaltic reservoirs and intrusions. The anatexis leads to generation of a melt-depleted granulitic crust beneath the Pannonian Basin, and the pincinites are interpreted as equivalents of igneous charnockites and enderbites quenched at temperatures above solidus and unaffected by sub-solidus re-equilibration and metamorphic overprint.  相似文献   

20.
Hydrothermally-altered mesozonal synmetamorphic granitic rocks from Maine have whole-rock 18O (SMOW) values 10.7 to 13.8. Constituent quartz, feldspar, and muscovite have 18O in the range 12.4 to 15.2, 10.0 to 13.2, and 11.1 to 12.0, respectively. Mean values of Q–F ( 18Oquartz 18Ofeldspar)=2.4 and Q–M ( 18Oquartz 18Omuscovite)=3.3 are remarkably uniform (standard deviations of both are 0.2). Measured Q–F and Q–M values demonstrate that the isotopic compositions of the minerals are altered from primary magmatic 18O values but that the minerals closely approached oxygen isotope exchange equilibrium at subsolidus temperatures. Analyzed muscovites have D (SMOW) values in the range –65 to –82.Feldspars in the granitic rocks are mineralogically altered to either (a) muscovite+calcite, (b) muscovite+calcite+epidote, (c) muscovite+epidote, or (d) muscovite only. A consistent relation exists between the assemblage of secondary minerals and the oxygen isotope composition of whole rocks, quartz, and feldspar. Rocks with assemblage (a) have whole-rock 18O>12.1 and contain quartz and feldspar with 18O>13.8 and >11.4, respectively. Rocks with assemblages (b), (c), and (d) have whole-rock 18O<11.4 and contain quartz and feldspar with 18O< 13.1 and <11.0, respectively. The correlation suggests that the mineralogical alteration of the rocks was closely coupled to their isotopic alteration.Three mineral thermometers in altered granite suggest that the hydrothermal event occurred in the temperature range 400°–150° C, 100°–150° C below the peak metamorphic temperature inferred for country rocks immediately adjacent to the plutons. Calculations of mineral-fluid equilibria indicate that samples with assemblage (a) coexisted during the event with CO2-H2O fluids of and 18O=10.8 to 12.2 while samples with assemblages (b), (c), or (d) coexisted with fluids of and 18O=9.4 to 10.1. Compositional variations of the hydrothermal fluids were highly correlated: fluids enriched in CO2 were also enriched in 18O. Because CO2 was added to the granites during hydrothermal alteration and because fluids enriched in CO2 were enriched in 18O, some or all of the variation in 18O of altered granites may have been caused by addition of 18O to the rocks during the hydrothermal event. The source of both the CO2 and 18O could have been high-18O metasedimentary country rocks. The inferred change in isotopic composition of the granites is consistent with depletion of the metacarbonate rocks in 18O close to the plutons and with large volumes of fluid that were inferred from petrologic data to have infiltrated the metacarbonate rocks during metamorphism.A close approach of minerals to oxygen isotope exchange equilibrium in altered mesozonal rocks from Maine is in marked contrast to hydrothermally-altered epizonal granites whose mineral commonly show large departures from oxygen isotope exchange equilibrium. The difference in oxygen isotope systematics between altered epizonal granites and altered mesozonal granites closely parallels a differences between their mineralogical systematics. Both differences demonstrate the important control that depth exerts on the products of hydrothermal alteration. Deeper hydrothermal events occur at higher temperature and are longer-lived. Minerals and fluid have sufficient time to closely approach both isotope exchange and heterogeneous chemical equilibrium. Shallower hydrothermal events occur at lower temperatures and are shorter-lived. Generally there is insufficient time for fluid to closely approach equilibrium with all minerals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号