首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detachment folds represent a major structural element in a number of fold belts. They are common in the Jura Mountains, the Zagros fold belt, the Central Appalachian fold belt, the Wyoming fold-belt, the Brooks Range, the Parry Islands fold belt, and parts of the SubAndean belt. These structures form in stratigraphic packages with high competency contrasts among units. The competent upper units exhibit parallel fold geometries, whereas the weak lower unit displays disharmonic folding and significant penetrative deformation. Two distinct geometric types, disharmonic detachment folds, and lift-off folds have been recognized. However, these structures commonly represent different stages in the progressive evolution of detachment folds. The structures first form by symmetric or asymmetric folding, with the fold wavelength controlled by the thickness of the dominant units. Volumetric constraints require sinking of units in the synclines, and movement of the ductile unit from the synclines to the anticlines. Continuing deformation results in increasing fold amplitudes and tighter geometries resulting from both limb segment rotation and hinge migration. Initially, limb rotation occurs primarily by flexural slip folding, but in the late stages of deformation, the rotation may involve significant internal deformation of units between locked hinges. The folds eventually assume tight isoclinal geometries resembling lift-off folds. Variations in the geometry of detachment fold geometry, such as fold asymmetry, significant faulting, and fold associated with multiple detachments, are related to variations in the mechanical stratigraphy and pre-existing structure.  相似文献   

2.
Fault-bend folding, fault-propagation folding, and detachment (or décollement) folding are three distinct scenarios for fold-thrust interaction in overthrust terranes. Simple kink-hinge models are used to determine the geometric associations implicit in each scenario. Bedding maintains constant thickness in the models except in the forelimb of the fold. The forelimb is allowed to thicken or thin without limit. The models address individual folds, and the calculated fold geometries are balanced structures.Each mode of fold-thrust interaction has a distinct set of geometric relationships. Final fold geometry is adequate in itself to discern many fault-bend folds. This is not the case for fault-propagation and detachment folds. These two fold forms have very similar geometric relationships. Some knowledge of the nature of the underlying thrust or décollement zone is usually needed to distinguish between them. The geometry of a fold is altered, in a predictable fashion, by transport through an upper ramp hinge and by fault-parallel shearing of the structure. The shearing results in a tighter fold, whereas transport through the ramp hinge produces a broader fold.The viability of the geometric analysis technique is demonstrated through its application to a pair of detachment folds from the Canadian Cordillera. The geometric analysis is also used to evaluate cross-sections through subsurface structures. In an example from the Turner Valley oil field, the analysis indicates how the interpretation should be altered so as to balance the cross-section. The analysis reveals hidden assumptions and specific inconsistencies in structural interpretations.  相似文献   

3.
A simple method to estimate fold-amplification and thrust-movement rates for detachment folds is documented and illustrated by its application to a symmetrical detachment fold in the Southern Pyrenees, Spain. The technique provides a complete record of the kinematic evolution of detachment folds and is based on the application of equations for detachment folds involving limb rotation. The method uses the stratal pattern of the syntectonic sediments and assumes that these growth strata were deposited horizontally, that the folds involve a homogeneous competent unit detached over a ductile horizon, and that the folds can be represented by chevronkink bands. The procedure is applicable to any detachment fold with associated growth strata that display wedge geometries (‘progressive unconformities’) indicating limb rotation through time. This method can be used for both detachment folds formed with constant limb length or variable limb length, and it can also accommodate undecompacted or decompacted growth strata.  相似文献   

4.
To gain insights into the processes governing the thrust-truncation of anticlines, we conducted a field study of the thrust-truncated folds in the remote Brooks Range of northern Alaska, where there is a transition in fold style from symmetric detachment folds to thrust-truncated asymmetric folds. In order to document the detailed geometry of the km-scale folds exposed in cliff-forming, largely inaccessible outcrops, a new surveying technique was developed that combines data from a theodolite and laser range finder. The field observations, survey profiles, and cross section reconstructions, indicate that late-stage thrust breakthrough of the anticlines within the mechanically competent Lisburne Group carbonates accommodated continued shortening when other mechanisms became unfeasible, including fold tightening, forelimb rotation, and parasitic folding in the anticline forelimbs. These results provide constraints on the processes that govern the transition from buckle folding to thrust truncation in fold-and-thrust belts worldwide.  相似文献   

5.
The present day morphology of the Zagros fold-thrust belt is dominated by magnificent exposures of NW–SE trending folds. These folds differ in their size and geometry and these differences are related mainly to the rheological profile of the cover rock. The cover rock succession of the Zagros consists of a sequence of competent and incompetent units which vary both along and across the belt. Field based study combined with the use of satellite images reveals that the thickness and facies distribution of the cover rock succession has a significant impact on the style of deformation. During the shortening linked to the current convergence of the Arabian and Iranian plates, the incompetent units act as detachment horizons which localise thrusting and which act as décollement above which detachment folds form. In addition, where these incompetent units are thick (e.g.> 1 km), they allow the deformation above and below them to become completely decoupled enabling disharmonic folding to occur. As a result the folds above and below the incompetent units in the central part of the Zagros Folded Belt, have significantly different geometries and wavelengths. As the Zagros folds host the majority of the hydrocarbon reserves in Iran and Iraq, an understanding of the processes that influence their geometry and spatial organization at different levels in the cover rock is crucial for the future exploration in the region.  相似文献   

6.
Existence of a possible detachment zone at Elampillai region, NW margin of Kanjamalai Hills, located in the northern part of Cauvery Suture Zone (CSZ), Southern India, is reported here for the first time. Detailed structural mapping provides anatomy of the zone, which are rarely preserved in Precambrian high grade terranes. The detachment surface separates two distinct rock units of contrasting lithological and structural characters: the upper and lower units. The detachment zone is characterized by a variety of fold styles with the predominance of tight isoclinal folds with varied plunge directions, limb rotations and the hinge line variations often leading to lift-off fold like geometries and deformed sheath folds. Presence of parasitic folding and associated penetrative strains seem to be controlled by differences in mechanical stratigraphy, relative thicknesses of the competent and incompetent units, and the structural relief of the underlying basement. Our present study in conjunction with other available geological, geochemical and geochronological data from the region indicates that the structures of the detachment zone are genetically related to thrust tectonics forming a part of subduction–accretion–collision tectonic history of the Neoproterozoic Gondwana suture.  相似文献   

7.
First phase folds F1 developed in polydeformed Ajabgarh Group rocks of Proterozoic age are studied using various geometrical methods of analysis for compatibility of homogeneous strain in both class 1–3 pairs by correlatingt′ ga/α plots with existing curves for competent layers and matchingt ga/α plots with the flattening curves for the incompetent layers. F1 folds were initiated by the process of buckling but underwent [(λ21) = 0.2 to 0.7] for competent layers andR- values of 1.1 to 5 for incompetent layers. The varying flattening is also revealed by the geometry of folds. The apparent buckle shortening of folds which ranges between 49 and 67 per cent with a majority of the folds having shortening values between 50% and 55% (exclusive of layer parallel strain) and inverse thickness method strain up to 50%. Besides flattening, the fold geometry was also modified by the pressure solution. This is borne by the presence of dark seams rich in phyllosilicates and disseminated carbonaceous material offsetting limbs of buckled quartz veins in slates  相似文献   

8.
A group of folds in alternating pelites and cross-laminated siltstones is described. An interpretation of the finite strain state, in the competent silt layers, is proposed on the basis of an analysis of the angle between cross-lamination and the principal surface of accumulation. Strain magnitudes are greatest in the fold hinge where domains of layer parallel shortening and layer parallel extension are separated by a neutral surface. Strain magnitudes in the fold limbs are small and are largely related to the development of the asymmetry of the folds. In the incompetent pelitic layers, strain in the fold limbs has a large, layer parallel shear component. Deformation in the pelites is accompanied by, and presumably partially achieved by, migration of quartz from areas where there is a tendency for volume to decrease, to areas where it is tending to increase. This process involves local increases in volume of more than 50%.A kinematic model is proposed for development of the folds. It involves early development of small symmetrical folds followed by their modification to asymmetrical, parasitic structures on the limbs of later folds. In the late stages of folding, continued shortening perpendicular to the axial surface orientation is achieved by development of a conjugate crenulation cleavage.  相似文献   

9.
库车褶皱冲断带前缘发育一系列滑脱褶皱,虽然卷入变形的新生代地层及底部滑脱层(古近系盐层)相同,但滑脱褶皱的构造特征及演化存在显著差异。文中结合野外地质调查结果以及钻井资料和高品质二维地震反射剖面解析,以南喀背斜和米斯坎塔克背斜为例,估算出盐层初始厚度,并讨论其对于滑脱褶皱样式及其演化过程的影响。结果表明,南喀背斜和米斯坎塔克背斜下伏盐层初始厚度不同,估算出前者厚度介于0.1~0.5 km,主要为0.1~0.3 km,而后者却大约为1.0 km。与此同时,南喀背斜和米斯坎塔克背斜均表现出分段差异变形特征。南喀背斜为低缓的滑脱褶皱,其东段隐伏地下,变形方式为褶皱作用;而西段出露地表,背斜核部发育隐伏的逆冲断层,变形方式为褶皱作用和断层作用。背斜西段平均隆升速率大于东段,导致西段隆升出露地表。米斯坎塔克背斜表现为大规模滑脱褶皱,根据变形特征的不同可以分为3段,东段背斜倾向北,盐岩在其核部及北翼下方聚集加厚;而中-西段背斜倾向南,其中中段背斜核部位置盐岩聚集加厚,两翼下伏盐岩减薄甚至形成盐焊接。而在西段背斜呈箱状,两翼下方盐岩厚度至少为1.0 km。笔者总结出库车褶皱冲断带前缘发育的7种滑脱褶皱变形样式,通过构造分析得出,研究区滑脱褶皱的变形主要受盐层厚度、构造缩短量及盐岩流动变形共同控制,其中盐层厚度起主导作用,控制了滑脱褶皱的发育位置,并影响了滑脱褶皱的变形样式。研究结果将为其他褶皱冲断带中滑脱褶皱的相关研究提供重要参考,特别是在缺少高品质地震资料,或者构造变形强烈、地震资料品质较差的地区。  相似文献   

10.
Chamberlin (1910) was the first to quantitatively predict the shape and position of a basal detachment from detailed surface observations. His predicted detachment beneath the Appalachian Valley and Ridge fold-thrust belt of central Pennsylvania is substantially deeper and differs in geometry from the current interpretation. The modern profile by Faill and Nickelsen (1999) across the same area shows a much shallower, planar lower detachment and the presence of a duplex below the surface folds, a significant conceptual difference from the Chamberlin profile. Two assumptions prove to be critical in causing the discrepancies, the width of the segments used as the unit of analysis, and the assumption of constant bed length. The segmentation scheme led to an erroneous conjugate-fault detachment geometry. The depth discrepancy is primarily due to ignoring the layer-parallel strain. The duplex is of the coupled-roof style and not responsible for the differences, a result supported by an experimental model. We use the modern profile and the area–depth relationship to quantify the effects of uncertainty on profile geometry and estimates of orogenic shortening. Small differences in the assumptions (inference error) lead to significant differences in displacement, detachment location and layer-parallel strain. Our best area-balanced interpretation is a slightly modified version of the Faill and Nickelsen profile.  相似文献   

11.
The quantity ‘buckling rotation’ is defined, for buckle folds, as the total rotation of a fold limb minus the rotation that would occur due to pure shear if no competence contrast existed. Using existing models (theoretical and experimental) of buckle-fold development, the quantity ‘buckling rotation’ has been calculated for successive small increments of strain and plotted against strain or limb dip. The resulting curves are skewed and bell-shaped, indicating an initial sharp increase in buckling rotation early in fold development followed by a gentle, asymptotic decrease. The curve height and position are dependent on the competence contrast and, in multilayer systems, on the ratio of competent to incompetent layer thickness. The initial sharp increase in buckling rotation corresponds to the period of most active layer-parallel shortening during fold development.  相似文献   

12.
总结了褶皱相关断裂发育机制的3个构造几何学模型:同心圆褶皱模型、膝折带褶皱模型和弯流褶皱模型。基于燕山中部中、新元古界地层中发育的5个露头尺度褶皱及其中、小型断裂构造的实例剖析,探讨了收缩变形过程中褶皱与断裂构造发育时序与褶皱相关断裂构造的产生机制。研究指出,规模与所在褶皱构造相当或略小的断裂构造当中,既有形成时间早于褶皱变形的断层,也有在褶皱变形过程中调节褶皱不同部位应变差异的褶皱相关断裂构造,而且卷入后期变形的早期断裂可能成为制约褶皱成核位置的影响因素,以及成为枢纽叠覆楔构造的形成方式之一。断层位移-距离曲线特征和断层与褶皱变形几何学、运动学关系分析,可用来判断断层、褶皱变形发生相对时序。认为影响褶皱相关断裂构造发育的机制主要有3种:(1)纵弯滑褶皱作用中,翼部顺层滑动受到限制而无法持续时,将通过断层向上切层的方式予以调节,从而形成翼部或转折端揳入逆冲断裂以及背离向斜和指向背斜逆冲断层;(2)各种因素导致的褶皱曲率变化是褶皱相关断裂产生的重要机制之一,褶皱曲率变化可由褶皱轴面的合并和新生直观反映,轴面合并引起褶皱曲率变化的层位,可能是诱发褶皱相关断裂,如背离向斜和指向背斜逆冲构造开始产生的重要部位;(3)能干性差异和强硬层之间距离较大的岩层组合发生纵弯褶皱变形时,软弱岩系在褶皱核部的聚集和逃逸,是迫使递进收缩的强硬层产生褶皱相关断裂构造的重要机制。  相似文献   

13.
The Helena salient is a prominent craton–convex curve in the Cordillera thrust belt of Montana, USA. The Lombard thrust sheet is the primary sheet in the salient. Structural analysis of fold trends, cleavage attitudes, and movement on minor faults is used to better understand both the geometry of the Lombard thrust and the kinematic development of the salient.Early W–E to WNW–ENE shortening directions in the Lombard sheet are indicated by fold trends in the center of the thrust sheet. The same narrow range of shortening directions is inferred from kinematic analysis of movement on minor faults and the orientations of unrotated cleavage planes along the southern lateral ramp boundary of the salient. As the salient developed, the amount and direction of shortening were locally modified as listric detachment faults rotated some tight folds to the NW, and as right-lateral simple shear, caused by lock-up and folding of the Jefferson Canyon fault above the lateral ramp, rotated other folds northeastward. Where the lateral ramp and frontal-oblique ramp intersect, folds were rotated back to the NW. Our interpretation of dominant W–E to WNW–ESE shortening in the Lombard sheet, later altered by local rotations, supports a model of salient formation by primary parallel transport modified by interactions with a lateral ramp.  相似文献   

14.
Kinematics of compressional fold development in convergent wrench terranes   总被引:1,自引:0,他引:1  
Kinematic models are presented for compressional fold development in wrench and convergent wrench terranes that relate fold shortening, axial rotation, and axial extension. Fold shortening may be derived from final fold geometry. Existing fold geometry and axial orientation, two readily measurable quantities, provide the data needed to determine the relative components of shearing and convergence within the fold system. Analyses utilizing these kinematic models indicate that folds developed in sedimentary rocks in the wrench borderlands of both the Rineonada and San Andreas wrench faults in central California are the product of strongly convergent wrenching. The axes of these folds have been rotated no more than a few degrees during the course of their development. In contrast, folds developed in the Alpine Schists along the Alpine fault in New Zealand and in Pleistocene sediments along the southern limit of the San Andreas fault suggest an almost pure wrench setting and large (>25 °) axial rotations.

Significant axial extension is inherent in wrench-related compressional folds. This axial extension is commonly manifest in the form of normal and strike-slip faults that are internal to the folds and trend at high angles to the fold axes. The relative amount of axial extension diminishes as the degree of convergence increases. This axial extension, and the associated extensional features, can be a diagnostic indication of the influence of wrenching.  相似文献   


15.
玉东-玛东构造带位于塔里木盆地,是在中寒武统膏盐层上滑脱的大规模褶皱冲断带,内部发育多种断层相关褶皱。目前对此构造带的研究,多关注了构造带的局部以及断裂变形。本文根据断层相关褶皱理论,利用地震资料,分析了玉东-玛东构造带内构造样式上的差异性,并通过二维构造正演模拟,建立了典型构造样式的运动学模式。认为研究区内玉东、玛东、塘北3个分区,具有不同的构造样式。玉东地区主要发育和铲式逆断层相关的断弯褶皱,玛东、塘北地区则发育断层突破的滑脱褶皱,突破断层在玛东地区为铲式断裂,而在塘北地区为坪-坡-坪式断裂。根据上奥陶统变形特征及其顶面不整合面之上的地层年代,认为玉东-玛东构造带的变形始于晚奥陶世,主要断裂及其相关褶皱形成于晚奥陶世末期。玉东地区在晚奥陶世早期,形成基底-盖层的低幅褶皱,在晚奥陶世末,形成铲式断裂及断弯褶皱;玛东和塘北地区变形发生在上奥陶统沉积之后,经历了滑脱褶皱和断层突破阶段。通过对比分析认为,断层相关褶皱样式的差异,与膏盐层岩性、厚度,上奥陶统岩性、厚度及构造转换作用有关。本研究有助于完善对塔里木盆地早古生代末期构造变形及演化的认识。  相似文献   

16.
大巴山西北缘叠加褶皱研究   总被引:11,自引:0,他引:11  
张忠义 《地质学报》2009,83(7):923-936
大巴山晚侏罗纪叠加褶皱可能是世界上区域规模或填图规模最典型的褶皱叠加构造之一,具有完美的干涉图像。作者在两期褶皱近乎正交的大巴山西北缘开展1/万填图和构造分析,重点研究露头尺度上的横跨褶皱的几何学、运动学特征。厘定了晚三叠世和晚侏罗世两期构造运动及其两期褶皱变形,确定地壳浅层发育的纵弯褶皱机制,在三维几何形态研究基础上,特别是根据同褶皱层间滑动线理的几何学和运动学及其相互配置关系,基于叠加褶皱力学作用方式和变形干涉图像将区内叠加褶皱划分为3类10种基本样式。研究表明晚侏罗世近南北-北北西向褶皱(F2)近垂直地跨过晚三叠世近东西-北东向褶皱(F1),是大巴山地区最主要的定型构造,构成大巴山晚侏罗纪弧形前陆褶皱山系主体;而北西向褶皱(F3)与近南北-北北西向褶皱(F2)在其中-西部以小的角度相交,总体具非共轴的旋转应变特征,并主要表现为并置或重褶作用。  相似文献   

17.
The inference of fault geometry from suprajacent fold shape relies on consistent and verified forward models of fault-cored folds, e.g. suites of models with differing fault boundary conditions demonstrate the range of possible folding. Results of kinematic (fault-parallel flow) and mechanical (boundary element method) models are compared to ascertain differences in the way the two methods simulate flexure associated with slip along flat-ramp-flat geometry. These differences are assessed by systematically altering fault parameters in each model and observing subsequent changes in the suprajacent fold shapes. Differences between the kinematic and mechanical fault-fold relationships highlight the differences between the methods. Additionally, a laboratory fold is simulated to determine which method might best predict fault parameters from fold shape. Although kinematic folds do not fully capture the three-dimensional nature of geologic folds, mechanical models have non-unique fold-fault relationships. Predicting fault geometry from fold shape is best accomplished by a combination of the two methods.  相似文献   

18.
The Experimental Tectonics Laboratory at Queen's University is equipped with a large-capacity centrifuge that is capable of subjecting tectonic models measuring 127 × 76 mm in plan and up to 51 mm in depth to accelerations as high as 20,000 g. This high capacity greatly extends the range of potential model materials and permits the use of relatively stiff and/or brittle substances.A number of new techniques of model construction have been devised, that permit internal and surface strain patterns and kinematic evolution to be monitored in detail. One particularly useful technique, which will find application in non-centrifuged experiments as well, allows the preparation of highly uniform anisotropic multilayers composed of alternating layers of Plasticine and silicone putty, with individual layer thicknesses as low as 20 μm and with controllable ratio between thicknesses of the relatively competent and incompetent units. Examples of models constructed using these new techniques are illustrated.One particular type of the commonly used model material, silicone putty, has been subjected to a series of rheological test. The results indicate that at strain rates in the range 10?6-10?3s?1 (applicable to the centrifuge experiments) the silicone putty exhibits power-law rheology with n = 7 ± 2. At higher strain rates the material appears to tend towards linear behaviour.Available rheological data and dimensional analysis using standard scaling laws and appropriate model ratios suggest that the microlaminated Plasticine-silicone putty multilayer is a suitable analogue, in centrifuged experiments, for interbedded sequences of indurate limestone and incompetent shale. The excellent degree of dynamic similitude attained is demonstrated by the realistic form of fold and fault structures developed in models constructed of this material.  相似文献   

19.
The progressive development of folds by buckling in single isolated viscous layers compressed parallel to the layering and embedded in a less viscous host is examined in several ways; by use of experiments, an analogue model to simulate simultaneous buckling and flattening and by an application of finite-element analysis.The appearance of folds with a characteristic wavelength in an initially flat layer occurs in the experiments for viscosity ratios (μlayerhost = μ12) of between 11 and 100; progressive fold development after the initial folds have appeared is similar in the experiments and in the finite-element models. Except for the finite-element model for μ12 = 1,000 layer-parallel shortening occurs in the early stages of folding and a stage is reached where little further changes in arc length occur. The amount of layer-parallel shortening increases with decreasing viscosity contrast, and becomes relatively unimportant after the folds have attained limb dips of about 15°–25°.Thickness variations with dip are only significant here for the finite-element model with μ12 = 10, and in experiments for μ12 = 5 where the layer is initially in the form of a moderate-amplitude sine wave. The variations range from a parallel to a near-similar fold geometry, and in general depend on the viscosity contrast, the degree of shortening and the initial wavelength/thickness ratio. They are very similar to the variations predicted by the analogue model of combined buckling and flattening. The difference between the thickness/dip variations in a fold produced by buckling at low viscosity contrast and one produced by flattening a parallel fold is marked at high limb dips and very slight at low limb dips.Many natural folds in isolated rock layers or veins show thickness/dip relationships expected for a flattened parallel fold, and some show relationships expected for buckling at low viscosity contrasts. Studies of the wavelength/thickness ratios in natural folds have suggested that competence contrast is often low. Many folds in isolated rock layers or veins whose geometry may vary between parallel and almost similar, and may be indistinguishable from those of flattened parallel folds, have probably developed by a process of buckling at low viscosity contrasts.  相似文献   

20.
孟加拉湾若开褶皱带晚新生代构造特征初步研究   总被引:2,自引:0,他引:2  
孟加拉湾若开褶皱带位于印度-缅甸山脉西部山前,由NNW—SSE向带状分布的多排背斜构成,其构造特征研究仍然十分薄弱。本文通过钻井资料和二维地震反射剖面精细构造解析,尝试分析若开褶皱带晚新生代构造特征,重点关注若开褶皱带的滑脱层发育特征及背斜几何学及运动学特征,结果表明若开褶皱带发育多个滑脱层:①底部滑脱层,位于约6.5s(双程走时)处;②中部滑脱层,层位存在变化,可能位于第四系底部或上中新统下方约2.5s处。在区域挤压作用下,若开褶皱带发育与底部滑脱层和中部滑脱层相关的滑脱褶皱,构造变形主要受控于底部滑脱层,而中部滑脱层影响了局部构造变形。生长地层记录显示若开褶皱带构造变形自东往西迁移,变形前缘形成于第四纪。基于构造分析结果提出了若开褶皱带褶皱变形的两种运动学端元模型:模型1中不发育中部滑脱层,滑脱褶皱发育于底部滑脱层之上;模型2中发育中部滑脱层,滑脱褶皱发育于中部滑脱层和底部滑脱层之上,形成上、下两套构造层。若开褶皱带背斜几何学和运动学特征受下伏滑脱层控制,背斜在走向上叠置、分叉可能暗示着背斜下伏滑脱层在走向上发生了改变。流体超压可能是影响若开褶皱带构造变形的重要控制因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号