首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In order to develop viable depositional models for wedgetop basins, the control exerted by active structural relief on turbidite depositional patterns should be well understood at different scales (from limb slope to interconnected synclinal troughs). This is particularly the case for systems with axial sediment supply, for which little data are available. This paper presents a detailed field study of two depocentres in the Upper Eocene – Lower Oligocene Annot Sandstone of the alpine foreland basin of SE France, which was fed axially from the Corsica–Sardinia Massif to the south. The depocentres are partially preserved in a series of outliers. The Annot outlier preserves turbidites deposited on the gently dipping limb of an asymmetrical syn-depositional syncline, while, to the north, the NE Grand Coyer outlier preserves highly confined turbidites deposited on a steep and complex synclinal limb. Structural, stratigraphic and sedimentological data demonstrate that these turbidite depocentres were controlled by active folding and faulting, including oblique structures. Structural controls were more complex on the steep eastern synclinal limbs than on shallowly dipping western limbs. Integration of palaeocurrent data allow feeder pathways and their evolving interconnections to be traced between successive downstream depocentres in space and time. A 3D depositional model for axially supplied active wedgetop depocentres is proposed and compared to transversely fed wedgetop systems, particularly in terms of facies distributions and variations in reservoir quality. Axially supplied systems are marked by a higher lateral confinement and, as a consequence, are more sensitive to relief created by oblique structures. As a result facies distributions are more strongly controlled by (active or inactive) substratum relief than by intrinsic flow properties, leading to a higher potential for stratigraphic traps.  相似文献   

2.
G Ercilla  B Alonso  J Baraza 《Marine Geology》1994,120(3-4):249-265
The post-Calabrian sedimentary column of the northwestern Alboran Sea comprises three depositional sequences. The two older depositional sequences are defined by lowstand systems tracts (shelf-margin deltas, slope, base-of-slope, and basin deposits, and the Guadiaro channel-levee complex). In contrast, the most recent depositional sequence also includes transgressive (relict shelf facies) and high-stand (the Guadalmedina-Guadalhorce prodelta and hemipelagic facies) systems tracts. The stratigraphic architecture of these depositional sequences is controlled by the synchronism between high frequency sea-level changes, variations in sediment supply, and sedimentary processes. The configuration of the depositional sequences is variable and their distribution is complex, as a result of the relative importance played by sea-level changes and tectonism through the area.

The sequence boundaries are represented by polygenetic surfaces in the proximal margin, and by monogenetic surfaces in the distal margin and basin. Each polygenetic surface results from the interaction between the sequence boundary with the lowstand erosional truncation surface and the transgressive surface, both developed during the previous sea-level cycle. The monogenetic surfaces correspond to unconformities and their correlative conformities, formed during sea-level lowstands. This pattern of depositional sequences developed in the margin and basin of the northwestern Alboran Sea shows differences with the Exxon Sequence Stratigraphy Model as traditionally applied: sea-level change control is essentially recognized through lowstand systems tracts, and sequence boundary coincides with lowstand erosional truncation surface and transgressive surface, both developed during the previous sea-level cycle.  相似文献   


3.
Hyperpycnal flows are generated in the marine environment by sediment-laden fresh water discharge into the ocean. They frequently form at river mouths and are also generated in proximal ice-melting settings and are thought to be responsible for transporting a large proportion of suspended river sediment onto and off the continental shelf. Hyperpycnal flows are an example of gravity currents that display reversing buoyancy. This phenomenon is generated by the fresh water interstitial fluid being less dense than that of the ambient seawater. Thus after sufficient particles are sedimented the flow can become positively buoyant and loft, forming a rising plume. Here we present results from physical scale-modelling experiments of lofting gravity currents upon interaction with topography. Topography, in the form of a vertical obstacle, triggered a localised lofting zone on its upstream side. This lofting zone was maintained in a fixed position until the bulk density of the flow had reduced enough to allow lofting along its entire length. The obstructed lofting zone is associated with a sharp increase in deposit thickness. By inference these experimentally established lofting dynamics are applied to improve understanding of the potential for hyperpycnal flows to deposit deep-water massive sands. This study provides a depositional mechanism by which large volumes of sand can be deposited in the absence of traction and the fines removed, leaving thick deposits of structureless sand with a low percentage of mud. This conceptual model for the first time provides a framework by which the geometries of certain deep-water massive sands may be predicted within specific depositional and basinal settings. This is crucial to our understanding of massive sand deposits in modern and ancient turbiditic systems and in the commercial evaluation of hydrocarbon potential of such sedimentary successions.  相似文献   

4.
珠江口盆地白云凹陷陆坡区10.5 Ma以来的沉积体系   总被引:2,自引:0,他引:2  
通过对珠江口盆地白云凹陷陆坡区10.5Ma以来的地震相分析,共识别出席状平行亚平行地震相、透镜状前积地震相、深切河谷地震相、帚状地震相和杂乱地震相,不同的地震相分别代表不同的沉积体系类型。综合所识别的地震相类型,分析了陆架边缘下切谷、浊积扇和陆架边缘三角洲3种主要的沉积体系及其配置关系。物源供给是影响陆坡区沉积体系发育的最重要因素,是沉积体系发育的物质基础,海平面变化和构造运动为沉积体系发育提供了可容纳空间,3种影响因素共同影响了陆坡区沉积体系的发育。  相似文献   

5.
The Var turbidite system is a small sandy system located in the Ligurian Basin. It was deposited during the Pliocene-Quaternary in a flat-floored basin formed during the Messinian salinity crisis. The system was fed through time by the Var and Paillon canyons that connect directly to the Var and Paillon rivers. It is still active during the present sea-level highstand. Two main mechanisms are responsible for gravity-flow triggering in the Var turbidite system: (1) mass-wasting events affect mainly the upper part of the continental slope, in areas where volumes of fresh sediment delivered by rivers are highest, and result from the under-consolidation state of slope sediments and earthquakes, and (2) high-magnitude river floods resulting from melting of snow and convective rainfall during fall and spring seasons, and generating hyperpycnal turbidity currents at river mouths when the density of freshwater transporting suspended particles exceeds that of ambient seawater. Failure- and flood-induced gravity flows are involved through time in the construction of the Var Sedimentary Ridge, the prominent right-hand levee of the Var system, and sediment waves. Processes of construction of both the Var Ridge and sediment waves are closely connected. Sandy deposits are thick and abundant in the eastern (downchannel) part of the ridge. Their distribution is highly constrained by the strong difference of depositional processes across the sediment waves, potentially resulting through time in the individualization of large and interconnected sand bodies.  相似文献   

6.
Triassic platform-margin deltas in the western Barents Sea   总被引:1,自引:0,他引:1  
The Early to Middle Triassic in the Barents Sea was dominated by prograding transgressive-regressive sequences. Internal clinoform geometries indicate that sediments were derived from the Baltic Shield in the south and the Uralian Mountains in the east and southeast. These systems were formed in a large, relatively shallow epicontinental basin, where modest variations in relative sea-level relocated the shoreline significantly. This study shows the development of strike elongated depositional wedges that thicken just basinward of the platform-edge. Seismic facies and time-thickness maps show the position and development of platform-margin delta complexes within each sequence. Seismic clinoforms and trajectory analysis show significant lateral variation from the axis of the delta complex to areas adjacent to the main delivery system. Frequent toplap geometries are observed in proximity to coarse-grained deposits, while aggradation of seismic clinoforms characterizes areas laterally to the platform-margin deltas. Complex shifts in depocenters are revealed by large-scale compensational stacking pattern and relict platform breaks. Locally, relict breaks are created due to pre-existing paleo-topography. Platform-margin deltas can be identified by careful mapping of clinoform geometries, clinoform angles and trajectories. However, seismic analysis of prograding clinoform units indicate that the shoreline and delta complexes commonly are positioned landward of the platform-edge. Deposition of platform-margin deltas is sometimes caused by locally increased sediment supply during slightly rising relative sea-level, and occasionally caused by a regional drop in relative sea-level with significant shelf bypass.Development, position, thickness and facies distribution of platform deltas and platform-margin deltas of very broad low-relief basins, like the Triassic of the epicontinental Barents Sea basin, are strongly sensitive to changes in relative sea-level due to rapid emergence and submergence of wide areas, and to changes in position of major rivers supplying sand to the delta systems. In this respect, the depositional model of the present study deviates from models of clinoform successions obtained from small and narrow basins or siliciclastic platforms with high coarse-clastic sediment supply.  相似文献   

7.
The Golo Margin in eastern Corsica is dissected by four canyons and two gullies which fed turbidite systems. Study of the dispersal of surficial sediments and flow dynamic in the Golo system is based on Kullenberg and interface cores interpreted in relation to a previously published seismic dataset. Cores were described in detail and interpreted within a sedimentary and stratigraphic framework. During the last 42,000 years, gravity processes which occurred in the large systems with a canyon source were mainly slide-induced, differentiated turbulent surges and hyperpycnal flows. Processes occurring in the small system with a gully source are mainly hyperconcentrated and concentrated flows. Deposits from the Corsican Margin can intercalate with products of processes triggered on the Pianosa Ridge located in the eastern part of the basin. During relative sea-level lowstands or during periods of rapid or high-amplitude sea-level fall, only large canyons (South and North Golo) are supplied by carbonate-rich hyperconcentrated and concentrated flows which are channelled in incised valleys on the shelf. During periods of slow or low-amplitude sea-level fall and during sea-level rise, sediments are trapped on a shelf delta and intensely winnowed by shelf hydrodynamic processes. Sand-rich hyperconcentrated and concentrated flows occur. All the systems fed by a canyon are active simultaneously. Gullies form and are active only during periods of sea-level rise. During relative highstands of sea level (Holocene), all the system is draped by hemipelagic sediments. Relative sea-level changes and canyon location relative to river mouths have a strong influence on the nature of sediment input, and the initiation and type of gravity flows which, in turn, control morphology and geometry.  相似文献   

8.
During the last low stand of sea level, rivers and streams drained across the present northwestern Gulf of Mexico continental shelf depositing sediments in several shallow-water deltas near the present shelf-slope boundary. The weight of these wedges of prograded sediments triggered or augmented both subsidence of local depositional basins and upward movement of diapiric material around the basin edges. A depositional basin off the southwestern Louisiana coast records migration of the basinal axis during late Pleistocene and Holocene time indicating relative growth of diapirs along the basin margin throughout the most recent geological record.  相似文献   

9.
10.
Using seismic and Chirp sonar profiles, this paper tests the hypothesis that hyperpycnal flows are the main factor controlling the formation and maintenance of the meandering Kaoping submarine canyon off SW Taiwan. Cross-section geometries, and erosional as well as depositional features vary along the canyon course. In the proximal, sinuous part of the canyon, down-cutting into the shelf strata has created a relief of 340 m. The cause of this intense erosion of the seafloor is suggested to be the frequent development of hyperpycnal flows. A seismic section across a meander in the distal part of the canyon shows levees formed by overspilled sediments at the outer bend, and a terrace characterized by relatively flat stratified facies at the inner bend. The geological setting and climatic conditions in SW Taiwan (e.g. earthquakes, typhoons, floods), as well as major river–canyon connections (for example, direct input of highly concentrated suspended sediment) would all promote hyperpycnal flow generation. This causes axial incision, canyon wall slumping, and the formation of levees by spill-over deposition in the upper reach of the Kaoping Canyon.  相似文献   

11.
Turbidity currents generated during floods of small and medium rivers have been demonstrated to be an important process of sediment transport from continent to abyss. They produce fine-grained turbidite deposits. No deposit related to these flood-related turbidity currents has yet been described in the deep sea. In this paper, we present some unusual sandy to muddy turbidite beds cored in the Var turbidite system (NW Mediterranean). They show a coarsening-upward basal unit capped with a classical fining-upward unit which are related to the periods of increasing and decreasing discharge at the river mouth, respectively. The two units are separated by a contact which can be gradational to erosional. This intrabed contact is interpreted as resulting from erosion during peak flood conditions. This intrabed contact can be confused with classical basal contacts of turbidite beds. The frequency of hyperpycnal turbidite beds can be used to relate climatic changes inland to the deep-sea sedimentary record, as an increase corresponds to periods of enhanced flooding at the river mouth.  相似文献   

12.
13.
Neil C. Mitchell   《Marine Geology》2005,220(1-4):131-151
Channels are relatively common on river-mouth deltas, but the process by which they arise from river sediment discharge is unclear because they can potentially be explained either by negatively buoyant (hyperpycnal) flows produced directly from the river outflow or by flows generated by repeated failure and mobilisation of sediment rapidly deposited at the delta front. Channels eroded through a dump site of dredge spoils are described here from multibeam and older sonar data collected in Commencement Bay, at the mouth of the Puyallup River. Shallow channels on the seaward upper surface of the dump site, away from any flows that could have been produced by delta front failures, suggest that at least some hyperpycnal flows were produced directly from the positively buoyant river outflow up to 200 m from the edge of the river mouth platform. The form of channel bed erosion is revealed by the longitudinal shape of the main eroded channel compared with the adjacent dump site profile. It suggests that the channel evolved by its steep front retreating, rather than by simple vertical entrenchment or diffusive-like evolution of the profile, a geometry interpreted as evidence that repeated failure of the bed occurred in response to shear stress imposed by bottom-travelling flows. Model calculations based on shear strengths back-calculated from the geometry of channel wall failures suggest that, if the main channel were eroded solely by hyperpycnal flows, their generation was remarkably efficient in order to create flows vigorous enough to cause channel bed failure. Besides the sediment concentration and discharge characteristics that have been considered to dictate the ability of rivers to produce hyperpycnal flows, it is suggested that the timing of floods with respect to the tidal cycle should also be important because extreme low tides may be needed to ensure that coarse sediment is transferred vigorously to the edge of river mouth platforms.  相似文献   

14.
Twenty-two sediment cores raised from the central and eastern parts of the Barents Sea have been studied to reconstruct the evolution of the facies system since the Late Weichselian glaciation. Multiproxy records reveal four lithostratigraphic units, which reflect major development stages of paleoenvironments. Age control is provided by 23 AMS 14C dates for Holocene sections of four cores. Continental moraine deposits of the last glaciation are overlain by proximal glaciomarine facies of the initial deglaciation phase. During this phase, the Barents Sea ice sheet detached from the ground resulting in seawater penetration into troughs, iceberg calving, deposition of IRD and fine-grained glacier meltwater load in newly formed marine basins. The main deglaciation phase is characterized by pulsed sedimentation from various gravity flows resulting in accumulation of distal glaciomarine facies comprising laminated clay and sand sequences with minor IRD. Redistribution of fine-grained suspended matter by bottom currents and brine-induced nepheloid flows combined with biogenic processes and minor ice rafting caused facies diversity of the Holocene marine sediments. The Holocene facies of shelf depressions reflect rather high, but variable productivity responding to climate changes and variations of Atlantic water inflow into the Barents Sea.  相似文献   

15.
The Middle–Late Miocene Utsira Formation of the North Sea Basin contains a fully preserved, regional marine sand deposit that records a stable paleogeographic setting of sand transport and accumulation within a deep, epeiric seaway which persisted for >8 Ma. The sediment dispersal system was defined by (1) input through a marginal prograding strandplain platform, coast-to-basin bypass, transport along a narrow strait, and accumulation in strait-mouth shoal complexes within a shelf sea; (2) a high-energy marine regime; (3) very low time-averaged rates of sediment supply and accumulation; and (4) consequent high sediment reworking ratio. Sand distribution and stratal architectures reflect regional along-strike sediment transport and local to sub-regional landward sediment transport. Plume-shaped, south-building, submarine sand shoals that formed along the recurved arc of the strandplain margin nourished the shoal system. Very low-angle sigmoid clinoforms and down-stepping, aggradational top sets are distinctive architectures of these strike-fed sand bodies. The combination of strong marine currents and slow but long-lived sand supply from the Shetland strandplain created regional, sandy shelf shoal depositional systems that individually covered 3,500 to 6,000 km2 of the basin floor. Defining attributes of the shelf shoal systems include their location within the basin axis, abundance of autochthonous sediment, and sandy marine facies composition. Diagnostic depositional architectures include the along-strike-dipping sigmoidal clinoforms, poly-directional low-angle accretionary bedding at both regional and local scales, and mounded depositional topography. Erosional features include regional hummocky, low-relief shelf deflation surfaces, broad, elongate scours and sub-circular scour pits.  相似文献   

16.
西菲律宾海15万年以来的浊流沉积及其成因   总被引:2,自引:0,他引:2  
MD06-3052孔取自西菲律宾海吕宋岛岸外上陆坡,通过AMS14 C测年、沉积物粒度和浮游有孔虫氧同位素记录,揭示了15万年以来5个浊流沉积层的特征和浊积事件的发生时间。浊流沉积物粒度明显较上下层的粗,主要组分为砂质和粉砂质沉积。通过AMS14 C测年和氧同位素年代标尺,计算了5个浊流沉积层发生的时间分别为13.3、20.4、34.3、41.7和121.8kaBP,其中上部4次浊积事件发生于末次冰期,特别是MIS 3晚期和MIS 2期的低海平面时期,仅底部一次出现于末次间冰期MIS 5e中期相对低海平面时期,因而推测研究区浊流沉积事件的主要诱因是低海平面时期的海平面波动造成临近陆架上的沉积物不稳定,同时较陡的陆坡为浊流沉积提供了有利地形,因而造成了向陆坡方向的浊流搬运。  相似文献   

17.
Tectonics is extremely important to the depositional record preserved in continental sedimentary basins, affecting both the formation of sequence boundaries and the filling characters of these sequences. This comprehensive analysis of Paleogene depositional patterns and the sequence compositional types in the Banqiao sub-basin of the Bohai Basin, Eastern China, shows that episodic rifting and differential activity on major faults have resulted in the formation of various types of transfer zones and structural slope-break zones, both of which played significant roles in the formation and distribution of sequence types and depositional systems. Transfer zones controlled the positions of sediment source areas, entry points for sediment into the basin and, as a result, the development of depositional systems. Structural slope-break zones are paleotopographic features where there is a sharp basinward increase in depositional slope that is controlled by fault geometry. The location of structural slope-break zones influenced the distribution of depositional systems and sand bodies. Areas where the structural slope-break zone overlapped with transfer zones were sites for major drainage systems and the preferred positions of delta fans and turbidite fans. The areas controlled by the transfer zone and the structural slope-break zone with the distribution of sand bodies are the favorable place for the prospecting of subtle stratigraphic traps in the Banqiao sub-basin.  相似文献   

18.
辽东湾南部下第三系地震地层学研究   总被引:1,自引:0,他引:1  
本文依据地震地层学原理,结合层速度和砂岩百分比的研究,描述了辽东湾南部下第三系地震相和沉积相类型及特征,确定出近岸水下扇沉积体系、三角洲—滑塌浊积扇沉积体系、滨浅湖—滩坝沉积体系和深湖—深水浊积扇沉积体系,指出这些沉积体系的平面分布具有不对称性,垂向演化具有继承性和新生性的特点。最后预测了有利勘探地区。  相似文献   

19.
An erosional channel and upslope-climbing sediment waves have been observed in Ytre Orkdalsfjorden and the marine fjord branch Gaulosen off the mouth of Gaula River in Trondheimsfjorden, central Norway. The submarine channel (up to 100–150 m wide and 12 m deep) is interpreted as the pathway of hyperpycnal flows and turbidity currents. It can be traced for 20 km on the seafloor from the mouth of Gaula River down to 500 m of water depth. Based on swath bathymetry and seismic data, the sediment waves are shown to have an accumulated thickness of 50–60 m. They are up to 8 m high, have up to 1-km-long crests, and wavelengths of 100–900 m. The sediment waves are attributed to hyperpycnal flows and turbidity currents overflowing the banks of the channel. Many of the sediment waves were instigated by pre-existing topography created by mass movements since early Holocene times.  相似文献   

20.
Shallow 3D seismic data show contrasting depositional patterns in Pleistocene deepwater slopes of offshore East Kalimantan, Indonesia. The northern East Kalimantan slope is dominated by valleys and canyons, while the central slope is dominated by unconfined channel–levee complexes. The Mahakam delta is immediately landward of the central slope and provided large amounts of sediments to the central slope during Pleistocene lowstands of sea level. In the central area, the upper slope contains relatively straight and deep channels. Sinuous channel–levee complexes occur on the middle and lower slope, where channels migrated laterally, then aggraded and avulsed. Younger channel–levee complexes avoided bathymetric highs created by previous channel–levee complexes. Levees decrease in thickness down slope. Relief between channels and levees also decreases down slope.North of the Mahakam delta, siliciclastic sediment supply was limited during the Pleistocene, and the slope is dominated by valleys and canyons. Late Pleistocene rivers and deltas were generally not present on the northern outer shelf. Only one lowstand delta was present on the northern shelf margin during the upper Pleistocene, and sediments from that lowstand delta filled a pre-existing slope valley complex and formed a basin-floor fan. Except for that basin-floor fan, the northern basin floor shows no evidence of sand-rich channels or fans, but contains broad areas with chaotic reflectors interpreted as mass transport complexes. This suggests that slope valleys and canyons formed by slope failures, not by erosion associated with turbidite sands from rivers or deltas. In summary, amount of sediment coming onto the slope determines slope morphology. Large, relatively steady input of sediment from the Pleistocene paleo-Mahakam delta apparently prevented large valleys and canyons from developing on the central slope. In contrast, deep valleys and canyons developed on the northern slope that was relatively “starved” for siliciclastic sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号