首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
《Quaternary Science Reviews》1999,18(8-9):1021-1038
Time-series O isotope profiles for three U–Th dated stalagmites have revealed that for much of the Holocene, a site on the Atlantic seaboard (SW Ireland) exhibits first-order δ18O trends that are almost exactly out of phase with coupled δ18O curves from two southern European sites (SE France and NW Italy). In the Irish stalagmite (CC3 from Crag Cave, SW Ireland), low δ18O at 10,000 cal yr BP reflects cool conditions. By the early to mid-Holocene (9000–6000 cal yr BP) δ18O had increased, reflecting the onset of warmer conditions on the Atlantic seaboard. This shift to higher δ18O was accompanied by a marked increase in the stalagmite extension rate, reinforcing our interpretation that this was a period of relative warmth. Except for an episode of increased extension rate about 5500 yr ago, δ18O in the Crag stalagmite exhibits a gradual decrease, accompanied by declining extension rates between 7800 and 3500 cal yr BP, interpreted as a cooling trend. There is evidence for increases in both δ18O and stalagmite extension rate in the period from 3500 cal yr BP to the present day suggesting a return to warmer conditions on the Atlantic seaboard. In the stalagmite from NW Italy (ER76, Grotta di Ernesto, Trentino province) the early-Holocene (c. 9200-7800 cal yr BP) is characterised by high δ18O, probably indicative of warm and/or dry conditions. Exceptionally low δ18O from 7800 to 6900 cal yr BP at this site reflects a well-defined wet phase (Cerin wet phase). In the last three millennia, this stalagmite exhibits a shift to lower δ18O, interpreted as some combination of cooler and/or wetter conditions. Unlike the Irish stalagmite, the Italian sample does not show a correlation between δ18O and extension rate. Instead, its extension rate correlates roughly with δ13C, presumably reflecting a climate-driven vegetation change. In the early Holocene, δ18O in the French stalagmite (CL26, Grotte de Clamouse, Herault province, SE France) was low relative to its Holocene average. For much of the period since c. 3500 cal yr BP this stalagmite exhibits higher δ18O than in the early Holocene, suggesting warmer conditions. Like the Irish stalagmite, the French sample exhibits a well-defined correlation between δ18O and extension rate. Had drip-water availability been the dominant control on δ18O at this semi-arid site then higher δ18O would have been accompanied by lower, not higher extension rates. This suggests strongly that temperature rather than rainfall amount was the dominant control at this site. While conclusions regarding the patterns of climate variability on a continent scale must remain tentative because of the limited number of stalagmites studied we argue that early Holocene warm conditions on the Atlantic seaboard (Irish site) coincided with relatively cool conditions at the Clamouse site. By c. 3500 yr ago the pattern appears to have been reversed.  相似文献   

2.
A lake-level record of Lake Ledro (northern Italy) spans the entire Holocene with a chronology derived from 51 radiocarbon dates. It is based on a specific sedimentological approach that combines data from five sediment profiles sampled in distinct locations in the littoral zone. On a millennial scale, the lake-level record shows two successive periods from 11,700 to 4500 cal yr BP and from 4500 cal yr BP to the present, characterized by lower and higher average lake levels, respectively. In addition to key seasonal and inter-hemispherical changes in insolation, the major hydrological change around 4500 cal yr BP may be related to a non-linear response of the climate system to orbitally-driven gradual decrease in insolation. The Ledro record questions the notion of an accentuated summer rain regime in the northern Mediterranean borderlands during the boreal insolation maximum. Moreover, the Ledro record highlights that the Holocene was punctuated by successive centennial-scale highstands. Correlations with the Preboreal oscillation and the 8.2 ka event, and comparison with the atmospheric 14C residual record, suggest that short-lived lake-level fluctuations developed at Ledro in response to (1) final steps of the deglaciation in the North Atlantic area and (2) variations in solar activity.  相似文献   

3.
Two stalagmites from Devil's Icebox Cave, central Missouri, display similar δ13C and δ18O values and trends during the late Holocene. Positive δ13C excursions at 3.5-2.6 ka and 1.2-0.9 ka are interpreted to reflect drier conditions. These elevated stalagmite δ13C values could have plausibly been driven by increasing C4 plant abundances over the cave or an increased contribution of bedrock carbon, both of which could reflect decreased effective moisture. A lack of corresponding oxygen isotopic anomalies during these intervals suggests that neither mean annual temperature nor the seasonality of precipitation changed concomitantly with dryness. Both of the δ13C excursions identified in our stalagmite record are roughly coincident with dry intervals from a number of sites located across the Great Plains.  相似文献   

4.
《Quaternary Science Reviews》2007,26(19-21):2586-2597
Recent paleoclimatic work on terrestrial and marine deposits from Asia and the Indian Ocean has indicated abrupt changes in the strength of the Asian monsoon during the last deglaciation. Comparison of marine paleoclimate records that track salinity changes from Asian rivers can help evaluate the coherence of the Indian Ocean monsoon (IOM) with the larger Asian monsoon. Here we present paired Mg/Ca and δ18O data on the planktic foraminifer Globigerinoides ruber (white) from Andaman Sea core RC12-344 that provide records of sea-surface temperature (SST) and δ18O of seawater (δ18Osw) over the past 25,000 years (ka) before present (BP). Age control is based on nine accelerator mass spectrometry (AMS) dates on mixed planktic foraminifera. Mg/Ca-SST data indicate that SST was ∼3 °C cooler during the last glacial maximum (LGM) than the late Holocene. Andaman Sea δ18Osw exhibited higher than present values during the Lateglacial interval ca 19–15 ka BP and briefly during the Younger Dryas ca 12 ka BP. Lower than present δ18Osw values during the BØlling/AllerØd ca 14.5–12.6 ka BP and during the early Holocene ca 10.8–5.5 ka BP are interpreted to indicate lower salinity, reflect some combination of decreased evaporation–precipitation (E–P) over the Andaman Sea and increased Irrawaddy River outflow. Our results are consistent with the suggestion that IOM intensity was stronger than present during the BØlling/AllerØd and early Holocene, and weaker during the late glaciation, Younger Dryas, and the late Holocene. These findings support the hypothesis that rapid climate change during the last deglaciation and Holocene included substantial hydrologic changes in the IOM system that were coherent with the larger Asian monsoon.  相似文献   

5.
《Quaternary Science Reviews》2007,26(17-18):2281-2300
We review Late Cenozoic climate and environment changes in the western interior of China with an emphasis on lacustrine records from Lake Qinghai. Widespread deposition of red clay in the marginal basins of the Tibetan Plateau indicates that the Asian monsoon system was initially established by ∼8 Ma, when the plateau reached a threshold altitude. Subsequent strengthening of the winter monsoon, along with the establishment of the Northern Hemisphere ice sheets, reflects a long-term trend of global cooling. The few cores from the Tibetan Plateau that reach back a million years suggest that they record the mid-Pleistocene transition from glacial cycles dominated by 41 ka cycles to those dominated by 100 ka cycles.During Terminations I and II, strengthening of the summer monsoon in China's interior was delayed compared with sea level and insolation records, and it did not reach the western Tibetan Plateau and the Tarim Basin. Lacustrine carbonate δ18O records reveal no climatic anomaly during MIS3, so that high terraces interpreted as evidence for extremely high lake levels during MIS3 remain an enigma. Following the Last Glacial Maximum (LSM), several lines of evidence from Lake Qinghai and elsewhere point to an initial warming of regional climate about 14 500 cal yr BP, which was followed by a brief cold reversal, possibly corresponding to the Younger Dryas event in the North Atlantic region. Maximum warming occurred about 10 000 cal yr BP, accompanied by increased monsoon precipitation in the eastern Tibetan Plateau. Superimposed on this general pattern are small-amplitude, centennial-scale oscillations during the Holocene. Warmer than present climate conditions terminated about 4000 cal yr BP. Progressive lowering of the water level in Lake Qinghai during the last half century is mainly a result of negative precipitation–evaporation balance within the context of global warming.  相似文献   

6.
Shells of the helicid Cepaea nemoralis were studied using taphonomic, isotopic and morphometric measurements to estimate late glacial–Holocene (~ 12.1–6.3 cal ka BP) environmental conditions in northern Spain. Higher taphonomic alteration among Holocene shells suggests lower sedimentation rates or higher shell-destruction rates than during glacial conditions. Shells preserved the aragonitic composition despite differing degree of skeleton damage. Shell δ13C values were ? 10.3 ± 1.1‰, ? 8.2 ± 2.3‰, and ? 7.3 ± 1.6‰ for modern, Holocene and late-glacial individuals, respectively. Higher δ13C values during the late-glacial and some Holocene periods imply higher water stress of C3 plants and/or higher limestone contribution than today. Intrashell δ13C values were higher during juvenile stages suggesting higher limestone ingestion to promote shell growth. Shell δ18O values were ? 1.1 ± 0.7‰, ? 0.9 ± 0.8‰ and ? 0.1 ± 0.7‰ for modern, Holocene and late-glacial specimens, respectively. A snail flux-balance model suggests that during ~ 12.1 ? 10.9 cal ka BP conditions were drier and became wetter at ~ 8.4 ? 6.3 cal ka BP and today. Intrashell δ18O profiles reveal that glacial individuals experienced more extreme seasonality than interglacial shells, despite possible larger hibernation periods. Shell size correlated positively with δ18O values, suggesting that growth rates and ultimate adult size of C. nemoralis may respond to climate fluctuation in northern Spain.  相似文献   

7.
A combination of δ13C and δ18O analyses with U–Th disequilibrium dating on a stalagmite and groundwater from the deep and extensive Arch Cave network on northeastern Vancouver Island has produced a preliminary 12,200 y paleoclimatic profile. Speleothem depositional rates vary from 6 to 41 mm/ka and are consistent with the “Hendy” test for speleothem deposition under high-humidity equilibrium conditions. Relative to present day conditions, warmer periods are indicated at the end of the Younger Dryas, during the Holocene maximum, a possible Medieval Warming event, with the warmest period represented by a narrow peak at 8000 y BP. Relatively cooler periods are recorded at 3500, 8200, 9300 and 11,500 y BP with indications of minor cooling during the Little Ice Age and indications of relatively dry conditions during the earlier part of the Younger Dryas followed by warmer wetter conditions. The profile shows excellent agreement with other paleoclimatic indicators locally, most notably some partial speleothem records from Vancouver Island and Oregon, and some high-resolution global records such as the Greenland ice cores and speleothems from the Hulu Cave, China.  相似文献   

8.
《Quaternary Science Reviews》2007,26(13-14):1736-1758
This paper presents a high-resolution lake-level record for the Holocene at Lake Accesa (Tuscany, north-central Italy) based on a range of sedimentological techniques validated in previous studies, with a chronology derived from 43 radiocarbon dates and four tephra layers. It gives evidence of centennial-scale fluctuations with major highstands at ca 11 500, 11 100, 10 200, 9400, 8200, 7300, 6200, 5700–5200, 4850, 4200, 3400, 2600, 1200 and 400 cal BP. Except for the Early Holocene until ca 10 500 cal BP, this pattern of hydrological changes appears to be in agreement with the regional pattern established for west-central Europe. Correlations with the Preboreal oscillation and the 8.2 ka event as well as with the atmospheric 14C residual series suggest that lake-level fluctuations developed at Accesa in response to (1) final steps of the deglaciation in the North Atlantic area and (2) variations in solar activity. For the period after 4500 cal BP, correlations with other palaeohydrological records from central Italy indicate that lake-level changes reconstructed at Accesa were mainly driven by climatic variations while anthropic activities and local geomorphological factors only played a secondary role. The Accesa lake-level record also highlights millennial-scale variations with a maximal lowstand at ca 9200–7700 cal BP contemporaneous with Sapropel event 1 in the Mediterranean. It was followed by generally higher lake-level conditions. This appears to be the opposite of that observed in Sicily (southern Italy) where a lake-level maximum developed at ca 9000–8200 cal BP and was followed by a general trend towards aridification. These opposite patterns were interpreted as contrasting hydrological responses to orbitally induced changes in summer insolation. This interpretation has to be tested by further lake-level studies in the central Mediterranean region. Finally, correlations between major lowstands and periods of maximal representation of Quercus ilex point to convergences between climate oscillations and Holocene vegetation history in the Accesa region. However, the maximal representation of Abies during the first half of the Holocene, including a time window where lake level reached a minimal level, suggests a more subtle impact of seasonality processes.  相似文献   

9.
Changes in the orbital parameters, solar output, and ocean circulation are widely considered as main drivers of the Holocene climate. Yet, the interaction between these forcings and the role that they play to produce the pattern of changes observed in different domains of the climate system remain debated. Here, we present new early to middle Holocene season-specific sea surface temperature (SST) and δ18Oseawater results, based on organic-walled dinoflagellate cyst and planktonic foraminiferal data from two sediment cores located in the central (SL21) and south-eastern (LC21) Aegean Sea (eastern Mediterranean). Today, this region is affected by high to mid latitude climate in winter and tropical/subtropical climate in summer. The reconstructed δ18Oseawater from LC21 displays a marked (~1.3%) negative shift between 10.7 and 9.7 ka BP, which represents the regional expression of the orbitally driven African monsoon intensification and attendant freshwater flooding into the eastern Mediterranean. A virtually contemporaneous shift, of the same sign and magnitude, is apparent in the δ18Ospeleothem record from Soreq Cave (Northern Israel), an important part of which may therefore reflect a change in the isotopic composition of the moisture source region (Aegean and Levantine Seas). Our SST reconstructions show that Aegean winter SSTs decreased in concert with intensifications of the Siberian High, as reflected in the GISP2 nss [K+] record. Specifically, three distinct sea surface cooling events at 10.5, 9.5–9.03 and 8.8–7.8 ka BP in the central Aegean Sea match increases in GISP2 nss [K+]. These events also coincide with dry interludes in Indian monsoon, hinting at large (hemispheric) scale teleconnections during the early Holocene on centennial timescales. A prominent short-lived (~150 years) cooling event in core SL21 – centred on 8.2 ka BP – is coeval to the ‘8.2 ka BP event’ in the Greenland δ18Oice, which is commonly linked to a melt-water related perturbation of the Atlantic Meridional Overturning Circulation and associated ocean heat transport. By deciphering the phasing between a recently published record of reduced overflow from the Nordic Seas into the northern North Atlantic, the Greenland δ18Oice ‘8.2 ka BP event’ anomaly, and the short-lived cooling in SL21, we demonstrate severe far-field impacts of this North Atlantic event in the Aegean Sea. The Aegean is isolated from the North Atlantic oceanic circulation, so that signal transmission must have been of an atmospheric nature.  相似文献   

10.
A total of 233 samples from the upper 16 m of the Toushe peat core retrieved in central Taiwan were measured for TOC and δ13CTOC values. From these samples, 17 selected samples with large δ13CTOC fluctuations were analyzed for n-alkane and δD of the C27 and C29 n-alkanes. Combining with the detailed high-resolution pollen and geochemical records, this study reveals more detailed climatic variations in terms of temperature and precipitation as well as abrupt climatic events during the past 30 Kyrs. Before the Last Glacial Maximum (LGM), climate was cold and damp with predominantly woodland vegetation in Toushe Basin, and turned to cold and dry after 25 Kyr BP. Climatic conditions there were the worst during LGM over the past 30 Kyrs, especially around 23 and 18 Kyr BP when the woodland was diminished and C4 grass was dominated. Although short durations of relatively wet conditions could be found at 17, 16 and 14 Kyr BP, cold and dry climates were prevailing during 29.5–28, 24–22, 17–15 and 13–11.5 Kyr BP, corresponding to Heinrich (H) Events 3, 2, 1, and Younger Dryas (YD), respectively. During the early Holocene, dry climate occurred at ∼11, ∼10, 9.7–9.2 and ∼8 Kyr BP; whereas wet condition appeared at 10.3, 9.8, 9–7.5 Kyr BP. In the middle Holocene, climate kept warm and moderate wet in the first half period, but many dry events existed in the second half following a cold and dry event at 6 Kyr BP. After a sharply warm peak at 5.2 Kyr BP, the climate in Toushe turned to cold quickly, and tree/shrub vegetation disappeared completely with the replacement of C3 grasses. In the late Holocene, climate was relatively wetter with predominant C3 grasses in the basin. Our climatic interpretations based on the peat records agree well with the Greenland ice core and Chinese speleothem records on millennium time scales during the last glacial period. Dry climates corresponding to weakening of the East Asian Summer Monsoon (EASM) during the Heinrich events and Younger Dryas in central Taiwan and eastern China demonstrate the climatic forcing on such long time scales in concert with regional monsoon climate. However, the discrepancies exist between our peat record and the Dongge/Hulu stalagmite record on: (1) the age of H2; (2) climate intensities of LGM and H1; and (3) wetness condition during Holocene. These observations call for further study on high-resolution climatic changes especially on moisture budget in the East Asian monsoonal region.  相似文献   

11.
Stalagmites are important palaeo-climatic archives since their chemical and isotopic signatures have the potential to record high-resolution changes in temperature and precipitation over thousands of years. We present three U/Th-dated records of stalagmites (MA1–MA3) in the superhumid southern Andes, Chile (53°S). They grew simultaneously during the last five thousand years (ka BP) in a cave that developed in schist and granodiorite. Major and trace elements as well as the C and O isotope compositions of the stalagmites were analysed at high spatial and temporal resolution as proxies for palaeo-temperature and palaeo-precipitation. Calibrations are based on data from five years of monitoring the climate and hydrology inside and outside the cave and on data from 100 years of regional weather station records.Water-insoluble elements such as Y and HREE in the stalagmites indicate the amount of incorporated siliciclastic detritus. Monitoring shows that the quantity of detritus is controlled by the drip water rate once a threshold level has been exceeded. In general, drip rate variations of the stalagmites depend on the amount of rainfall. However, different drip-water pathways above each drip location gave rise to individual drip rate levels. Only one of the three stalagmites (MA1) had sufficiently high drip rates to record detrital proxies over its complete length. Carbonate-compatible element contents (e.g. U, Sr, Mg), which were measured up to sub-annual resolution, document changes in meteoric precipitation and related drip-water dilution. In addition, these soluble elements are controlled by leaching during weathering of the host rock and soils depending on the pH of acidic pore waters in the peaty soils of the cave’s catchment area. In general, higher rainfall resulted in a lower concentration of these elements and vice versa. The Mg/Ca record of stalagmite MA1 was calibrated against meteoric precipitation records for the last 100 years from two regional weather stations. Carbonate-compatible soluble elements show similar patterns in the three stalagmites with generally high values when drip rates and detrital tracers were low and vice versa. δ13C and δ18O values are highly correlated in each stalagmite suggesting a predominantly drip rate dependent kinetic control by evaporation and/or outgassing. Only C and O isotopes from stalagmite MA1 that received the highest drip rates show a good correlation between detrital proxy elements and carbonate-compatible elements. A temperature-related change in rainwater isotope values modified the MA1 record during the Little Ice Age (~0.7–0.1 ka BP) that was ~1.5 °C colder than today. The isotopic composition of the stalagmites MA2 and MA3 that formed at lower drip rates shows a poor correlation with stalagmite MA1 and all other chemical proxies of MA1. ‘Hendy tests’ indicate that the degassing-controlled isotope fractionation of MA2 and MA3 had already started at the cave roof, especially when drip rates were low. Changing pathways and residence times of the seepage water caused a non-climatically controlled isotope fractionation, which may be generally important in ventilated caves during phases of low drip rates. Our proxies indicate that the Neoglacial cold phases from ~3.5 to 2.5 and from ~0.7 to 0.1 ka BP were characterised by 30% lower precipitation compared with the Medieval Warm Period from 1.2 to 0.8 ka BP, which was extremely humid in this region.  相似文献   

12.
《Quaternary Science Reviews》2007,26(15-16):1965-1974
Environmental changes, occurring during the Weichselian Lateglacial to Early Holocene transition, are supposed to be caused by rapid climate changes. Vegetation changes that occurred during the Early Holocene show a pattern of increased boreal forest development with dominance of birch (Friesland phase) to a more open vegetation with an increase of predominantly grasses (Rammelbeek phase), subsequently followed by renewed birch and, later on, pine forest development. Based on palynological evidence and botanical macrofossils, the Rammelbeek phase is supposed to have been caused by a change to dry, rather than cold climate. Detailed 14C-dating, using a wiggle-matched AMS-14C chronology, is used to place the vegetation changes in a time-stratigraphic framework. The Rammelbeek phase can be placed to around 11.3 ka cal BP. A direct correlation to the 11.2 ka event, as recorded in the Greenland ice-cores, is tempting. In this paper we propose an alternative approach by using a common proxy registered in both ice-core and terrestrial records. Based on oxygen isotopes, a Preboreal oscillation (PBO) appears to be present in many Early Holocene lacustrine carbonate-rich records. We used the δ18O signal of calcareous lake deposits (Kingbeekdal, Southern Netherlands), in which biostratigraphically a Rammelbeek phase is present. The signal in the stable isotopes seems to correlate to the Greenland ice-core records. This exercise shows that the PBO as recorded in the oxygen isotopes occurs not during the palynologically defined Rammelbeek phase but early in the Friesland phase. Moreover, the palynological record of the Kingbeekdal sequence shows, at the level of the δ18O reversal, a distinct opening of the birch forest and a temporary disappearance of thermophilous taxa, while the light requiring juniper increases. This implies a more complex pattern of climate response registered by the different proxies as previously thought.  相似文献   

13.
《Quaternary Science Reviews》1999,18(10-11):1151-1171
We constructed a radiometrically calibrated proxy record of Late Pleistocene and Holocene climate change exceeding 230,000 yr duration, using pollen profiles from two cores taken through age-equivalent dry lakes—one core having greater age control (via 230Th alpha mass-spectrometry) and the other having greater stratigraphic completeness. The better dated of these two serial pollen records (Searles Lake) served as a reference section for improving the effective radiometric age control in a nearby and more complete pollen record (Owens Lake) because they: (1) are situated ∼90 km apart in the same drainage system (on, and immediately leeward of, the eastern flank of the Sierra Nevada), and (2) preserved strikingly similar pollen profiles and concordant sequences of sedimentological changes. Pollen assemblages from both lakes are well preserved and diverse, and document serial changes in Late Pleistocene and Holocene plant zone distribution and composition in the westernmost Great Basin; they consist of taxa now inhabiting montane forest, woodland, steppe, and desert-scrub environments. The studied core intervals are interpreted here to be the terrestrial equivalent of marine δ18O stages 1 through 9; these pollen profiles now appear to be among the best radiometrically dated Late Pleistocene records of terrestrial climate change known.  相似文献   

14.
A peat cellulose δ18O record spanning around 14,000 years from the Hani peat mire in northeastern China reveals several abrupt temperature anomalies in the period from the last deglaciation through the Holocene. The timing of these anomalies coincides well with the notable cooling events recorded respectively using the GISP2 ice core and ice-rafted sediment of the North Atlantic Ocean, such as the Older Dryas, Inter-Allerød, Younger Dryas, and the nine ice-rafted debris events. The results demonstrate that this repeating pattern of abrupt temperature deterioration is not limited to the North Atlantic area at high latitude but also exists in the western North Pacific region at middle latitude. The synchronous temperature anomalies possibly are resulted from the joint effects of meltwater discharge into the North Atlantic Ocean and reduced solar activity. In the period from around 8600 to 8200 cal. yrs BP the Hani peat record shows a broad δ18O peak that may reflect compound climate signals resulting from the two kinds of forcing factors: the temperature drop related to reduced solar activity at around 8600–8250 cal. yrs BP, and the temperature anomaly attributed to the meltwater effect at around 8220 ± 70 cal. yrs BP. This result may provide palaeo-temperature evidence for existence of the sharp “8.2 k” event in the western North Pacific region. In addition, our results have revealed that in the period from the last deglaciation through the Holocene the synchronous temperature anomalies before and after the “8.2 k” event seem to be related to meltwater outflow and reduced solar activity, respectively. It is important that the all temperature anomalies—whether because of reduced solar activity in the late Holocene or from meltwater discharge in the early Holocene—are accompanied by an abrupt decline in the Indian Ocean summer monsoon and abrupt strengthening of the East Asian summer monsoon. It is likely that reduced solar activity and meltwater outflow appear to modulate Earth system changes in the same direction. The influences could be compounded. Reduced solar activity and meltwater outburst both appear to act as triggers for occurrence of the El Niño phenomenon in the equatorial Pacific Ocean, which may result in broad teleconnections between the temperature anomaly in the Northern Hemisphere and abrupt variation of the Asian monsoon.  相似文献   

15.
《Quaternary Science Reviews》2007,26(3-4):500-516
We use lake sediment records from an epishelf lake on Alexander Island to provide a detailed picture of the Holocene history of George VI Ice Shelf (GVI-IS). Core analyses included; micropaleontology (diatoms/foraminifera), stable isotope (δ18O, δ13C), geochemistry (total organic carbon (TOC), total nitrogen (TN), C/N ratios) and grain-size analyses. These data provide robust evidence for one period of past ice shelf absence during the early Holocene. The timing of this period has been constrained by 10 AMS 14C dates performed on mono-specific foraminifera samples. These dates suggest that GVI-IS was absent between c 9600 cal yr BP and c 7730 cal yr BP. This early Holocene collapse immediately followed a period of maximum Holocene warmth that is recorded in some Antarctic ice cores and coincides with an influx of warmer ocean water onto the western Antarctic Peninsula (AP) shelf at c 9000 cal yr BP. The absence of a currently extant ice shelf during this time interval suggests that early Holocene ocean-atmosphere variability in the AP was greater than that measured in recent decades.  相似文献   

16.
A detailed understanding of long-term climatic and environmental change in southwestern China is hampered by a lack of long-term regional palaeorecords. Organic analysis (%TOC, %TN, C/N ratios and δ13C values) of a sediment sequence from Lake Shudu, Yunnan Province (ca. 22.6–10.5 cal ka BP) indicates generally low aquatic palaeoproductivity rates over millennial timescales in response to cold, dry climatic conditions. However, the record is punctuated by two marked phases of increased aquatic productivity from ca. 17.7 to 17.1 cal ka BP and from ca. 11.9 to 10.5 cal ka BP. We hypothesise that these shifts reflect a marked, stepwise lacustrine response to Asian summer monsoon strengthening during the last deglaciation.  相似文献   

17.
This paper contributes to the emerging picture of late Pleistocene and Holocene environmental change in the Bonneville basin, western North America, through analysis of pollen and sediments from the Blue Lake marsh system, a major wetland area located on the western margin of the Great Salt Lake desert. Analyses of data obtained from the upper 4 m of the Blue Lake core suggest that during the latest Pleistocene, when Lake Bonneville covered the Blue Lake site, pine and sagebrush dominated terrestrial plant communities. These steppe-woodland taxa declined in abundance after ~12 cal ka BP. Wetland plant communities developed at or nearby Blue Lake by ~11.9 cal ka BP and bulrush-dominated marshes were established no later than 10.8 cal ka BP. The Blue Lake wetlands largely desiccated during a dry and warm early middle Holocene ~8.3–6.5 cal ka BP. Climatic amelioration starting ~6.5 cal ka BP is marked principally by a local return of marshes at the expense of playa and grass meadow communities, and a regional increase in sagebrush relative to other dryland shrubs. Singleleaf pinyon pine migrated into the nearby Goshute Mountains after ~8 cal ka BP. Late Holocene fluctuations include cool intervals from ~4.4 to 3.4 and ~2.7 to 1.5 cal ka BP and warmer conditions from 3.4 to 2.7 cal BP and after 1.5 cal ka BP.  相似文献   

18.
《Quaternary Science Reviews》2007,26(15-16):1927-1950
In order to compare environmental and inferred climatic change during the Preboreal in The Netherlands, five terrestrial records were analysed. Detailed multi-proxy analyses including microfossils (e.g., pollen, spores, algae, and fungal spores), macroremains (e.g., seeds, fruits, wood, mosses, etc.), and loss on ignition measurements were carried out with high temporal resolution. To link the five Preboreal records, accurate chronologies were produced by AMS 14C wiggle-match dating. The Dutch records show that following the Lateglacial/Holocene climate warming, birch woodlands expanded between 11,530 and 11,500 cal BP during the Friesland Phase of the Preboreal. After the Friesland Phase, two distinct climatic shifts could be inferred: (1) around 11,430–11,350 cal BP the expansion of birch forests was interrupted by a dry continental phase with open grassland vegetation, the Rammelbeek Phase. This phase was coeval with the coldest part of the Preboreal oscillation (PBO) as observed in the δ18O record of the Greenland ice-core records and has been attributed to a large meltwater flux that resulted in a temporary decrease of the thermohaline circulation in the North Atlantic. (2) At the start of the Late Preboreal, between 11,270 and 11,210 cal BP, a sudden shift to a more humid climate occurred and birch forests expanded again. A simultaneous increase in the cosmogenic nuclides 14C and 10Be suggests that these changes in climate and vegetation were forced by a sudden decline in solar activity. Expansion of pine occurred during the later part of the Late Preboreal. At the onset of the Boreal, between 10,770 and 10,700 cal BP, dense woodlands with hazel, oak, elm and pine started to develop in The Netherlands.  相似文献   

19.
The environmental conditions of the Szczecin Bay, which existed prior to Szczecin Lagoon, have been reconstructed on the basis of the stable carbon and oxygen isotope (18O and 13C) analysis and radiocarbon dates obtained for subfossil shells of Cerastoderma (Cardium) glaucum. The shells in the collected core were well preserved in their life positions, representing a geochemical record of past temperature variation over the middle Holocene. Three major periods with different thermal conditions have been distinguished in the interval ~ 6000–4300 cal yr BP, when the important Littorina regional transgression took place. During the first period, 6000–5250 cal yr BP, water temperature decreased by 1.4°C, and then remained constant over the second period (5250–4750 cal yr BP). In contrast, during the third period (4750–4300 cal yr BP) both δ-values were highly variable and the mean summer temperature (March–November) increased by about 3.5°C. During first two periods, δ18O and δ13C were significantly correlated, indicating stability of the environmental conditions.  相似文献   

20.
A paleoclimate reconstruction for the Holocene based upon variations of δ18O in a U-Th dated stalagmite from southwestern Mexico is presented. Our results indicate that the arrival of moisture to the area has been strongly linked to the input of glacial meltwaters into the North Atlantic throughout the Holocene. The record also suggests a complex interplay between Caribbean and Pacific moisture sources, modulated by the North Atlantic SST and the position of the ITCZ, where Pacific moisture becomes increasingly more influential through ENSO since ~ 4.3 ka. The interruption of stalagmite growth during the largest climatic anomalies of the Holocene (10.3 and 8.2 ka) is evidenced by the presence of hiatuses, which suggest a severe disruption in the arrival of moisture to the area. The δ18O record presented here has important implications for understanding the evolution of the North American Monsoon and climate in southwestern Mexico, as it represents one of the most detailed archives of climate variability for the area spanning most of the Holocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号