首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Quaternary Science Reviews》2003,22(21-22):2303-2310
The present work revisits the chronology of the archaeologically controversial Pedra Furada Rock Shelter of Southeast Piauı́, Brazil, using an improved radiocarbon laboratory pre-treatment and measurements on charcoal samples. The procedure, known as ABOX-SC (acid–base–wet oxidation followed by stepped combustion), has previously been used to secure radiocarbon dates of >40 ka for the antiquity of human occupation of Australia and South Africa, and now has been applied to charcoal from the previously dated oldest occupation layer of the Pedra Furada site. Previous radiocarbon dating had obtained only lower limits of 40–45 ka BP for the Pedra Furada basal layer. Nine charcoal samples from well-structured hearths were subjected to the ABOX-SC procedure and their radiocarbon content determined by accelerator mass spectrometry. Measurements on five of the samples returned ages of greater than 56 ka BP, from graphites produced from ABOX pre-treated charcoal combusted at 910°C. Two other samples were greater than 50 ka BP. The remaining two samples were essentially completely combusted at 650°C, with no material surviving to make a 910°C CO2 fraction. Their ages were 41.3 and 47.2 ka BP. Ages obtained from graphites generated from the 650°C combusted fraction are considered minimum ages.  相似文献   

2.
The establishment of a chronology of landscape-forming events in lowland and mid-altitude Tasmania, essential for assessing the relative importance of climatic and human influences on erosion, and for assessing present erosion risk, has been limited by the small number of ages obtained and limitations of dating methods. In this paper we critically assess previous Tasmanian studies, list published radiocarbon ages considered to be dependable, present new radiocarbon and thermoluminescence (TL) ages for 25 sites around Tasmania, and consider the evidence for the hypotheses that erosion processes at low and mid altitudes have been: (1) purely climatically controlled; and (2) influenced both by climatic and anthropogenic (increased fire frequency) effects. A total of 94 dependable finite ages (calibrated for radiocarbon and ‘as measured’ for TL and optically stimulated luminescence (OSL) determinations) are listed for deposits comprising dunes, colluvium, alluvium and loess-like aeolian deposits. Two fall in the >100 ka period, 15 fall in the period 65–35 ka, and 77 fall in the period 35–0.3 ka. There was a sustained increase in erosion recorded in the period 35–15 ka, as reflected by a greater number of dated aeolian deposits during this period.We considered three possible biases that may have affected the age distribution obtained: the limitations of radiocarbon dating, sampling bias, and preservation bias. Sampling bias may have favoured more recent dune strata, but radiocarbon dating and preservation biases are unlikely to have significantly distorted the age distribution obtained.Long but intermittent aeolian deposition is recorded at two sites (Southwood B; c. 59–28 ka and Dunlin Dune; c. 29–14 ka) but there is no evidence of regional loess deposits such as found in New Zealand. The timing of increased erosion in Tasmania between 35 and 30 ka approximately coincides with the intermittent ten-fold increase of dust accumulation between 33 and 30 ka in the Antarctic Dome C ice core. The absence of widespread erosion before 35 ka, the abrupt increase of erosion around this time, the frequent association of erosion products with charcoal, the arrival of people in Tasmania at c. 40 cal ka, and the known use of fires by Aborigines to maintain areas of non-climax vegetation suggest that ecosystem disturbance by anthropogenic fires, in a drier climate than that presently prevailing, may have contributed to erosion in lowland and mid-altitude Tasmania after 35 ka. Thus the Tasmanian erosion record provides circumstantial support for the proposition that human dispersal in southeast Australia was accompanied by significant ecological change.  相似文献   

3.
《Quaternary Science Reviews》2003,22(10-13):1291-1297
We report the first luminescence ages for the archeological and geological sediments forming the substrate of the Birimi archaeological site in the Northern Region of Ghana. The site's significance rests on the fact that it contains a rich collection of artifact assemblages representative of three distinct cultures, and that, on the basis of artifact typology, the earliest assemblage is diagnostic of the Middle Stone Age (MSA). In situ occurrences of MSA artifacts are found at over 1 m below today's surface. They are overlain by a ceramic-rich complex of a sedentary or semi-sendentary Later Stone Age culture known as the Kintampo. The western half of the site is dominated by the industrial remains of Iron Age smelting activity.Elemental, mineralogical, and sedimentological analysis of the cultural and sub-cultural sedimentary horizons at the site revealed at least three distinct lithostratigraphic units. The quartz sediments are derived from the sandstone of the Gambaga escarpment, mass wasted and accreted fluvially at a rate of 3.2 cm/ka, forming a wide terrace at Birimi. Silts and finer fractions derive from windblown dust, likely from White Volta River and granitic sources to the north. Soil forming processes and wide fluctuations in moisture have progressively reduced the sediments at depth to the resistant quartz and kaolinite, with rich iron oxide coatings, and created two ironstone horizons composed of goethite-cemented quartz nodules.Multiple aliquot green-light stimulated optical ages for 125–150 μm quartz grains yielded ages of 23.6±2.9 and 40.8±11.8 ka for the MSA-bearing sediments, and 58.4±15.3 ka for the base of the terrace. Radiocarbon ages on charcoal from Kintampo-bearing units are 3.36–3.83 ka cal BP, and are supported by thermoluminescence (TL) ages on pottery sherds and burnt house daub fragments of this cultural complex. A 0.4 ka age on sediment from the site's surface confirms that the quartz zeroes well when exposed to natural light. Sediments bearing the Kintampo artifacts, however, yielded ages of 7.8–16.9 ka. These ages were obtained on sediments from large pits, some over 50 cm deep, and they deviate only slightly from the ages expected for naturally aggraded sediments at these depths. We conclude, therefore, that extensive digging of pits by the Kintampo dwellers was followed by rapid refilling, and that the bulk mobilization of the matrix did not permit the sedimentary quartz grains to experience any appreciable zeroing at that time.  相似文献   

4.
The concept that Rannoch Moor, the centre of the Younger Dryas (YD), West Highland Icefield, was deglaciated as early as 12.5 cal ka BP is discussed in the light of radiocarbon dates and varve sequences from outlet glaciers of this icefield, and climate change during the YD. The maximum positions of three YD glaciers were reached after 11.6–11.8 cal ka BP (Lomond), and after 11.8–11.9 cal ka BP (Spean and Treig) indicating that ice remained on Rannoch Moor until long after c.12.5 cal ka BP, and possibly until the YD/Holocene transition at c.11.7 cal ka BP. Further, the Spean glacier dammed a proglacial lake in Lochaber for at least 495 varve years over a period that included the deposition of the Vedde Ash (c.12.1 cal ka BP) and a late YD ash layer (c. 11.7–11.2 cal ka BP), a thesis at variance with supposed early YD deglaciation. Recent examination of this issue using 10Be exposure age determinations from Rannoch Moor is equivocal. In view of the presence of hard water algae at the sampling site on Rannoch Moor it is recommended that the ‘early’ 14C dates from Rannoch Moor need to be further reassessed using chronological constraints provided by dated microtephra, and a collaborative radiocarbon dating programme.  相似文献   

5.
《Quaternary Science Reviews》2007,26(7-8):862-875
High resolution, multi-proxy records of ice-rafted debris (IRD) flux and provenance in the NE Atlantic detail the development, variability and decline of marine margins of the last glacial circum-North Atlantic ice sheets. Coupled lithological identification, Sr and Nd isotopic composition and 40Ar/39Ar ages of individual hornblende grains reduce ambiguity as to IRD potential source region, allowing clear differentiation between Laurentide (LIS), Icelandic and British (BIS) ice sheet sources (the Icelandic and BIS are collectively referred to as the NW European ice sheet, NWEIS). A step-wise increase in the flux of IRD to the core site at ∼26.5 ka BP documents BIS advance and glaciation of Ireland. Millennial-scale variability of the BIS at a ∼2 ka periodicity is inferred through clusters of pulsed IRD fluxes throughout the late glacial (26.5–10 ka BP). Combination of these European IRD events and the ∼7 ka periodicity of LIS instability is thought to account for quasi-synchronicity of the NWEIS and LIS IRD pulses at Heinrich event (H) 2 and H1, previously suggested to represent the possible involvement of the NWEIS in the initiation of H events. Furthermore, the lack of extensive NWEIS marine margin is inferred prior to H3 (31.5 ka BP), such that no ‘European precursor’ event is associated with either H5 or H4. This suggests that ‘precursor events’ were not directly implicated in the collapse of the LIS, and the persistent instabilities of the BIS that are clustered at a 2 ka periodicity are incompatible with the concept that both H events and their ‘precursors’ are independent responses to a common underlying trigger.  相似文献   

6.
Woolly rhinoceros bones, from a number of sites in Britain, have been AMS radiocarbon dated following ultrafiltration pre-treatment. These determinations give a coherent set of ages between >50 and c. 35 cal ka BP. The youngest (35,864–34,765 cal BP) come from the area around Bishopbriggs in western central Scotland and are derived from glaciofluvial sand and gravel overlain by till, both deposited during the Last Glacial Maximum (LGM) glaciation. A previous radiocarbon date from the site suggested that woolly rhinoceros lived c. 27 14C ka BP and the region was ice-free at the time. This date has had significant influence on the timing of extinction of woolly rhinoceros and the onset of glaciation over Britain during the LGM. The new dates revise this earlier determination and confirm that woolly rhinoceros became extinct in Britain after c. 35 cal ka BP, that central Scotland was ice-free at this time, and glaciation extended across this region sometime after 35 cal ka BP.  相似文献   

7.
Establishing firm radiocarbon chronologies for Quaternary permafrost sequences remains a challenge because of the persistence of old carbon in younger deposits. To investigate carbon dynamics and establish ice wedge formation ages in Interior Alaska, we dated a late Pleistocene ice wedge, formerly assigned to Marine Isotope Stage (MIS) 3, and host sediments near Fairbanks, Alaska, with 24 radiocarbon analyses on wood, particulate organic carbon (POC), air-bubble CO2, and dissolved organic carbon (DOC). Our new CO2 and DOC ages are up to 11,170 yr younger than ice wedge POC ages, indicating that POC is detrital in origin. We conclude an ice wedge formation age between 28 and 22 cal ka BP during cold stadial conditions of MIS 2 and solar insolation minimum, possibly associated with Heinrich event 2 or the last glacial maximum. A DOC age for an ice lens in a thaw unconformity above the ice wedge returned a maximum age of 21,470 ± 200 cal yr BP. Our variable 14C data indicate recycling of older carbon in ancient permafrost terrain, resulting in radiocarbon ages significantly older than the period of ice-wedge activity. Release of ancient carbon with climatic warming will therefore affect the global 14C budget.  相似文献   

8.
Activity and stability phases as well as geomorphic processes within the Critical Zone are well known. Erosion and deposition of sediments represent activity; soils represent geomorphic stability phases. Data are presented from a 4 m deep sediment section that was dated by luminescence techniques. Upslope erosion and resulting sedimentation started in the late Pleistocene around 18 ka until 12 ka. Conditions at the study site then changed, which led to the formation of a well-developed soil. Radiocarbon dating of the organic matter yielded ages between 8552 and 8995 cal. BP. From roughly 6.2 to 5.4 ka another activity phase accompanied by according sediment deposition buried the soil and a new soil, a Cambisol, was formed at the surface. The buried soil is a strongly developed Luvisol. The black colors in the upper part of the buried soil are not the result of pedogenic accumulation of normal organic matter within an A-horizon. Nuclear magnetic resonance spectroscopy clearly documents the high amount of aromatic components (charcoal), which is responsible for the dark color. This indicates severe burning events at the site and the smaller charcoal dust (black carbon) was transported to deeper parts of the profile during the process of clay translocation.  相似文献   

9.
A core, recovered from a water depth of 53 m in Loch Assynt, North-West Scotland, has yielded a 9 m sequence comprising two distinct units, an upper, organic-rich unit (Unit I, ca. 6 m) overlying a sequence of laminated clays, silts and sands (Unit II, ca. 3 m). The upper unit is essentially Holocene in age based upon three bulk AMS radiocarbon dates while a fourth radiocarbon date from Unit II confirms a late-glacial age for that interval and supports a broadly linear age–depth relationship. Distinct variations in the magnetic susceptibility record of the lower unit can be visually correlated to major changes in the Greenland ice core (GISP2), this together with pollen evidence supports the radiocarbon dating suggesting an age of approximately 11,000 to around 17,000 cal. BP for Unit II, with evidence for the Younger Dryas (Loch Lomond) stadial and the Bolling–Allerød climatic phases. Variations in the magnetic susceptibility record of the late-glacial sediments are thought to relate to climatically driven changes in soil cover and erosion rates. The multiproxy record from Loch Assynt indicates relatively continuous, sub-aqueous sedimentation during the last ~17,000 years, providing an approximate age for the initiation of modern Loch Assynt and supporting recent dates of moraine retreat lines in the Loanan Valley from about 14–15 ka BP. Pollen and chironomid sampling provides further insights to the history of this relatively deep water body and compliment existing high-resolution palaeo-precipitation records for the mid to late Holocene interval from speleothem archives within the loch catchment.  相似文献   

10.
《Quaternary Science Reviews》2007,26(11-12):1610-1620
The primary objective of the present study is to identify major phases of alluviation in the Indian region since the abrupt Deglacial intensification of the monsoon (∼15 cal ka BP) on the basis of analysis of 68 radiocarbon dates from two major hydro-geomorphic regions of India: the Central Ganga Basin (CGB) and the Deccan Peninsula (DP). The recognition of main phases of alluviation and incision has been achieved by evaluating the temporal distribution and clustering of the radiocarbon dates from alluvial sequences. The clusters were detected on the basis of the interpretation of the summed probability distribution plots derived by using OxCal version 4.0.1 and CALPAL (version May 2006) software packages.The summed probability plots reveal that periods of alluviation in the CGB, represented by three clusters (13.9–12.3, 11.9–11.2 and 9.8–9.0 cal ka BP) occur roughly before the onset of Early Holocene monsoon optimum phase. Two other clusters occur in the intervals 3.6–2.8 and 1.1–0.9 cal ka BP. The peak monsoon period generally lacks clusters of radiocarbon dates implying fluvial erosion and channel incision. This period also shows clustering of radiocarbon dates of the abandoned channels. In comparison, 14C dates from DP alluvial units form clusters at 16.4–14, 12.8–11.2, 10.8–8.9, 8.1–6.7 and 5.1–3.9 cal ka BP, indicating an association with the Deglacial–Early Holocene humid phase. Alluviation in the DP appears to have continued, more or less, uninterrupted till the middle of the Holocene epoch. The beginning and end of the discernible gap in the radiocarbon dates of CGB (9.0–3.6 cal ka) broadly corresponds with the two well-established short-term events of the Holocene, 8.2 and 4.2 ka cal BP. In comparison, the prominent gap of DP radiocarbon dates (3.9–2.1 ka cal BP) approximately begins with the 4.2 ka cal BP short-term event (onset of aridity) and ends with the 2.0 ka cal BP enhanced monsoon event.Notwithstanding the inter-regional differences in the fluvio–sedimentary response in the India region, the clusters of radiocarbon dates indicate that the century to millennium scale variations in fluvial activity in the Indian subcontinent were intimately linked to long-term fluctuations in the monsoon strength during the Late Quaternary.  相似文献   

11.
The potential to provide environmental proxies using stable carbon isotopes from modern and archaeological charcoal is explored. Experiments on modern Podocarpus (Yellowwoods) show that δ13C values of stems, branches and charcoal preserve proxy environmental conditions, including rainfall, humidity and temperature. An additional experiment showed that combustion temperature affects the carbon isotope signature of charcoal. Burning at 450 °C to 500 °C depletes δ13C values with respect to the original wood, but the charcoal retains the seasonal and inter-annual isotopic trends recorded during the growth of the tree.The δ13C of Podocarpus charcoal from three levels from the Middle Stone Age site of Sibudu Cave, KwaZulu-Natal, South Africa, was compared with modern analogues from two different environments, Seaton Park (KwaZulu-Natal) and the Baviaans Kloof (Eastern Cape). Other environmental proxies from levels dated from > 70 ka and ~ 48 ka, show that environmental conditions changed from warmer and wetter to colder and drier and finally becoming warmer and drier. The isotope data is consistent with this reconstruction. The results from this series of experiments indicate that it is possible to obtain meaningful palaeoenvironmental information from δ13C values of archaeological charcoal.  相似文献   

12.
The remains of former lakes show that in the past the Arabian Peninsula experienced much wetter conditions than today. The last of these humid periods dates to about 10 to 5.5 ka ago. The chronological framework for an earlier humid phase, radiocarbon dated to some 35–20 ka, is inconsistent with evidence from other records from the region. Possibly, these ages are significantly underestimating the true depositional age due to methodological problems. The earliest phase of dune accumulation known so far is dated to the penultimate glaciation maximum of the mid latitudes (ca. 150 ka). Subsequently, dune accumulation occurred around 110 ka, 65 ka and 20 ka ago. All these phases concur with rapid drops in global sea level that caused a drying out of the Persian Gulf basin and of the shelf of the Oman coast. In contrast to some previous interpretations, it is concluded here that aeolian deposition has been limited by sediment supply and not by preservation potential.  相似文献   

13.
《Quaternary Science Reviews》2007,26(3-4):536-559
The Ironshore Formation on Grand Cayman is formed of six unconformity-bounded packages (units A–F). Units A, B, C, and D, known from the subsurface in the northeastern part of Grand Cayman, formed during Marine Isotope Stages (MIS) 11(?), 9, 7, and 5e, respectively. Unconformities at the tops of units A, B, and C are highlighted by terra rossa and/or calcrete layers. Strata in core obtained from wells drilled in George Town Harbour and exposed on the west part of Grand Cayman belong to unit D, and the newly defined units E and F. Corals from unit E yielded Th/U ages of ∼104 ka whereas conch shells from unit F gave ages of ∼84 ka. Unit E equates to MIS 5c whereas unit F developed during MIS 5a.Th/U dating of corals and conchs from the Ironshore Formation on the western part of Grand Cayman shows that unit D formed during the MIS 5e highstand whereas units E and F developed in association with highstands at 95–110 ka (MIS 5c) and 73–87 ka (MIS 5a). Unit E, ∼5 m thick in the offshore cores, is poorly represented in onshore exposures. Unit F, which unconformably overlies unit D at most localities, is formed largely of fossil-poor, cross-bedded ooid grainstones. The unconformity at the top of unit D, a marine erosional surface with up to 2.5 m relief, is not characterized by terra rossa or calcrete in the offshore cores or onshore exposures. Unit D formed with a highstand of +6 m asl, whereas units E and F developed when sea level was +2 to +5 asl and +3 to +6 m asl, respectively. Thus, the highstands associated with MIS 5e, 5c, and 5a were at similar elevations.  相似文献   

14.
This paper contributes to the emerging picture of late Pleistocene and Holocene environmental change in the Bonneville basin, western North America, through analysis of pollen and sediments from the Blue Lake marsh system, a major wetland area located on the western margin of the Great Salt Lake desert. Analyses of data obtained from the upper 4 m of the Blue Lake core suggest that during the latest Pleistocene, when Lake Bonneville covered the Blue Lake site, pine and sagebrush dominated terrestrial plant communities. These steppe-woodland taxa declined in abundance after ~12 cal ka BP. Wetland plant communities developed at or nearby Blue Lake by ~11.9 cal ka BP and bulrush-dominated marshes were established no later than 10.8 cal ka BP. The Blue Lake wetlands largely desiccated during a dry and warm early middle Holocene ~8.3–6.5 cal ka BP. Climatic amelioration starting ~6.5 cal ka BP is marked principally by a local return of marshes at the expense of playa and grass meadow communities, and a regional increase in sagebrush relative to other dryland shrubs. Singleleaf pinyon pine migrated into the nearby Goshute Mountains after ~8 cal ka BP. Late Holocene fluctuations include cool intervals from ~4.4 to 3.4 and ~2.7 to 1.5 cal ka BP and warmer conditions from 3.4 to 2.7 cal BP and after 1.5 cal ka BP.  相似文献   

15.
Forty-eight new and previously published radiocarbon ages constrain deglacial and postglacial sea levels on southern Vancouver Island, British Columbia. Sea level fell rapidly from its high stand of about +75 m elevation just before 14 000 cal BP (12 000 radiocarbon yrs BP) to below the present shoreline by 13 200 cal BP (11 400 radiocarbon years BP). The sea fell below its present level 1000 years later in the central Strait of Georgia and 2000 years later in the northern Strait of Georgia, reflecting regional differences in ice sheet retreat and downwasting. Direct observations only constrain the low stand to be below ?11 m and above ?40 m. Analysis of the crustal isostatic depression with equations utilizing exponential decay functions appropriate to the Cascadia subduction zone, however, places the low stand at ?30 ± 5 m at about 11 200 cal BP (9800 BP). The inferred low stand for southern Vancouver Island, when compared to the sea-level curve previously derived for the central Strait of Georgia to the northwest, generates differential isostatic depression that is consistent with the expected crustal response between the two regions. Morphologic and sub-bottom features previously interpreted to indicate a low stand of ?50 to ?65 m are re-evaluated and found to be consistent with a low stand of ?30 ± 5 m. Submarine banks in eastern Juan de Fuca Strait were emergent at the time of the low stand, but marine passages persisted between southern Vancouver Island and the mainland. The crustal uplift presently occurring in response to the Late Pleistocene collapse of the southwestern sector of the Cordilleran Ice Sheet amounts to about 0.1 mm/yr. The small glacial isostatic adjustment rate is a consequence of low-viscosity mantle in this tectonically active region.  相似文献   

16.
The timing and causes of the last deglaciation in the southern tropical Andes is poorly known. In the Central Altiplano, recent studies have focused on whether this tropical highland was deglaciated before, synchronously or after the global last glacial maximum (~21 ka BP). In this study we present a new chronology based on cosmogenic 3He (3Hec) dating of moraines on Cerro Tunupa, a volcano that is located in the centre of the now vanished Lake Tauca (19.9°S, 67.6°W). These new 3Hec ages suggest that the Tunupa glaciers remained close to their maximum extent until 15 ka BP, synchronous with the Lake Tauca highstand (17–15 ka BP). Glacial retreat and the demise of Lake Tauca seem to have occurred rapidly and synchronously, within dating uncertainties, at ~15 ka BP. We took advantage of the synchronism of these events to combine a glacier model with a lake model in order to reconstruct precipitation and temperature during the Lake Tauca highstand. This new approach indicates that, during the Tauca highstand (17–15 ka BP), the centre of the Altiplano was characterized by temperature ~6.5 °C cooler and average precipitation higher by a factor ranging between ×1.6 and ×3 compared to the present. Cold and wet conditions thus persisted in a significant part of the southern tropical Andes during the Heinrich 1 event (17–15 ka BP). This study also demonstrates the extent to which the snowline of glaciers can be affected by local climatic conditions and emphasizes that efforts to draw global climate inferences from glacial extents must also consider local moisture conditions.  相似文献   

17.
《Quaternary Science Reviews》2007,26(11-12):1638-1649
Surface-exposure (10Be) ages have been obtained on boulders from three post-Pinedale end-moraine complexes in the Front Range, Colorado. Boulder rounding appears related to the cirque-to-moraine transport distance at each site with subrounded boulders being typical of the 2-km-long Chicago Lakes Glacier, subangular boulders being typical of the 1-km-long Butler Gulch Glacier, and angular boulders being typical of the few-hundred-m-long Isabelle Glacier. Surface-exposure ages of angular boulders from the Isabelle Glacier moraine, which formed during the Little Ice Age (LIA) according to previous lichenometric dating, indicate cosmogenic inheritance values ranging from 0 to ∼3.0 10Be ka.1 Subangular boulders from the Butler Gulch end moraine yielded surface-exposure ages ranging from 5 to 10.2 10Be ka. We suggest that this moraine was deposited during the 8.2 cal ka event, which has been associated with outburst floods from Lake Agassiz and Lake Ojibway, and that the large age range associated with the Butler Gulch end moraine is caused by cosmogenic shielding of and(or) spalling from boulders that have ages in the younger part of the range and by cosmogenic inheritance in boulders that have ages in the older part of the range. The surface-exposure ages of eight of nine subrounded boulders from the Chicago Lakes area fall within the 13.0–11.7 10Be ka age range, and appear to have been deposited during the Younger Dryas interval. The general lack of inheritance in the eight samples probably stems from the fact that only a few thousand years intervened between the retreat of the Pinedale glacier and the advance of the Chicago Lakes glacier; in addition, bedrock in the Chicago Lakes cirque area may have remained covered with snow and ice during that interval, thus partially shielding the bedrock from cosmogenic radiation.  相似文献   

18.
《Precambrian Research》2006,144(1-2):69-91
By using unusual combinations of demagnetization techniques, Proterozoic paleomagnetic vectors and paleopoles are provided for two recently discovered post-tectonic Proterozoic units near Armstrong, northern Ontario, and also for well-dated Gunflint Formation, which by previous techniques yielded problematical paleomagnetic data. The first paleomagnetic data are provided also for the Seagull Pluton and Inspiration Sills. Characteristic remanent magnetizations (ChRM) for the Pillar Lake Lavas indicate a Keweenawan age, more specifically ∼1000–1040 Ma by comparison with the well-established APWP for the Late Proterozoic Superior craton. Four combinations of demagnetization techniques yield declinations in the range 108–133° and inclinations in the range −65 to −70° (n = 100), which define paleopoles near 200 W/48 N corresponding to a location on the Keweenawan APWP near ∼1040 Ma. In the underlying basement a recently discovered Proterozoic igneous complex, the Waweig Troctolitic Complex, yields new paleomagnetic data with declination and inclination 42/−54 (n = 14) defining a paleopole at 238 W/09 N. Its ages may be 1400–1600 or ∼2000 Ma by comparison with the presently available, ambiguous and sparsely populated APWP. The first paleomagnetic results for the Seagull Pluton (U–Pb age 1113 Ma) yield a mean declination of 87.4/−75.7 (n = 32) corresponding to a Keweenawan paleopole near 233/42 N, consistent with other paleopoles near ∼1200 Ma. Tuffs of the oft studied but problematical Gunflint Formation (U–Pb age1878 Ma) yielded stable and presumably primary vectors using several different demagnetization techniques on the same specimens. Their mean primary declination and inclination ∼303/+48.8 (n = 17) yields a paleopole now located near 178 W/42 N, comparable with the published locations of paleopoles of ∼2000 Ma. Of broader interest, we recognized that low temperature demagnetization preceding conventional demagnetization techniques enhanced the isolation of characteristic vectors. Combining the conventional techniques (thermal and AF demagnetization) also improved the resolution of characteristic vectors not achieved by other means. Low grade metamorphism affected the non-tectonized Proterozoic cover to the Canadian shield, due to burial or hydrothermal effects, obfuscating or erasing primary vectors in some lithologies and especially at certain sites.  相似文献   

19.
《Quaternary Science Reviews》2003,22(5-7):581-593
During Pleistocene mountain glaciation of the Bavarian Forest, south Germany, the Wurmian Kleiner Arbersee glacier left behind glacial landforms and sediments which are described, classified and interpreted using a combination of geomorphological, sedimentological, pedological, surveying and absolute dating methods. The latest Kleiner Arbersee glacier with a maximum length of 2600 m, a minimum width of 800 m and a thickness of 115 m formed an elongated cirque, four lateral moraines, one divided end moraine, one recessional moraine, a proglacial lake and a basin in which lake Kleiner Arbersee was established after deglaciation. Beyond the glacial limit the landscape is denuded by periglacial slope deposits which are differentiated from the glacigenic sediments based upon clast fabrics, clast shapes and sediment consolidation. Within the glacial limit sandy–gravelly to silty–gravelly tills are widely distributed, whereas glaciolacustrine sediments are restricted to a small area north of the lake. Small variations in the sand and silt fraction of the tills are explained by melt-out processes. Quartz, mica and chlorite derived from gneiss bedrock are dominant in the clay mineral spectrum of tills, but also gibbsite as a product of pre-Pleistocene weathering is present giving evidence of glacially entrained saprolites. An IRSL-date of glaciolacustrine sediments (32.4±9.4 ka BP) confirms the Wurmian age for the glaciation and radiocarbon ages of the basal sediments (12.3±0.4 and 12.5±0.2 ka BP uncalibrated) in the lake Kleiner Arbersee prove that the basin was ice-free before the Younger Dryas.  相似文献   

20.
The Longgang volcanic field, located in northeastern China, is volcanically active with a number of eruptions during the Quaternary but the chronology of the eruptions is poorly defined. Some tephra layers are well preserved in the annually laminated sediments of maar lakes in the region, and facilitate the construction of a much improved chronological framework for the volcanic history of the area. The results of our investigations reveal that three basaltic explosive eruptions occurred at AD 460, 11460 cal yr BP and 14000 cal yr BP, respectively. The largest explosive basaltic eruption (AD 460) produced a thick black scoria layer in the Longgang volcanic field, including lakes. The tephra distribution and chronological data suggest that this eruption is likely to be from the Jinlongdingzi volcano. Two basaltic flood eruptions occurred at Jinlongdingzi. The earlier basaltic eruption produced a lava flow that spread over a forest and encased standing trees. Two radiocarbon ages obtained from charcoal samples collected from the burned remains of these trees are 1828–1989 cal yr BP and 2164–2359 cal yr BP. In the most recent stage of volcanism, the lava flow extended only ca. 2 km, and flowed into Lake Dalongwan. From the present status of the forest ecosystem, which has not yet reached the fully mature successional stage, we estimate that this lava is very young (ca. a few hundreds years old). Jinlongdingzi is a potentially dangerous volcano. Monitoring and assessment of the potential hazards in the Longgang volcanic field should be carried out in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号