首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
This paper presents a new method for the measurement on core samples of their electrical resistivity, its anisotropy and heterogeneity. The equipment used has been developed in the field laboratory of the German Continental Deep Drilling program KTB in the north-east of Bavaria on the western rim of the Bohemian Massif. The apparatus measures the resistivity at a fixed frequency as a function of the drill core azimuth and along the core by moving point electrode configurations. From these azimuth and depth dependences, mean values of resistivity and additional information about its anisotropy and heterogeneity are determined. Geometrical averaging is used, because the resistivity data follows a log normal distribution. The quantitative parameters ‘azimuth factor’, corresponding to horizontal anisotropy, and ‘heterogeneity factor’ are introduced. The depth logs of resistivity, azimuth factor and heterogeneity factor, measured on cores obtained from the KTB main drill hole (gneisses and amphibolites) at depths between 4150 m and 8080 m are presented. The geometrically averaged mean values of resistivity of gneisses and amphibolites are in the same range (? 103Ωm). The resistivities tend to decrease with depth. The stress release of the drill cores during recovery produces microcracks which may partially account for this effect. Reduced resistivities (down to 150 Ωm) within an amphibolite core correlate with an alteration zone. One sample of this core displays alteration from fresh to completely altered. This sample is also electrically heterogeneous (heterogeneity factor ? 2). Other samples with uniform low alteration are more homogeneous heterogeneity factor ? 1.4). In general, higher anisotropies are observed in gneisses (mean azimuth factor 2.8), lower anisotropies in amphibolites (mean azimuth factor 1.3). Examples of isotropic and homogeneous samples, as well as anisotropic and heterogeneous samples are also presented.  相似文献   

2.
Petrophysical measurements were carried out on dry specimens of mica-gneiss, amphibolite and serpentinite from KTB core samples and samples of surface outcrops in order to determine the effect that a deviatoric stress field, as observed at the KTB area, may have on the in-situ rock properties. Simulating the variation of the actual principal stresses and temperature with depth, seismic wave velocities, densities, linear and volumetric strain (porosity) have been measured, taking into account the overall spatial orientation of the foliation at the KTB area with respect to the principal stress axes. Comparison with respective data evaluated for lithostatic pressure conditions revealed that the stress-related (crack-related) effect on wave velocities respectively on velocity anisotropy is in the range 1–3%, due to microcracks which are selectively closed or kept open by the deviatoric stress. The effect of the deviatoric stress is particularly documented by shear wave splitting due to microfractures that are oriented normal to the minimum principal stress axis.  相似文献   

3.
Complex electrical resistivity and permeability were measured on two gneiss samples and nine amphibolites (originally located at a depth of 4150 m to 5012 m) from the main drilling of the German deep drilling project (KTB). Measurements were performed as a function of hydrostatic pressures up to 240 MPa on core samples (30 mm in diameter and 10–20 mm high). For each measurement, two samples were used, one being parallel, and one perpendicular to the borehole axis. At low pressures and again at maximum pressure the frequency dispersion (1 kHz up to 1 MHz) of the complex resistivity was measured using a two electrode device. An unusual pressure effect was detected on some of the samples and was established to be due to the oriented deposition of good conducting phases in the foliation. Rock fabric and the orientation of ore mineralization was measured on thin sections and polished sections prepared from the same samples.  相似文献   

4.
To investigate the physical property anisotropies of foliated fault rocks in subduction zones, the hanging wall phyllites and footwall cataclasites exhumed along the Nobeoka Thrust, a fossilized out‐of‐sequence‐thrust in the Shimanto Belt, Japan, was focused. Discrete physical property (electric resistivity, P‐ and S‐wave velocities, and porosity) measurements were conducted employing geologic coordinates (depth‐parallel direction, strike direction, and maximum dip direction of foliation), using the core samples obtained from the Nobeoka Thrust Drilling Project and compared the data to borehole geophysical logs. A higher sample P‐wave velocity (Vp), lower S‐wave velocity (Vs), higher Vp/Vs, and lower sample porosity and resistivity compared to the logs, are inferred to have been caused by the larger sampling scale of the logs and lower fluid saturation of the borehole. The phyllites and cataclasites exhibited substantial vertical and horizontal anisotropy of Vp (0.4–17.3 % and 2.7–13.8 %, respectively), Vs (0.5–56 % and 7.7–43 %, respectively), and resistivity (0.9–119 % and 2.0–65.9 %, respectively). The physical property anisotropies are primarily affected by the dip angles of foliation. The fault rocks that have gentler dip angles exhibit a higher Vp in the strike and maximum dip direction and a lower Vp in the depth‐parallel direction. In contrast, the fault rocks that have steeply dipping structures show a higher Vp in the strike and depth‐parallel directions with a lower velocity in the maximum dip direction. Resistivity anisotropy show a trend opposite to that of the Vp in relation to the dip angles. Our results show lower Vp anisotropy than those obtained in previous studies, which measured wave speeds perpendicular or parallel to foliation under confining pressure. This study highlights the significance of dip angles on vertical properties in geophysical surveys across foliated fault rocks.  相似文献   

5.
Ultrahigh-pressure (UHP) eclogites often show strong plastic deformation and anisotropy of seismic properties. We report in this paper the seismic velocity and anisotropy of eclogite calculated from the crystallographic preferred orientations (CPOs) of constituent minerals (garnet, omphacite, quartz and rutile) and single crystal elastic properties. We also compared the calculated results with the measured results in similar eclogites. Our results suggest that (1) Except that garnet is a seismically quasi-isotropic mineral, omphacite, quartz, coesite and rutile all have strong seismic anisotropies (AVp = 23.0%―40.9%, Max. AVs = 18.5%―47.1%). They are the major sources for anisotropy in eclogite. The average seismic velocities are fast in garnet and rutile, moderate in omphacite and coesite, and slow in quartz. (2) The deformed eclogites have the maximum Vp (8.33―8.75 km/s) approximately parallel to foliation and lineation, the minimum Vp (8.25―8.62 km/s) approximately normal to foliation and lineation and the Vp anisotropies of 1.0―1.7%. Their Vs are 4.93―4.97 km/s. The corresponding maximum anisotropies (0.73%―1.78%) of Vs are at 45° to both foliation and lineation and the minimum anisotropies at positions normal to lineation on the foliation plane. The Vs1 polarization planes are approximately parallel to foliation. The mean Vp and Vs of eclogite under UHP peak metamorphism conditions (P = 3―5 GPa, T = 900―1100℃) are estimated to be 3.4%―7.2% and 6.3%―12.1% higher than those at ambient pressure and temperature conditions, respectively. (3) Omphacite component dominates the anisotropy of eclogite while garnet component reduces the anisotropy and increases the seismic velocities. Quartz component has a small effect on the anisotropy but reduces the seismic velocities of eclogite. The effect of rutile component is negligible on seismic properties of eclogite due to its trivial volume fraction. (4) The increase of volume fraction of omphacite in eclogite will reduce the seismic velocities and increase the anisotropy. Omphacitite has seismic velocities reduced by 6%―8% and anisotropies increased to 3%―4% compared to those of garnetite. Our results suggest that the seismic properties calculated with single crystal elastic properties and CPOs are equivalent to those measured in laboratory. Moreover, it provides insights into the mineral physical interpretations of eclogite seismic properties.  相似文献   

6.
—Anisotropy in the subcontinental lithosphere becomes increasingly important, because it is observed in many seismic studies especially for P n -waves. Typical rocks of the uppermost mantle are peridotites, which predominantly exhibit a pronounced elastic anisotropy. This anisotropy is mainly caused by the anisotropic elastic properties and the lattice preferred orientation (here referred to as texture) of olivine. To evaluate the elastic anisotropy of peridotites from the subcontinental lithosphere, specimens of the Northern Hessian Depression (Germany) and the Balmuccia Ultramafic Massif (Northern Italy) have been used. They comprise four olivine texture types, which are characteristic for olivine textures observed worldwide. The bulk rock elastic properties have been calculated using olivine and orthopyroxene textures, their single-crystal elastic constants at ambient pressure/temperature conditions and their volume fraction. Clinopyroxene and spinel are assumed to be randomly distributed. The effect of four different orientations of the foliation within the uppermost mantle has been evaluated, since this orientation is usually unknown.¶Two of the olivine textures have a pronounced azimuthal dependence of compressional waves when a horizontal foliation within the uppermost mantle is presumed. These variations cause significant azimuthal variations of the P-wave reflections coefficients at the Moho. Primarily, we predict a significant azimuthal dependence of the critical points where the reflected amplitude increases from approximately 15% to 95%. Possibly, these azimuthal variations can be detected by seismic reflection measurements carried out at earth surface.¶The remaining two texture types only manifest a small directional dependence. When anisotropy of compressional waves is observed in seismic studies, these latter types can only be of subordinate importance. However, all of the peridotites investigated are able to explain the seismically observed azimuthal variations of compressional waves when a vertical foliation is proposed. This ambiguity can be substantially reduced when shear waves (S-waves) are considered. The directional distribution of S-wave velocities and of the S-wave splitting exhibits characteristic patterns for the different olivine texture types. This could be used to discriminate between different texture types and orientations of the foliation within the uppermost mantle. A fundamental requirement for a more comprehensive interpretation is the availability of detailed S-wave observations. The maximum S-wave splitting in the peridotites investigated coincides with the maximum of the faster (leading) S-wave. This may be of importance to detect S-wave splitting in future seismic studies.  相似文献   

7.
Transport properties (permeability and electrical conductivity) have been measured at different hydrostatic pressure runs on 7 crystalline rocks (gneisses and amphibolites) sampled from the KTB drilling project. The decrease of permeability by pressure are compared with the pressure-dependent data of the electrical conductivity (formation factor) resulting from complex impedance measurements. According to the equivalent-channel model (ECM), there exists a linear relationship between these parameters by representing both properties on logarithmic scales. The results show that it is possible to extrapolate high-pressure permeability from low-pressure (< 60 MPa) permeability data by using the pressure-dependent electrical conductivity (up to 300 MPa).  相似文献   

8.
The experimental studies done at high temperature and high pressure find that increased temperature can lead to dramatic velocity and strength reductions of most of rocks at high confining pressure[1,2]. What causes this phenomenon? Is it due to dehydrati…  相似文献   

9.
During folding of the Scaglia Rossa limestone in Umbria, Italy, deformation was mainly accommodated by pressure solution cleavage. Fossils between the cleavage planes appear visibly undeformed, yet the limestone possesses a weak magnetic fabric. The maximum and intermediate principal axes of the magnetic anisotropy ellipsoid define a distinct magnetic foliation plane within which a weak concentration of the maximum axes forms a magnetic lineation. Neither of these features is of sedimentary origin. Results from a slumped outcrop, where bedding and a cleavage induced by overburden compaction have different attitudes, show that the magnetic foliation is caused by the compaction. Comparisons with field-derived structural data suggest that the magnetic lineation was produced tectonically during deformation of the Apennine fold belt.  相似文献   

10.
Susceptibility anisotropies in the form of vertically prolate ellipsoids have been reported in many deep-sea sediment cores. The results of the present investigation suggest that these anisotropies may not describe the original magnetic fabric of deep-sea sediment, but are more likely due to either a measurement effect or to deformation of the sediment during coring. Anisotropy measurements made on a spinner magnetometer sometimes were found to be greatly affected by the shape of the sample. This apparent “sample-shape effect” was not observed on a low-field torque meter. The anisotropy of samples taken near the base or the top of some piston cores often reflects sediment disturbance during the coring operation. Most samples of deep-sea sediment examined had weak anisotropies that could be interpreted as due to normal depositional processes, including bioturbation. The best-fitting susceptibility ellipsoids were usually oblate with near vertical minimum susceptibility axes.  相似文献   

11.
随钻方位电磁波测井多参数快速反演   总被引:1,自引:0,他引:1       下载免费PDF全文
大斜度井/水平井随钻测井技术已被广泛的应用于各种复杂油气藏中,但传统随钻电磁波测井仅提供仪器轴向磁场分量,井斜和各向异性对测井响应影响耦合在一起,难以剥离,无法基于反演同时获取多个参数,进行相应的地层评价,且不能提供方位信息,难以实现地质导向功能.随钻方位电磁波测井在提供仪器轴向磁场分量的基础上,还提供了仪器横向磁场分量,其提取的地质导向信号,对地层界面非常敏感,受井斜、地层电阻率对比度和各向异性影响弱,可以反演得到准确的界面位置.此外,额外的磁场分量信息,有效降低了井斜与各向异性的耦合程度,可基于反演算法实现多参数联合反演,满足电阻率测井精细解释评价需求.  相似文献   

12.
裂缝性储层的电各向异性响应特征研究   总被引:8,自引:5,他引:3       下载免费PDF全文
以水平裂缝分布的孔隙介质模型为基础,建立了水平裂缝面的平行裂缝分布和带粗糙表面的点接触裂缝模型,导出了两类裂缝模型的水平和垂直电阻率响应关系,分析了两类裂缝模型在没有围压和存在围压条件下的水平电阻率、垂直电阻率变化规律和电各向异性系数的变化特征.讨论了裂缝开度、裂缝密度和裂缝粗糙度等裂缝特征参数对裂缝性储层电各向异性的影响.为简化讨论,所有电性响应特征的分析都忽略了裂缝和孔隙表面的导电性和极化的影响.利用平行分布水平裂缝面模型和带粗糙面的裂缝模型,考察了围压条件下的裂缝性岩石的电各向异性响应特征,得到了对实际应用有意义的结果.  相似文献   

13.
刘斌 Kern  H 《地球物理学报》1998,41(3):371-381
在实验室中研究了蛇纹岩和角闪岩样品在不同温压条件下的纵、横波速度和Q值.这两种岩样对应的主要组成矿物叶蛇纹石和普通角闪石都具有很强的晶格优选方位(LPO).随着围压的增加,波速和Q值均增大,但是在相互正交的三个方向上(垂直或平行于层理面及线理方向)增大的速度并不相同,这与微裂隙的逐渐闭合密切相关.在600MPa的围压下升高温度直到600℃以上,由于微裂隙的热扩张受到约束,波速和Q值下降幅度很小.观测到的波速和Q值的各向异性具有不同的机理,波速各向异性主要与定向分布的微裂隙和主要矿物的LPO等构造因素有关;高围压下纵波Q值各向异性与速度各向异性正好相反,可能是由于形成层理面的定向排列的平板状矿物晶体沿不同方向边界之间接触程度不同造成的.  相似文献   

14.
Upper mantle low anisotropy channels below the Pacific Plate   总被引:1,自引:0,他引:1  
A new 3D anisotropic model has been obtained at a global scale by using a massive dataset of seismic surface waves. Though seismic heterogeneities are usually interpreted in terms of heterogeneous temperature field, a large part of lateral variations are also induced by seismic anisotropy of upper mantle minerals. New insight into convection processes can be gained by taking seismic anisotropy into account in the inversion procedure. The model is best resolved in the Pacific Plate, the largest and the most active tectonic plate. Superimposed on the large-scale radial (ξ parameter) and azimuthal anisotropy (of VSV velocity) within and below the lithosphere, correlated with present or past Pacific Plate motions, are smaller-scale (<1000 km) lateral variations of anisotropy not predicted by plate tectonics. Channels of low anisotropy down to a depth of 200 km (hereafter referred to as LAC) are observed and are the best resolved anomalies: one east-west channel between Easter Island and the Tonga-Kermadec subduction zones (observed on both radial and azimuthal anisotropies) and a second one (only observed on azimuthal anisotropy) extending from the south-west Pacific up to south-east Hawaii, and passing through the Polynesia hotspot group for plate older than about 40 Ma. These features provide strong constraints on the decoupling between the plate and asthenosphere. They are presumably related to cracking within the Pacific Plate and/or to secondary convection below the rigid lithosphere, predicted by numerical and analog experiments. The existence and location of these LACs might be related to the current active volcanoes and hotspots (possibly plumes) in the Central Pacific. LACs, which are dividing the Pacific Plate into smaller units, might indicate a future reorganization of plates with ridge migrations in the Pacific Ocean.  相似文献   

15.
为研究井周裂缝发育特征,本文提出一种新型方位侧向测井方法,利用三维有限元法,模拟裂缝的方位侧向测井响应.结果显示,深浅侧向电阻率幅度差异受裂缝倾角的控制,低角度缝为负差异,高角度缝为正差异;倾斜裂缝张开度的增大使测井响应值减小,方位电阻率差异增大;井周方位电阻率可反映裂缝方位产状,单一缝或裂缝密度较小时,沿裂缝走向的方位电阻率小,沿裂缝倾向的方位电阻率大;裂缝发育地层的测井响应显示宏观各向异性特征,但方位电阻率的差异显示发生反转现象,即沿裂缝走向/层理方向的方位电阻率大,沿裂缝倾向/垂直层理方向的方位电阻率小;对方位电阻率测井响应进行井周成像,直观显示了裂缝的产状和发育特征.  相似文献   

16.
Summary Measurements have been made of the dieletric anisotropies of a number of rocks for which magnetic anisotropy data have been obtained previously. The purpose was to examine the possible usefulness of dielectric anisotropy as a physical property indicative of rock fabrics. Its advantage over the magnetic method is that it measures an average alignment of crystals of the dominant minerals, whereas magnetic anisotropy is due only to the ferromagnetic grains. Disadvantages are an extreme sensitivity to specimen shape and difficulty in distinguishing the several types of alignment which can give rise to dielectric anisotropy. In a number of strongly foliated rocks the axes of dielectric anisotropy were found to coincide with the axes of magnetic anisotropy. Specimens from a magnesian-pyroxene rich layer in a Tasmanian dolerite sill and from the olivine rich layer of the Palisades dolerite sill, New York, were found to have no systematic anisotropy. The pyroxenes in the Tasmanian dolerite are elongated crystals (about 2: 1) so that the dielectric measurements show that they do not have a preferred horizontal alignment and therefore have probably not settled as individual crystals. Most of the olivines in the Palisades dolerite are more nearly equidimensional so that the absence of measurable anisotropy in this rock is less conclusive evidence against crystal settling.  相似文献   

17.
The project of an ultradeep drill hole (KTB) in the Oberpfalz area at the western margin of the Bohemian Massif has completed a pilot drill hole to a depth of 4000.1 m in April 1989. This well is situated only about 200m away from the main drill hole aimed at 10 km depth where drilling started in September 1990. The cores of the pilot well have a diameter of 9.4 cm or 10.16 cm, respectively. In addition to cores and cuttings there was also mud available for geochemical, petrological and some geophysical measurements. The pilot drill hole has a core recovery length of as much as 3042.6 m (about 76%), among which 193.1 m were obtained by rotary drilling and 2849.5 m by wireline drilling. Several petrophysical parameters were measured in a specially established field laboratory at the drill site immediately after sampling in order to obtain as good as possible in-situ values. Results for the following parameters are reported: density, natural gamma ray activity, velocities of seismic longitudinal and shear waves, thermal conductivity, electrical resistivity, natural remanent magnetization, magnetic susceptibility, porosity and inner surface. The methods of measurement are characterized briefly and the results of the pilot drill hole are presented and discussed in connection with the lithology and the geophysical anomalies, which have been observed on the surface.  相似文献   

18.
层状方位各向异性介质的视电阻率计算   总被引:1,自引:0,他引:1       下载免费PDF全文
从电性各向异性的欧姆定律出发,推导了直流电法层状方位各向异性介质中的电位分布、边界条件及视电阻率计算公式.以四极对称装置系统为例,对具有相同各向异性系数的4层模型采用核函数递推法作了理论数值模拟,得到了不同方向的电阻率测深曲线及其等值线形态.结果表明理论公式是正确的,测深曲线既反映了分层介质的电阻率差异,又反映了各层中电阻率的各向异性特征.   相似文献   

19.
VHF wind-profiling radars often measure a decrease of echo power with zenith angle, which can be explained from in situ measurements of horizontal layering or anisotropy of metre-scale temperature structure in the atmosphere. There can also be an azimuthal variation of echo power, which is increased in an azimuth opposite to the vertical shear vector of horizontal wind. This paper checks if the azimuth variation can also be linked to in situ observations of temperature structure, using aircraft flights in the tropopause region near a VHF radar. At heights where VHF radar measures wind shear and aspect sensitivity, there can be an asymmetry in the probability distribution of horizontal gradient of potential temperature, for horizontal scale of e.g. hundreds of metres. The asymmetry is often of opposite sign for up-shear and down-shear flights, and less when VHF echoes are isotropic instead of aspect sensitive. The range of horizontal scales with asymmetry can be used to distinguish e.g. sheared anisotropic turbulence and Kelvin–Helmholtz instability as causes of azimuthal VHF echo power variations.  相似文献   

20.
The present study aims to apply the AMS method (Anisotropy of Magnetic Susceptibility) at a regional scale to track the fluid circulation direction that has produced an iron metasomatism within pre-existing dolomite host rock. The Urgonian formations hosting the Zn–Pb mineralizations in La Florida (Cantabria, northern Spain) have been taken as target for this purpose. Sampling was carried out, in addition to ferroan dolomite host rock enclosing the Zn–Pb mineralizations, in dolomite host rock and limestone to make the comparison possible between magnetic signals from mineralized rocks, where fluid circulation occurred, and their surrounding formations. AMS study was coupled with petrofabric analysis carried out by texture goniometry, Scanning Electron Microscopy (SEM) observations and also Shape Preferred Orientation (SPO) statistics. SEM observations of ferroan dolomite host rock illustrate both bright and dark grey ribbons corresponding respectively to Fe enriched and pure dolomites. SPO statistics applied on four images from ferroan dolomite host rock give a well-defined orientation of ribbons related to the intermediate axis of magnetic susceptibility K2. For AMS data, two magnetic fabrics are observed. The first one is observed in ferroan dolomite host rock and characterized by a prolate ellipsoid of magnetic susceptibility with a vertical magnetic lineation. The magnetic susceptibility carrier is Fe-rich dolomite. These features are probably acquired during metasomatic fluid circulations. In Fe-rich dolomite host rock, ?c? axes are vertical. As a rule, (0001) planes (i.e. planes perpendicular to ?c? axes) are isotropic with respect to crystallographic properties. So, the magnetic anisotropy measured in this plane should reflect crystallographic modification due to fluid circulation. This is confirmed by the texture observed using the SEM. Consequently, AMS results show a dominant NE–SW elongation interpreted as the global circulation direction and a NW–SE secondary elongation that we have considered as sinuosities of the fluid trajectory. The second type of magnetic fabric is essentially observed in the limestone and characterized by an oblate form of the ellipsoid of magnetic susceptibility, a horizontal magnetic foliation and mixed magnetic susceptibility carriers. It is interpreted as a sedimentary fabric.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号