首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salt weathering is a crucial process that brings about a change in stone, from the scale of landscapes to stone outcrops and natural building stone façades. It is acknowledged that salt weathering is controlled by fluctuations in temperature and moisture, where repeated oscillations in these parameters can cause re-crystallisation, hydration/de-hydration of salts, bringing about stone surface loss in the form of, for example, granular disaggregation, scaling, and multiple flaking. However, this ‘traditional’ view of how salt weathering proceeds may need to be re-evaluated in the light of current and future climatic trends. Indeed, there is considerable scope for the investigation of consequences of climate change on geomorphological processes in general. Building on contemporary research on the ‘deep wetting’ of natural building stones, it is proposed that (as stone may be wetter for longer), ion diffusion may become a more prominent mechanism for the mixing of molecular constituents, and a shift in focus from physical damage to chemical change is suggested. Data from ion diffusion cell experiments are presented for three different sandstone types, demonstrating that salts may diffuse through porous stone relatively rapidly (in comparison to, for example, dense concrete). Pore water from stones undergoing diffusion experiments was extracted and analysed. Factors controlling ion diffusion relating to ‘time of wetness’ within stones are discussed, (continued saturation, connectivity of pores, mineralogy, behaviour of salts, sedimentary structure), and potential changes in system dynamics as a result of climate change are addressed. System inputs may change in terms of increased moisture input, translating into a greater depth of wetting front. Salts are likely to be ‘stored’ differently in stones, with salt being in solution for longer periods (during prolonged winter wetness). This has myriad implications in terms of the movement of ions by diffusion and the potential for chemical change in the stone (especially in more mobile constituents), leading to a weakening of the stone matrix/grain boundary cementing. The ‘output’ may be mobilisation and precipitation of elements leading to, for example, uneven cementing in the stone. This reduced strength of the stone, or compromised ability of the stone to absorb stress, is likely to make crystallisation a more efficacious mechanism of decay when it does occur. Thus, a delay in the onset of crystallisation while stonework is wet does not preclude exaggerated or accelerated material loss when it finally happens.  相似文献   

2.
Weathering can cause adverse effects on the physico-mechanical properties of rocks. Although the processes and outcomes of weathering have been investigated for many rock types, the travertine weathering was not paid enough attention as much as the others. However, the unfavorable effects of weathering may arise rapidly due to travertine’s calcium carbonate composition and highly porous texture. Travertine is an important rock type in building stone market and is generally preferred as an exterior façade material. This rock type was also used in many historical buildings and sculptures in the past, and the signs of extensive weathering can be recognized on some of these travertine-made structures. In this study, it was aimed to characterize the effect of weathering on travertine’s structural properties. The yellow travertine from Eskipazar (Karabuk, Turkey) was selected as the study material and the samples with different weathering degrees were collected from site. The chemical, physical and mechanical properties of those samples were determined in laboratory. The physico-mechanical variations with progressive weathering grades were statistically evaluated and a weathering classification based on a rating system was proposed for yellow travertine in rock material scale. The newly developed system may assist in characterizing the degree of weathering for historical structures built by yellow travertine. Additionally, the classification may also guide to further researches on the weathering of different types of travertine.  相似文献   

3.
Building stones have long been one of the most widely used construction materials in the world. Building stones used in historical monuments are deteriorated partly or completely depending on the environmental and atmospheric effects. In recent years, non-destructive test methods have been used to assess deterioration of building stones used in historical monuments. Gödene stone is one of the building stones being widely used in the historical buildings in the Konya region, Central Anatolia. The most deterioration effects are observed in the Ferit Pa?a Cistern among the historical structures built with Gödene stone in the region. The aim of this study is to assess the deteriorating effects in the street façade of the Ferit Pa?a Cistern via non-destructive testing methods (Schmidt hardness rebound value, P-wave velocity, humidity measurement and thermal imaging) and create maps of deteriorated features. Turkey’s historic places are integrated to Turkish culture, efforts are made to conserve heritage through rehabilitation. Therefore, this study will help developers and federal managers during the project planning stage by providing technical data.  相似文献   

4.
In the present study, samples arising from the scaling of a Portuguese granite building were examined in an attempt to understand the mechanisms of surface blackening and detachment. The building, the Third Order of St. Francis Church, is located in the city centre of Porto which is an area characterised by moderate motor traffic. The Mediterranean climate and the façade orientation favoured the proliferation of microorganisms on the Third Order of St. Francis Church, in Porto. The scientific approach carried out in the South façade revealed that these coloured layers are essentially of biological origin. Subsequent chemical analysis confirmed microscope observations and pointed out to the presence of organic matter synthesised by cyanobacteria, algae and lichens. Numerous biological marker compounds indicated a significant presence of biogenically derived material, suggesting that biological activity was playing a major role in the development of coloured layers and in the detachment processes in this historic building.  相似文献   

5.
Environmental controls on stone decay processes are rapidly changing as a result of changing climate. UKCP09 projections for the 2020s (2010–2039) indicate that over much of the UK seasonality of precipitation will increase. Summer dryness and winter wetness are both set to increase, the latter linked to projected precipitation increases in autumn and spring months. If so, this could increase the time that stone structures remain wet and possibly the depth of moisture penetration, and it appears that building stone in Northern Ireland has already responded through an increased incidence of algal ‘greening’. This paper highlights the need for understanding the effects of climate change through a series of studies of largely sandstone structures. Current and projected climatic trends are therefore considered to have aesthetic, physical and chemical implications that are not currently built into our models of sandstone decay, especially with respect to the role played by deep-seated wetness on sandstone deterioration and decay progression and the feedbacks associated with, for example surface algal growth. In particular, it is proposed that algal biofilms will aid moisture retention and further facilitate moisture and dissolved salt penetration to depth. Thus, whilst the outer surface of stone may continue to experience frequent wetting and drying associated with individual precipitation events, the latter is less likely to be complete, and the interiors of building blocks may only experience wetting/drying in response to seasonal cycling. A possible consequence of deeper salt penetration could be a delay in the onset of surface deterioration, but more rapid and effective retreat once it commences as decay mechanisms ‘tap into a reservoir of deep salt’.  相似文献   

6.
The Cathedral of St. Giorgio in Ragusa Ibla (Sicily) is one of the most important Baroque monuments of eastern Sicily. The restoration of the monument underway has put forward notable questions regarding the stone materials used and their state of degradation. The façade appears to be made mainly of a creamy white calcarenite, and of mortars and plasters. However, detailed analysis has highlighted a more complex use of the raw material. The mortar and plaster have a different composition in regards to their architectural use while the natural stone material is distinguished not only by a creamy-white calcarenite but also by a dark coloured bituminous calcarenite (pitch rock), which now appears whiter because of superficial chromatic alterations. This process was reproduced in the laboratory using an accelerated aging technique on samples of bituminous calcarenite, which allowed the cause of the alternation to be identified as photo-oxidation of the asphaltenes. Following this process of photo-oxidation, other forms of chromatic alterations affected the façade (brown–orange-coloured patinas). FTIR, Scanning Electron Microscope and thin section microscopic observation allowed the characterization of also the products of this process to be carried out, highlighting the complex mechanism which the processes underwent.  相似文献   

7.
This paper deals with the scientific assessment of the physical properties of sandstone used in the conservation of Sydney's historic heritage sandstone buildings. The local Hawkesbury Sandstone has been widely used for all manner of constructions since the early days of the first settlement. In the nineteenth century, dimension sandstone quarries existed all over the Sydney region, and the demand for the stone was great. During this time, a true ‘freestone’ known as ‘yellow block’ sandstone, in which bedding planes were absent, was quarried extensively. This sandstone is also known as a ‘self-colouring’ sandstone, where the rock, although grey when quarried, turns a yellow–brown after a few months exposure to the atmosphere. It can be easily carved and was eminently suitable for the ornate Victorian architecture of the time. There are very few quarries within the Sydney region today capable of producing ‘yellow block’ sandstone. Whenever possible, sandstone from suitable building excavations, particularly on the Pyrmont Peninsula, is used for this work. Conservation work is extremely expensive and the building elements that most need replacement, the overhanging and decorative elements, are usually those that cost the most. It is essential that the most durable replacement stone be selected. Thus, a strict regime of scientific testing is used for any major conservation project, in order to determine the physical properties of possible replacement stone. This is the province of the geologist and involves visual observation in the quarry or excavation, which is a simple, cost-effective means of weeding out poor quality stones, followed by laboratory engineering tests to establish the physical parameters of a sandstone and finally, petrographic analysis. The results of such tests, combined with careful sampling, ensure the best possible quality of replacement material.  相似文献   

8.
The stone traditionally used to build cities contributes to their personality and attests to the geological substrate on which they stand. While stone decay in the built heritage can be attributed to a number of causes, anthropic activity has a particularly significant impact. The geomonumental routes project is one of the initiatives proposed in recent years for urban routes that convey geological fundamentals by observing the rocks present in heritage structures. Its innovative approach addresses traditional stone properties, original quarrying sites and mechanisms of decay. Madrid’s Royal Palace is a fine example of the use of traditional building stone in the centre of the Iberian Peninsula. In the geomonumental route proposed, the building doubles as an in situ laboratory that affords an overview of the main petrological properties of the two traditional stones most commonly used in the city’s built heritage, the forms of decay they are subject and the factors underlying such alterations. This route constitutes a tool for showing the main petrological features and decay forms in traditional building stones found in urban heritage façades, with a special focus on anthropic impact, primarily air pollution and the use of conservation treatments that time has proven to be unsuitable.  相似文献   

9.
10.
Stone objects decay in all environments, but the modes of decay vary from one region to another. In the modern industrial countries acid deposition has accelerated the decay of stone. Many objects that survived centuries of weathering without serious damage have, in the present century, decomposed beyond recognition. The black crusts seen on stone structures mostly contain gypsum formed by SO2 reactions with calcareous minerals. These crusts exfoliate, destroying the sculptural form. Because of the absence of proven technology to treat and restore these objects, the caryatids at the Acropolis had to be moved indoors to save them from further disfiguration.In arid climates, the salts in stone and the meteorologic conditions combine to disrupt stone structures. The Great Sphinx at Giza is a prominent example of this mode of stone decay. In humid, tropical regions, such as in southern India, hydrolysis disrupts the mineral structure, causing rapid damage even to such durable stone as granite.The human effort to save the deteriorating structures has often aggravated the problem. The sandstone at the Legislative Building in Olympia, Washington has, because of the protective acrylic coating, suffered greater damage than the similar but unprotected sandstone at a nearby school building.It appears that proper management can greatly help to reduce the decay of the stone. A scientifically designed cleaning can inhibit the formation of crusts and the accumulation of efflorescences. The absence of the crusts and efflorescence and application of appropriate impregnants, which consolidate yet maintain the "breathability" of stone, may prolong the life of historic structures.  相似文献   

11.
Salt crystallisation is a major problem of deterioration in historic stone buildings, monuments and sculptures. The capillary rise of soil water is one of the primary sources of salts in stone structures, which evaporates leaving the salts behind. It has been noted that the spatial distribution profile of different species of salts crystallised in historic stone buildings is not homogeneous, i.e. different salts crystallise at different locations. The capillary transport and inhomogeneous spatial distribution of different salts in the porous building materials has been considered to be a result of solubility-dependent crystallisation; however, the factors responsible for this phenomenon are not clearly known. This paper aims to investigate the factors influencing the differential distribution of salts during capillary rise of soil water. In this study, the capillary transport of salts was simulated on two different sandstones—Locharbriggs, a Permo–Triassic, red sandstone and Stoke Hall, a Carboniferous, buff sandstone. The experiments were carried out under controlled environmental conditions to eliminate the possibility of evaporation-driven crystallisation of salts depending on their solubilities. The results indicate that fractionation or differential distribution of salts takes place even in the absence of evaporation and crystallisation. The sandstones exhibit properties like an ion exchange column, and ionic species present in the salt solution show differential distribution within the porous network of sandstone.  相似文献   

12.
Building stone of Anahita Temple seriously suffers from weathering due to long term freezing-thawing and salt crystallization processes. This article investigates possible changes of physical and mechanical characteristics of this stone subjected to freeze–thaw and salt crystallization ageing tests. Fresh samples obtained from the Chelmaran quarry (the main quarry supplying for Anahita Temple stone) were tested under freeze–thaw and salt crystallization experiments. The freeze–thaw and sodium sulfate salt crystallization are suggested to be the most effective factors affecting in apparent deterioration of the stone in compare to the magnesium sulfate salt crystallization test. Significant decreases in mechanical properties of the stone were observed after freeze–thaw and salt crystallization tests. However, more mechanical losses were recorded after the salt crystallization cycles than the freeze–thaw cycles. This is probably due to crystallization pressure of salt crystals in compare to ice wedging force, which promoted more development of micro-fractures in the specimens. Probably, intrinsic factors of the stone such as frequent calcite veins and stylolites, are the main factors that control the durability of Anahita Temple stone. Preferential weakening along these features during freeze–thaw and salt crystallization cycles led to physical destruction and strength loss of the stone. Based on comparison between experimentally induced damages and field observations, reasonably freeze–thaw process is major factor in weathering of Anahita Temple stone. It should be noted that recorded 102 frozen days for the region imply high destruction potential of the stone during freeze–thaw cycles.  相似文献   

13.
方云  乔梁  陈星  严绍军  翟国林  梁亚武 《岩土力学》2014,35(9):2433-2442
风化是云冈石窟目前所面临的严重的地质病害之一,温度和水分的变化是造成石窟岩体风化的重要原因,尤其是在循环冻融条件下岩体更易风化,因此,利用室内试验研究循环冻融条件下云冈石窟砂岩的物理力学性质,对于石窟岩体的稳定性评价和保护具有重要的意义。将取自云冈石窟的砂岩岩样分为饱水组、干燥组和对比组3组,通过对饱水组和干燥组岩样进行35次循环冻融试验,模拟云冈石窟砂岩的风化过程。在冻融循环开始前以及每5次冻融循环结束后,量测岩样的质量、体积,并利用超声检测分析仪对各岩样进行超声纵波测试;利用INSTRON-1346岩石伺服试验机对上述3组砂岩岩样进行单轴压缩试验,并对试验后的岩样进行SEM微观结构分析。通过试验研究,得到不同含水状态下云冈石窟砂岩岩样的冻融破坏特征以及不同循环冻融次数后岩样体积、质量、超声波纵波波速、砂岩的单轴应力-应变全过程曲线、抗压强度、抗冻系数以及微观结构的变化,分析归纳出循环冻融条件下云冈石窟砂岩的主要物理力学特性。  相似文献   

14.
Physical, chemical and biogenic weathering considerably threatens all historic stone monuments. Microorganisms, though inconspicuous, are key players of stone surface colonization and penetration. This study highlights eukaryotic microbial communities on dimension stone surfaces from two representative monuments of the “cultural landscape corridor” in the Saale–Unstrut area. The historical buildings were erected from local Triassic limestone and sandstone and are prone to various deteriorative mechanisms. Generally, trebouxiophyceaen algae and ascomycete fungi dominate among the latter dematiaceous fungi and lichen fungi are abundant. Inside the stone substratum, ascomycetes, mosses and even large soil organisms (tardigrades) are present. This may be taken as a hint for the formation of pores with large radii, which are “risk indicators” for progressive weathering and degradation of the rock matrix.  相似文献   

15.
中国不同气候带盐风化作用的地貌特征   总被引:2,自引:0,他引:2  
盐风化作用是地球表面普遍存在的一种物理风化作用,由于盐类的周期性结晶作用而造成地表岩石和建筑材料的破坏,形成诸如风化穴或蜂窝石构造等地貌景观。盐风化作用也是差异风化的主要表现形式之一。然而,到目前为止盐风化作用在中国地学界仍然被严重忽视,以至于盐风化作用造成的地貌景观常常被地学研究者和科普人士误读为海浪冲蚀、流水侵蚀、风蚀作用等。经过近十年的野外观察与探讨,笔者等对盐风化的形成机理和表现形式有了深入的理解。本文以中国境内东部海岸带、华北半干旱区、西北干旱区和东南湿热气候带基岩露头为例,系统地分析了盐风化作用的机理及其在不同气候带的表现形式。盐风化的必要条件是:适当的可溶性盐类(如Na_2SO_4、NaCl等)供应、周期性的干湿交替和温度变化。盐风化作用主要在发育可渗性孔隙的砂砾岩类和富含微裂隙的花岗岩类之露头表面表现明显,可以形成特征显著的盐风化穴。盐风化作用形成的地貌景观在东部海岸带和西北干旱区表现尤为明显,常常形成蜂窝石构造和大型风化穴,与风蚀作用的痕迹明显有别;而在华北半干旱区和南方湿热气候带虽然受到降雨等其他因素的影响而常常遭受改造、叠加甚或清除,但在某些露头区仍然保留有重要的识别标志,形成大型风化穴以及小型蜂窝石构造。笔者等强调:地表各种地貌景观形成过程中都有盐风化作用的贡献,而建筑物和景观保护也必须考虑到盐风化作用的影响。建议地学同仁重视盐风化作用的普遍性和重要性,在相关教材中补充更新盐风化的概念,并以科普的方式通过多种媒体纠正过去的错误认识。  相似文献   

16.
Sandstones, clay in the form of bricks and laterite are the building materials used by the Khmer to construct the imposing and magnificent temples in Southeast Asia. Many of these monuments suffer from fracturing, sanding, contour scaling, crust formation and salt weathering. The affinity to weathering is closely connected to the type of material. Two sandstone types classified as feldspathic arenite and quartz arenite of Angkor as well as two arkosic sandstones from Thailand are described and investigated in this study. Important petrophysical properties determined for the different sandstones consist of hydric expansion, thermal expansion, pore radii distribution and ultrasonic velocity. Different investigations such as capillary water uptake, surface hardness, hygroscopic water sorption, and salt resistance tests were undertaken in the laboratory to characterize the various rock types. Observations and quantified damage mapping were done onsite at the Phnom Bakheng Temple. Contour scaling in the form of weathering crusts is one of the main deterioration features observable at the Angkor monuments. Comparisons are made between the building stone, the crust material from the Phnom Bakheng Temple and fresh stone material used for restoration. Significant differences in hydric and especially in thermal expansion of the crust and sandstone have been determined. The results seem to indicate that extensional processes occur, which can be considered a force for detachment (i.e., contour scaling, flaking). In an experimental trial, the hydric and thermal expansion of the weathering crust and the building stone was significantly reduced by using a weak acid for the crust and a swelling inhibitor for the original building stone.  相似文献   

17.
An integrated database and geographical information system (GIS) for the recording and monitoring of stone degradation are outlined. GIS requirements for stone degradation are summarized and a simple classification system for weathering forms identified and applied. The potential use of the system for identifying change in weathering forms using historic imagery is illustrated using an example from Oxford. Combining information from imagery of different buildings at different time periods, it is possible to put forward a possible scenario of weathering form evolution.  相似文献   

18.
The weathering factors act on the recent and archaeological sites through different processes based on the dominant environmental conditions. The net result of weathering is deformation of the original form of construction rock. In the current case study, the main aim is to find out the mechanism of formation of two different weathering forms recorded on many old buildings taking Chester City as a case study. The construction rock in the case study is arenitic sandstone with carbonate content ranging from 0.0 to 15.6%. The sandstone blocks are cemented together by hydraulic lime mortar that can easily be altered chemically to salts by acid rain that dominates at the study area. In case of mortar with worse geotechnical limits than the sandstone blocks, the net result is convex “domal” shape blocks, but in case of mortar with better geotechnical limits than the construction sandstone, the net result of weathering is tafoni “concave” weathering form.  相似文献   

19.
Following automation of lighthouses around the coastline of Ireland, reports of accelerated deterioration of interior granite stonework have increased significantly with an associated deterioration in the historic structure and rise in related maintenance costs. Decay of granite stonework primarily occurs through granular disintegration with the effective grusification of granite surfaces. A decay gradient exists within the towers whereby the condition of granite in the lower levels is much worse than elsewhere. The lower tower levels are also regions with highest relative humidity values and greatest salt concentrations. Data indicate that post-automation decay may have been triggered by a change in micro-environmental conditions within the towers associated with increased episodes of condensation on stone surfaces. This in turn appears to have facilitated deposition and accumulation of hygroscopic salts (e.g. NaCl) giving rise to widespread evidence of deliquescence in the lower tower levels. Evidence indicates that the main factors contributing to accelerated deterioration of interior granite stonework are changes in micro-environmental conditions, salt weathering, chemical weathering through the corrosive effect of strongly alkaline conditions on alumino-silicate minerals within the granite and finally, the mica-rich characteristics of the granite itself which increases its structural and chemical susceptibility to subaerial weathering processes by creating points of weakness within the granite. This case study demonstrates how seemingly minor changes in micro-environmental conditions can unintentionally trigger the rapid and extensive deterioration of a previously stable rock type and threaten the long-term future of nationally iconic operational historic structures.  相似文献   

20.
Accelerated weathering tests on two highly porous limestones   总被引:3,自引:0,他引:3  
A major cause of weathering of building and historic monuments constructed using limestones is associated with the salt crystallization. This may typically occur at the surface (due to efflorescence) or in subsurface layers while limestones are drying. Due to this reason structural damage or material loss (granular disintegration, flaking, contour scaling) may occur. In this paper, imbibition-drying cycles are carried out with pure water and solutions of NaCl with different concentrations to simulate the weathering effect on two limestones with similar total porosity values. The imbibition kinetics of these limestones was significantly influenced by the number of applied imbibition-drying cycles. In addition, imbibition kinetics was also dependent on the concentration of salt solutions, the mineralogical composition as well as on the pore-size distribution of these two stones. The structural and textural modifications that arise in the limestones due to the influence of imbibition characteristics of drying cycles are qualitatively confirmed by scanning electronic microscope (SEM) and quantitatively with helium pycnometry measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号