首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T phases of three earthquakes from the Indian Ocean region, recorded by a short-period vertical-component seismic station network located in the vicinity of Kanyakumari on the southernmost tip of India, are studied. Two of these earthquakes are located west of 90°E ridge and one in the Nicobar Island region. However, seven other earthquakes which occurred 150–200 km south of Kanyakumari in the ocean did not produceT phases. An analysis ofT-waves (tertiary waves) travel time reveals the zone ofP-wave toT-wave conversion (i.e.,PT phase) region to coincide with the western continental slope of Srilanka. Further, it is observed that the disposition of the bathymetry between Srilanka and southern India strongly favours the downslope propagation mechanism ofT-wave travel to the southern coast of India through SOFAR channel. These observations are reported for the first time from India.  相似文献   

2.
TheP-arrival times of local and regional earthquakes that are outside of a small network of seismometers can be used to interpret crustal parameters beneath the network by employing the time-term technique. Even when the estimate of the refractor velocity is poorly determined, useful estimates of the station time-terms can be made. The method is applied to a 20 km diameter network of eight seismic stations which was operated near Castaic, California, during the winter of 1972–73. The stations were located in sedimentary basins. Beneath the network, the sedimentary rocks of the basins are known to range from 1 to more than 4 km in thickness. Relative time-terms are estimated fromP-waves assumed to be propagated by a refractor in the mid-crust, and again fromP-waves propagated by a refractor in the upper basement. For the range of velocities reported by others, the two sets of time-terms are very similar. They suggest that both refractors dip to the southwest, and the geology also indicates that the basement dips in this direction. In addition, theP-wave velocity estimated for the refractor of mid-crustal depths, roughly 6.7 km/sec, agrees with values reported by others. Thus, even in this region of complicated geologic structure, the method appears to give realistic results.  相似文献   

3.
A layeredP- andS-wave velocity model is obtained for the Friuli seismic area using the arrival time data ofP- andS-waves from local earthquakes. A damped least-squares method is applied in the inversion.The data used are 994P-wave arrival times for 177 events which have epicenters in the region covered by the Friuli seismic network operated by Osservatorio Geofisico sperimentale (OGS) di Trieste, which are jointly inverted for the earthquake hypocenters andP-wave velocity model. TheS-wave velocity model is estimated on the basis of 978S-wave arrival times and the hypocenters obtained from theP-wave arrival time inversion. We also applied an approach thatP- andS-wave arrival time data are jointly used in the inversion (Roecker, 1982). The results show thatS-wave velocity structures obtained from the two methods are quite consistent, butP-wave velocity structures have obvious differences. This is apparent becauseP-waves are more sensitive to the hypocentral location thanS-waves, and the reading errors ofS-wave arrival times, which are much larger than those ofP-waves, bring large location errors in the joint inversion ofP- andS-wave arrival time. The synthetic data tests indicated that when the reading errors ofS-wave arrivals are larger than four times that ofP-wave arrivals, the method proposed in this paper seems more valid thanP- andS-wave data joint inversion. Most of the relocated events occurred in the depth range between 7 and 11 km, just above the biggest jump in velocity. This jump might be related to the detachment line hypothesized byCarulli et al. (1982). From the invertedP- andS-wave velocities, we obtain an average value 1.82 forV p /V s in the first 16 km depth.  相似文献   

4.
Using simulated data, it is demonstrated that one may estimate the body wave velocity in the crust by measuring the angle of incidence ofP-waves provided only the very first part of the signal is used. This angle has been measured for a set ofP-waves at the NORSAR long period instrument sites. Combining these observations with measurements of apparent velocities, we find that the data indicates a crust velocity of 6.1±0.4 km/sec. While it is somewhat uncertain to what depth the value is representative, the observations are in obvious disagreement with previous authors who concluded that long periodP-waves were not affected by the earth's crust. Because of difficulties in separating the effects of real velocity variations from measurement errors, the details of the observedP-wave variation across the array are difficult to interpret. The consistent behavior of the data does, however, indicate that variations of approximately 3% must exist in the crustalP-wave velocity across the array.  相似文献   

5.
The source parameters, moment, stress drop and source dimension are estimated for 61 events from the January 1975 Brawley earthquake swarm. Earthquakes studied range in local magnitude from 1.0 to 4.7. Stress drops range from 1 to 636 bars and increase with source depth. It is estimated that the sedimentary structure of the Imperial Valley amplifies shear waves by a factor of 2 to 3 in addition to the free surface amplification of 2. Estimates of moment from 10 sec surface waves are 4 to 6 times larger than the moment estimated from the relatively flat part of the local body wave spectrum at 1 sec. This may be due to after-slip on the fault, a long thin fault, or partial stress drop. It is shown that the experimentally determined ratio of stress drop to apparent stress should be approximately 4.0 when spectrum integration is used to obtainS-wave energy and theP-wave energy is 1/3 theS-wave energy.  相似文献   

6.
Forward modelling of the crustal structure of the eastern Honshu Island, Japan, was made based on the group velocities ofPL-waves in the period range of 20–30 s. The observed values of group velocity were obtained by appling the multiple filter technique to the seismograms for earthquakes with the epicentral distance ranging from 500 to 1000 km. The theoretical values were calculated using Oliver and Major's method to find the best fit dispersion curve in the least-squares sense. The obtained structural model has considerably high crustal velocities compared to other previous models. It was shown that thePL-wave group velocity in the period range of interest was most sensitive to seismic velocities of the center of the crust. Numerical experiments confirmed the applicability of the approximation methods employed to obtain both observed and theoretical group velocities.  相似文献   

7.
We demonstrate how multiples, generated at the interfaces of plane parallel beds, modify the propagation characteristics of an originally coherent seismic wave. For waves propagating at an angle to the bedding plane we find that theSV andP-waves couple so that neither is a pure mode. TheSH-wave, while modified in its propagation characteristics by multiples, remains a pure mode. The coupling ofSV-multiples into the quasi-P-mode appears weaker than the coupling ofP-wave multiples into the quasi-SV mode; at least this is so for the two simple cases of (a) density fluctuations only and (b) correlatedV p andV s fluctuations which conserve Poisson's ratio.We also find that the coupling is sensitive to both the angle of propagation and frequency. In addition there is a cut-off angle forP-wave multiples influencing the quasi-SV mode. Propagation angles larger than the cut-off permit theP-multiples to modify the phase of the quasi-SV mode, but not its effective attenuation. No such cut-off effect is found for SV-multiples influencing the quasi-P mode, whose angle-dependent and frequency-dependent phase distortion and effective attenuation are influenced both byP-wave multiples andSV-multiples.In view of the mathematical complexity of the expressions describing the phase, and effective attenuation of modes when allowance is made forP-andS-wave multiples, we strongly advocate numerical coding of the major mathematical formulae. By so doing a systematic study can be undertaken of the frequency and offset dependence of seismic waves as a function of seismic source input and power spectral behavior of the fluctuations in density and elastic constants of beds. It is our opinion that the full mathematical expressions are too involved to permit an analytic, systematic investigation to be given of the phase and attenuation of seismic waves with any degree of sophistication or generality.  相似文献   

8.
Summary P n velocities determined from seismic refraction measurements, show significant differences between Southern Finland (7.96 km/sec) and Southeastern Norway (8.20 km/sec). TheP n/Sn velocity ratios (k) were determined from earthquake and explosion data, and the observed variation ofk indicates lateral variations in theP n and/orS n velocities in Fennoscandia.  相似文献   

9.
Summary A study has been made of a new channel wave, denotedLi, using a total of 83 observations from the seismic records of Swedish stations, mainly from earthquakes at normal depth.Li resembles theLg waves in several respects: it propagates only through continental structures, it has a similar particle motion, i.e. mainly transverse horizontal, and only slightly larger period. ButLi has a higher velocity, 3.79±0.07 km/sec, and it is believed to propagate in the intermediate layer in the crust in a way similar to the propagation of theLg waves in the granitic layer.Li is identical withS * in records of near-by earthquakes in the same way asLg2 is identical withSg. Li usually exhibits no clear dispersion.
Zusammenfassung Es wurden Untersuchungen angestellt über eine neue Kanalwelle, welcher die BezeichnungLi gegeben wurde, wobei insgesamt 83 Erdbebenregistrierungen von schwedischen Stationen Verwendung fanden. Hauptsächlich waren es Erdbeben mit normaler Herdtiefe. DieLi-Wellen haben in verschiedener Hinsicht Ähnlichkeit mit denLg-Wellen: Sie pflanzen sich nur im Bereich kontinentaler Struktur fort und sie haben eine ähnliche Partikelbewegung, d.h. hauptsächlich horizontaltransversal.Li hat eine nur unwesentlich höhere Periode als dieLg-Wellen. AberLi hat eine wesentlich höhere Geschwindigkeit, 3.79±0.07 km/sec, und es ist anzunehmen, dass sie sich in der Basaltschicht der Kruste in ähnlicher Weise fortpflanzt wieLg in der Granitschicht.Li ist identisch mitS * in Aufzeichnungen von Nahbeben, so wieLg2 identisch mitSg ist.Li weist gewöhnlich keine deutliche Dispersion auf.
  相似文献   

10.
Summary Sn andPn waves propagated to teleseismic distances are investigated by means of short-period seismograph records of the Swedish network.Sn is found in the distance range of 2400 to 4600 km andPn in the range 3500 to 3900 km, but only provided the path is exceptionally homogeneous. Almost all paths are restricted to the Russian platform. There are probably very few areas in the world offering similar propagation paths. The velocities just under the Mohorovii discontinuity are found to be 4.72 km/sec and 8.26 km/sec for transverse and longitudinal waves respectively. In addition, other properties of the teleseismicSn andPn are investigated, such as periods, dispersion, amplitudes, particle motions, propagation mechanisms, and comparisons are made withPa, Sa, withLi, Lg1, Lg2 and withP. The fact that teleseismicPn occurs much more seldom than teleseismicSn could be explained by different velocity profiles just under the crust.  相似文献   

11.
The paper presents some results of seismic experiments carried out on the territory of northern Moravia and Silesia, roughly delimited by the coordinates 16°E–19°E and 49°N–51°N. The experiments were aimed at compiling a velocity model of the uppermost Earth’s crust using the database of arrival times of Pg and Sg waves recorded at a fairly large number of seismic stations, which enabled us to produce a simple 1D-layered velocity model of the region. The velocity model was computed using the traditional tomographic iterative process composed of consecutive solutions of linear equations. Based on the analysis of velocity distribution, it was found that the velocities of Pg and Sg waves increase from about 5.9 and 3.3 km/s at the surface, to about 6.1 and 3.5 km/s at a depth of 11 km, respectively.  相似文献   

12.
The flux of226Ra from bottom sediments has been determined from patterns of226Ra/230Th disequilibrium in ten deep-sea cores from the world oceans. Values range from ? 0.0015 dpm/cm2 yr (in the Atlantic) to 0.21 dpm/cm2 yr (in the north equatorial Pacific). The flux is poorly related to sediment type, but is inversely correlated in a non-linear fashion with sediment accumulation rate. There is a direct relationship between the production rate of226Ra near the sediment-water interface (i.e. the integrated230Th activity in the biologically mixed zone) and the226Ra flux. The226Ra concentration in near-bottom water follows the geographic variation in the226Ra flux. The high flux from north equatorial Pacific sediments especially is reflected in the high bottom water226Ra concentrations in that area. The data suggest that both rate of circulation and the magnitude of the radium flux influence the near-bottom226Ra concentration.  相似文献   

13.
Summary Elastic waves from explosions were recorded at NORSAR and at a number of field stations, and the data were used for determining a crust-mantle model under the array. The number of explosions was eleven distributed on seven shot points. The total number of recording points was fifty-one, and the interpretation was based on 350 individual records.The velocities obtained for the crustal phases were 6.2, 6.6 and 8.2 km/sec for theP g ,P g andP n waves respectively. A deep crustal phase with a velocity of about 7.4 km/sec was observed. The mean depths to the discontinuities within the crust were determined to be 17 and 26 km. The depth to Moho varied greatly across the array from 31.5 km in the central part to 38 km under the C-ring. The maximum dip observed for the Moho was 12o.Contribution No. 57 to Norwegian Geotraverse Project.  相似文献   

14.
Summary The crustal structure beneath the Himalayas has been investigated using body wave data from near earthquakes having epicentres over the Himalayas and recorded by the observatories situated over, or very near, the foothills of the mountains. A three-layered crustal model, without the top sedimentary layer, with velocities for theP wave group in Granite I, Granite II and the Basaltic layer as 5.48, 6.00 and 6.45 and for theS wave group as 3.33, 3.56 and 3.90 km/sec respectively, has been interpreted. The upper mantle velocity for theP wave has been observed to be 8.07 km/sec and for theS wave as 4.57 km/sec. Average thickness for the Granite I layer has been computed as 22.7 km, for the Granite II layer as 16.3 km and for the Basaltic layer as 18.7 km. Crustal and sub-crustal velocities indicate a lower trend under the mountain. A thicker crust has been obtained beneath the Himalayas.  相似文献   

15.
The elastic moduli of polycrystalline ringwoodite, (Mg0.91Fe0.09)2SiO4, were measured up to 470 K by means of the resonant sphere technique. The adiabatic bulk (KS) and shear (μ) moduli were found to be 185.1(2) and 118.22(6) GPa at room temperature, and the average slopes of dKS/dT and dμ/dT in the temperature range of the study were determined to be −0.0193(9) and −0.0148(3) GPa/K, respectively. Using these results, we estimate seismic wave velocity jumps for a pure olivine mantle model at 520 km depth. We find that the jump for the S-wave velocity is about 1.5 times larger than that for the P-wave velocity at this depth. This suggests that velocity jumps at the 520 km discontinuity are easier to detect using S-waves than P-waves.  相似文献   

16.
Recent improvements in the seismological networks on the Ibero-Maghrebian region have permitted estimation of hypocentral location and focal mechanisms for earthquakes which occurred at South Spain, Alboran Sea and northern Morocco of deep and intermediate depth, with magnitudes between 3.5 and 4.5. Intermediate depth shocks, range from 60 to 100 km, with greater concentration located between Granada and Málaga. Fault-plane solutions of 5 intermediate shocks have been determined; they present a vertical plane in NE-SW or E-W direction. Seismic moments of about 1015 Nm and dimensions of about 1 km have been determined from digital records of Spanish stations.P-wave forms are complex. This may be explained by the crustal structure near the station, discontinuities in the upper mantle and inhomogeneities near the source. Deep activity at about 650 km has only 3 shocks since 1954 (1954, 1973, 1990). Shocks are located at a very small region. Fault-plane solutions show a consistent direction of the pressure axis dipping 45° in E direction. For the 1990 shock seismic moment is 1016 Nm and dimensions 2.6 km. TheP-waves are of simpler form with a single pulse. The intermediate and deep activities are not connected and no activity has been detected between 100 and 650 km. The intermediate shocks may be explained in terms of a recent subduction from Africa under Iberia in SE direction. The very deep activity must be related to a sunk detached block of lithospheric material still sufficiently cold and rigid to generate earthquakes.  相似文献   

17.
Phase velocities of Rayleigh waves for the Adriatic Sea area are obtained in the period range 25–190 sec along the path (l'Aquila-Trieste) AQU-TRI and 20–167 sec along the path (Trieste-Bari) TRI-BAI.The phase velocities are systematically higher than the known values for the surrounding regions. The data inversion indicates the presence of a lithosphere typical of stable continental areas with clear high-velocity lid (V s 4.6 km/sec) overlying a well developed low velocity zone (V s 4.2 km/sec).P. F. Geodinamica C.N.R., Roma Pubbl. N. 189.  相似文献   

18.
Three component recordings from an array of five ocean bottom seismographs in the northwestern part of the Vøring basin have been used to obtain a 2-D shear-wave (S-wave) velocity-depth model. The shear waves are identified by means of travel-time differences compared to the compressional (P) waves, and by analyzing their particle motions. The model has been obtained by kinematic (travel-time) ray-tracing modelling of the OBS horizontal components.The shear-wave modelling indicates that mode conversions occur at several high velocity interfaces (sills) in the 4–10 km depth range, previously defined by a compressional-wave velocity-depth model using the same data set.An averageV p /V s ratio of 2.1 is inferred for the layers above the uppermost sill, indicative of both poorly consolidated sediments and a low sand/shale ratio. A significant decrease in theV p /V s ratio (1.7) below the first sill may in part be atributed to well consolidated sediments, and to a change in lithology to more sandy sediments. This layer is interpreted to lie within the lower Cretaceous sequence. At 5–10 km depthV p /V s ratios of 1.85 indicate a lower sand/shale ratio consistent with the expected lithologies. The averageV p /V s ratio inferred for the crust is 1.75, which is consistent with values obtained north of Vøring, in the Lofoten area. An eastward thinning of the crystalline basement is supported by the shear-wave modelling.  相似文献   

19.
Seismologically determined properties of the 400 km discontinuity may be compared to experimentally determined properties of the associated phase transformation in order to place constraints upon upper mantle bulk composition. Disagreement among previous studies is commonly ascribed to differences in elastic equations of state (especially to assumptions about pressure and temperature derivatives) between studies. However, much of the disparity between studies is actually due to the selection of different seismic data functionals (P-wave velocity,S-wave velocity, etc.) for comparison to minnral clasticity calculations, rather than to the differences in elasticity data sets and equations of state. Within any given study, bulk sound velocity comparisons generally yield more olivine-rich compositional estimates than doP-wave velocity comparisons, which in turn indicate more olivine thanS-wave velocities. Indeed, such variation in compositional estimates within a given study (arising from choice of data functional) exceeds the variation between studies (arising from elastic equation of state approx mations). it can be argued that bulk sound velocities are better constrained seismologically than densities and, being independent of assumptions about shear moduli, should provide more reliable compositional estimates thanP-orS-wave velocities.Using recently measured bulk and shear moduli equations of state, mutually consistent estimates of upper mantle olivine content can be obtained fromP-wave,S-wave, and bulk sound velocity contrasts at 400 km only if ln /T of has a value of about–2×10–4K–1, yielding approximately 52% olivine by volume. A value of ln /T smaller in magnitude would require reassessment of several underlying assumptions.  相似文献   

20.
Summary Azimuths and angles of incidence have been calculated from short-periodP-wave amplitude components of 197 events recorded at Umeå, Sweden, near the center of Pleistocene glaciation in Fennoscandia. Anomalies in both sets of data indicate significant departure from a spherically symmetricP-velocity structure. A model incorporating five parameters-strike and dip of equivelocity planes, velocity at the Earth's surface, and at the top and bottom of the heterogeneous zone-is assumed and the parameters are optimized by a computer search. Results, both from the two independent sets of data-incidence-angles and azimuths-as well as from a combined setdirection consines-are mutually consistent and indicate rising equivelocity surfaces, or laterally increasingP velocity, to the ENE in the upper 100 or 200 km of the Earth in the neighbourhood of Umeå. An added refinement, consistent with the results, is an asthenosphere layer pinching out to the ENE, i.e. towards the point of present-day maximum uplift. A surfaceP-wave velocity of about 5.9 km/sec is indicated by the data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号