首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Human-induced land use/cover change has been considered to be one of the most important parts of global environmental changes. In loess hilly and gully regions, to prevent soil loss and achieve better ecological environments, soil conservation measures have been taken during the past decades. The main objective of this study is to quantify the spatio-temporal variability of land use/cover change spatial patterns and make preliminary estimation of the role of human activity in the environmental change in Xihe watershed, Gansu Province, China. To achieve this objective, the methodology was developed in two different aspects, that is, (1) analysis of change patterns by binary image of change trajectories overlaid with different natural geographic factors, in which Relative Change Intensity (RCI) metric was established and used to make comparisons, and (2) analysis based on pattern metrics of main trajectories in the study area. Multi-source and multi-temporal Remote Sensing (RS) images (including Landsat ETM+ (30 June 2001), SPOT imagery (21 November 2003 and 5 May 2008) and CBERS02 CCD (5 June 2006)) were used due to the constraints of the availability of remotely sensed data. First, they were used to extract land use/cover types of each time node by object-oriented classification method. Classification results were then utilized in the trajectory analysis of land use/cover changes through the given four time nodes. Trajectories at every pixel were acquired to trace the history of land use/cover change for every location in the study area. Landscape metrics of trajectories were then analyzed to detect the change characteristics in time and space through the given time series. Analysis showed that most land use/cover changes were caused by human activities, most of which, under the direction of local government, had mainly led to virtuous change on the ecological environments. While, on the contrary, about one quarter of human-induced changes were vicious ones. Analysis through overlaying binary image of change trajectories with natural factors can efficiently show the spatio-temporal distribution characteristics of land use/cover change patterns. It is found that in the study area RCI of land use/cover changes is related to the distance to the river line. And there is a certain correlation between RCI and slope grades. However, no obvious correlation exists between RCI and aspect grades.  相似文献   

2.
以石羊河流域中游为研究区,首先利用多时相、多源遥感图像提取土地利用/土地覆盖信息,根据转移矩阵,定量研究了景观类型的变化趋势、变化面积、变化率及具体的转换类型;提取能够反映景观格局特征的相关指数,分析景观生态格局及景观异质性;最后,对其景观格局变化的驱动因素进行分析。通过本次研究可以增强对石羊河流域中游生态环境的科学认识,对促进该流域的综合治理具有一定的科学和实际意义。  相似文献   

3.
近30年来密云水库上游水土流失动态监测   总被引:1,自引:0,他引:1  
使用修正的通用土壤流失方程RUSLE,综合考虑降雨、土壤可蚀性、地形、土地覆盖和水土保持措施等因素,计算得密云水库上游地区1990年、2000年和2008年3期的土壤侵蚀数据,并对土壤侵蚀变化结果及其原因进行分析,发现:①研究区近20年水土流失状况经历由加剧到减轻的过程,但总体来说是减轻的,1990~2008年减轻区面积和加剧区面积分别为3083.11km。和2287.71km2;②研究区水土流失变化的原因主要为以土地利用类型变化为特征的人为因素,降雨也有影响,而与坡度没有关系。  相似文献   

4.
Monitoring changes in land use intensity of grazing systems in the Amazon is an important prerequisite to study the complex political and socio-economic forces driving Amazonian deforestation. Remote sensing offers the potential to map pasture vegetation over large areas, but mapping pasture conditions consistently through time is not a trivial task because of seasonal changes associated with phenology and data gaps from clouds and cloud shadows. In this study, we tested spectral-temporal metrics derived from intra-annual Landsat time series to distinguish between grass-dominated and woody pastures. The abundance of woody vegetation on pastures is an indicator for management intensity, since the duration and intensity of land use steer secondary succession rates, apart from climate and soil conditions. We used the developed Landsat-based metrics to analyze pasture intensity trajectories between 1985 and 2012 in Novo Progresso, Brazil, finding that woody vegetation cover generally decreased after four to ten years of grazing activity. Pastures established in the 80s and early 90s showed a higher fraction of woody vegetation during their initial land use history than pastures established in the early 2000s. Historic intensity trajectories suggested a trend towards more intensive land use in the last decade, which aligns well with regional environmental policies and market dynamics. This study demonstrates the potential of dense Landsat time series to monitor land-use intensification on Amazonian pastures.  相似文献   

5.
Land cover conversion is known to alter the hydrologic regimes of watersheds. While connections between land cover and runoff are generally known, not all land cover alterations result in detectable changes in streamflow, and the quantity of land cover change required to yield a detectable change in streamflow is unknown over a range of watersheds. The connection between land cover change and streamflow was explored for a Hydro-Climatic Data Network (HCDN) watershed. HCDN is a database of USGS gauged streams commonly used to assess the influence of climatic change on streamflow. Watersheds included in the HCDN have been screened to represent "unimpaired" streamflow. Implicit in this definition is the assumption that land cover is relatively unaltered over the streamflow time series. Imagery from the North American Landscape Characterization (NALC) project was analyzed to detect land cover change from 1972 to 1992 in an Oregon watershed selected from the HCDN. A post-classification change detection yielded a 44% rate of landscape change over 20 years. Changes in land cover classes by dominant soil types were paired with the L-THIA model of Purdue University to quantify the effect of land cover change on runoff. Despite land cover changes, simulations confirmed that runoff remained unchanged. This report summarizes recommended steps for applying NALC imagery to detection of landscape change in other watersheds.  相似文献   

6.
Changes in landscape composition and configuration patterns of Sancaktepe Municipal District in the Asian side of Istanbul Metropolitan City of Turkey were analysed using landscape metrics. Class-level and landscape-level metrics were calculated from the land cover/land use data using Patch Analyst, an extension in the Arc View GIS. The land cover/land use data were derived from classified satellite images of Landsat Thematic Mapper of 2002 and 2009 for Sancaktepe District. There was evidence of increase in agglomeration process of built-up patches as indicated by the increases in mean patch size, decrease in total edge and number of patches between 2002 and 2009. The urban expansion pattern experienced overall was not fragmented but concentrated due to infilling around existing patches. Changes in Area-Weighted Mean Shape Index and Area-Weighted Patch Fractal Dimension Index indicated that the physical shapes within built-up, forest and bareland areas were relatively complex and irregular. A conclusion is made in this study that spatial metrics are useful tools to describe the urban landscape composition and configuration in its various aspects and certain decisions whether to approve a specific development in urban planning could, for example, be based on some measures of urban growth form or pattern in terms of uniformity and irregularity, attributable to the dynamic processes of agglomeration and fragmentation of land cover/land use patches caused by urban expansion.  相似文献   

7.
Soil is a vital part of the natural environment and is always responding to changes in environmental factors, along with the influences of anthropogenic factors and land use changes. The long-term change in soil properties will result in change in soil health and fertility, and hence the soil productivity. Hence, the main aim of this paper focuses on the analysis of land use/land cover (LULC) change pattern in spatial and temporal perspective and to present its impact on soil properties in the Merawu catchment over the period of 18?years. Post classification change detection was performed to quantify the decadal changes in historical LULC over the periods of 1991, 2001 and 2009. The pixel to pixel comparison method was used to detect the LULC of the area. The key LULC types were selected for investigation of soil properties. Soil samples were analysed in situ to measure the physicochemical soil properties. The results of this study show remarkable changes in LULC in the period of 18?years. The effect of land cover change on soil properties, soil compaction and soil strength was found to be significant at a level of <0.05.  相似文献   

8.
Sediment Yield Index (SYI) model and results of morphometric analysis have been used to prioritize watersheds and to locate sites for checkdam positioning in Tarafeni watershed in Midnapur district. West Bengal. Various thematic maps such as land use/land cover, slope, drainage, soil etc. were prepared from 1RS ID LISS III digital data, SOI toposheets of 1:50,000 scale and other reference maps. Morphometric parameters such as bifurcation ratio (Rb). drainage density (Dd), texture ratio (T), length of overland flow (Lo), stream frequency (Fu), compactness coefficient (Cc), circularity ratio (Rc), elongation ratio (Er), shape factor (Bs) and form factor (Rf) were computed. Automated demarcation of prioritization of micro-watersheds was done by using GIS overlaying technique by assigning weight factors to all the identified features in each thematic map and ranks were assigned to the morphometric parameters. Five categories of priority viz., very high, high, medium, low and very low, were given to all the watersheds in both the methods. Sixty-two micro-watersheds using SYI method and twenty-three micro-watersheds using morphometric have been prioritized as very high priority. Final priority map was prepared by considering the commonly occurred very high-prioritized micro-watersheds in both SYI model and morphometric analysis. Twenty-four suitable sites were identified for check dam construction in 21 highly prioritized watersheds. It is proved that integrated study of SYI model and morphometric analysis yield good result in prioritization of watersheds.  相似文献   

9.
This paper investigates the spatial heterogeneity of three landscapes along an altitudinal gradient and different human land use. The main aim was the identification of appropriate landscape indicators using different extents. ASTER image was used to create a land cover map consisting of three landscapes which differed in altitude and land use. A number of landscape metrics quantifying patch complexity, configuration, diversity and connectivity were derived from the thematic map at the landscape level. There were significant differences among the three landscapes regarding these four aspects of landscape heterogeneity. The analysis revealed a specific pattern of land use where lowlands are being increasingly utilized by humans (percentage of agricultural land = 65.84%) characterized by physical connectedness (high values of Patch Cohesion Index) and relatively simple geometries (low values of fractal dimension index). The landscape pattern of uplands was found to be highly diverse based upon the Shannon Diversity index. After selecting the scale (600 ha) where metrics values stabilized, it was shown that metrics were more correlated at the small scale of 60 ha. From the original 24 metrics, 14 individual metrics with high Spearman correlation coefficient and Variance Inflation Factor criterion were eliminated, leaving 10 representative metrics for subsequent analysis. Data reduction analysis showed that Patch Density, Area-Weighted Mean Fractal Dimension Index and Patch Cohesion Index are suitable to describe landscape patterns irrespective of the scale. A systematic screening of these metrics could enhance a deeper understanding of the results obtained by them and contribute to a sustainable landscape management of Mediterranean landscapes.  相似文献   

10.
基于DEM的龙口市土地利用空间格局与时空变化研究   总被引:4,自引:0,他引:4  
邹敏  吴泉源  逄杰武 《测绘科学》2007,32(6):173-175,93
本文以龙口市为例,在ARCG IS软件的支持下,分别从高程、坡度与坡向三个方面,对研究区内的耕地、园地、林地和建设用地四种土地利用类型,进行了空间格局与时空变化研究。研究结果表明:从1989年到2005年的17年间,耕地总数在减少,但其分布仍主要集中于低地形等级上。园地的面积增加较多,空间分布上,有向地形高等级发展的趋势,说明园地对各地形因子的适应性较强。林地主要分布于高海拔,大坡度的区域,这有利于防止水土流失。建设用地基本上不受地形的限制,其分布主要是人类活动的结果,因此它在各地形等级的变化表现不明显。通过对土地利用空间格局指标及参数特征的定量分析,将有助于优化该区土地利用结构,实现不同地形上土地利用类型的合理布局,促进区域持续发展。  相似文献   

11.
Sediment yields of different watersheds of three subcatchments have been worked out using the Musgrave and the Sediment Yield Predictive Equation. Data for the calculation were in the shape of a soil and land use map prepared by photo-interpretation with selective field check and such measurements as Relief Length Ratio, average slope percentages and particle size data for the surface 5 cm soil. Sediment yields by the Predictive Equation are markedly higher than those obtained by the Musgrave Equation. The Predtctive Equation values are also closer to the rate of sediment yields as measured at the Ukai dam site by the Inflow-outflow method; it thus appears to offer a satisfactory basis for the determination of priority subcatchments and watersheds. Based on sediment yields per unit drainage areainter se priorities have been worked out amongst the three subcatchments as well as for the watersheds within each of the subcatchments.  相似文献   

12.
Land cover transformation is one of the foremost aspects of human-induced environmental change, having an extensive history dating back to antiquity. The present study aims to simulate the process of land cover change based on different policy-based scenarios so as to provide a basis for sustainable development in Doon valley, India. For this purpose, an artificial neural network-based spatial predictive model was developed for the Doon valley. The predictive model generated future land cover patterns under three policy scenarios, i.e. baseline scenario, compact growth scenario and hierarchical growth scenario (HGS). The simulated land cover patterns mirror where land cover patterns are headed in the valley by year 2021. The result suggests that unabated continuation of the present pattern of land cover transformation will result in a regional imbalance. However, this skewed development can be corrected by altering the current growth trend as revealed in the compact growth and HGSs.  相似文献   

13.
Soil erosion is a prominent cause of land degradation and desertification in Mediterranean countries. The detrimental effects of soil erosion are exemplified in climate (in particular climate change), topography, human activities, and natural disasters. Forest fires, which are an integral part of Mediterranean ecosystems, are responsible for the destruction of above-and below-ground vegetation that protects against soil erosion. Under this perspective, the estimation of potential soil erosion, especially after fire events, is critical for identifying watersheds that require management to prevent sediment loss, flooding, and increased ecosystem degradation. The objective of this study was to model the potential post-fire soil erosion risk following a large and intensive wildland fire, in order to prioritize protection and management actions at the watershed level in a Mediterranean landscape. Burn severity and preand post-fire land cover/uses were mapped using an ASTER image acquired two years before the fire, air photos acquired shortly after the fire, and a Landsat TM image acquired within one month after-fire. We estimated pre-and post-fire sediment loss using an integrated GIS-based approach, and additionally we analyzed landscape erosion patterns. The overall accuracy of the severity map reached 83%. Severe and heavy potential erosion classes covered approximately 90% of the total area following the fire, compared to 55% before. The fire had a profound effect on the spatial erosion pattern by altering the distribution of the potential erosion classes in 21 out of 24 watersheds, and seven watersheds were identified as being the most vulnerable to post-fire soil erosion. The spatial pattern of the erosion process is important because landscape cover heterogeneity induced especially by fire is a dominant factor controlling runoff generation and erosion rate, and should be considered in post-fire erosion risk assessment.  相似文献   

14.
Soil erosion is the most important factor in land degradation and influences desertification in semi-arid areas. A comprehensive methodology that integrates revised universal soil loss equation (RUSLE) model and GIS was adopted to determine the soil erosion risk (SER) in semi-arid Aseer region, Saudi Arabia. Geoenvironmental factors viz. rainfall (R), soil erodibility (K), slope (LS), cover management and practice factors were computed to determine their effects on average annual soil loss. The high potential soil erosion, resulting from high denuded slope, devoid of vegetation cover and high intensity rainfall, is located towards the north western part of the study area. The analysis is investigated that the SER over the vegetation cover including dense vegetation, sparse vegetation and bushes increases with the higher altitude and higher slope angle. The erosion maps generated with RUSLE integrated with GIS can serve as effective inputs in deriving strategies for land planning/management in the environmentally sensitive mountainous areas.  相似文献   

15.
In the present study, detailed field survey in conjunction with remotely sensed (IRS-1D, LISS-III) data is of immense help in terrain analysis and landscape ecological planning at watershed level. Geomorphologically summit crust, table top summits, isolated mounds. plateau spurs, narrow slopes, plateau side drainage floors, narrow valleys and main valley floor were delineated. The soil depth ranges from extremely shallow in isolated mounds to very deep soils in the lower sectors. Very good, good, moderate, poor and very poor groundwater prospect zones were delineated. By the integrated analysis of slope, geomorphology. soil depth, land use/land cover and groundwater prospect layers in GIS. 29 landscape ecological units were identified. Each landscape ecological unit refers to a natural geographic entity having distinctive properties of slope, geomorphology. soil depth, land use/ land cover and groundwater prospects. The landscape ecological stress zone mapping of the study area has been carried out based on the analysis and reclassification of tandscape ecological units. The units having minimum ecological impact in terms of slope, geomorphology, soil depth and land use/land cover were delineated under very low stress landscape ecological zones. The units having maximum ecological stress in the form of very high slopes, isolated mounds, table top summits and summit crust, extremely shallow soils, waste lands and very poor groundwater prospects were delineated into very high stress landscape ecological zones. The integrated analysis of remotely sensed data and collateral data in GIS environment is of immense help in evaluation of landscape ecological units and landscape ecological stress zones. The delineated landscape ecological stress zones in the watershed have been recommended for landscape ecological planning for better utilization of natural resources without harming the natural geo-ecosystem of the area.  相似文献   

16.
土地利用/覆盖变化是目前研究全球及区域环境的一个重要领域,在城镇化加速的今天,城镇的土地利用格局也发生了飞速的变化。本文通过其一研究区内的Landsat TM遥感影像进行处理,获取了2007~2016年10个时相土地利用/覆盖信息,通过不同的预测模型对监测到的数据进行处理及比较,根据相应的最优预测方法预测了2017~2019年南昌市各土地类型的数据,由此研究并探讨了南昌市土地利用/覆盖的时空格局变化。  相似文献   

17.
土地利用空间格局与坡度坡向的关系   总被引:1,自引:0,他引:1  
坡度坡向是影响土地利用空间格局的因素。以韶关市大塘镇为研究区,基于DEM和土地利用现状图,利用GIS提取坡度坡向及土地利用信息,并将坡度坡向与土地利用图进行叠加分析,研究坡度坡向与土地利用空间格局的关系。研究结果表明,除林地外的土地利用类型随坡度增加而大体呈现下降趋势;除平地外,各坡向土地利用类型差异较小;坡度坡向影响光照、水分、热量等分布,进而对人类活动和土地利用空间格局产生影响。  相似文献   

18.
顾及尺度效应和景观格局的土地利用数据综合指标研究   总被引:6,自引:0,他引:6  
从尺度效应和土地利用案观格局影响两个层面研究土地利用数据综合的宏观和微观综合指标,设计土地利用数据综合的指标体系和指标定量化描述模型.在全国各个土地利用分区采集不同尺度的具有典型代表性的土地利用数据样本集,通过空间统计分析等方法,得到土地利用数据综合中的宏观控制性指标和微观图形综合指标的尺度变化规律及其与土地利用格局的关系.以一个县为试验区,验证其合理性.
Abstract:
Indices for land use data generalization are critical for generating multiscale land use maps and databases. Previous research suffers from two major setbacks. Firstly, determination of threshold values for multi-scale land use data generalization in a large area, such as a nation, remains subjective. A second problem is general ignorance of landscape pattern. This paper studies the index system of land use data generalization from both scale and landscape pattern perspective. We discuss the macro and micro indices of land use data generalization with consideration of spatial scales and landscape pattern. To quantitatively relate the indices and scale and landscape pattern metrics, land use data samples have been collected at multiple spatial scales in various land use regions across China. Based on statistic analysis, we then generate both macro and micro control rules for land use data generalization at various spatial scales and land use patterns. Finally, we prove the proposed method and achieved results to be effective and reasonable with sample data at county level.  相似文献   

19.
土地利用/覆被变化对细河流域的水文过程影响显著。为研究不同土地利用/覆被情景对流域水文要素的影响情况,本文构建了适用于细河流域的SWAT分布式水文模型,并拟算出不同情景下的流域多年平均月径流量、多年平均地表径流深度、多年平均蒸发量以及多年平均土壤侧流。模拟结果显示:当流域农林用地增加时,平均月径流量增加了8.40%;当建设用地增加时,平均月径流量减少了4.11%;当旱地及其他未利用地增加时,平均月径流量减少了1.93%。综上所述,细河流域农林用地变化对径流产量的影响相对最大,其增加导致径流量增加;旱地及其他未利用对径流产量的影响相对最小,建设用地和旱地及其他未利用地的增加导致径流量减少。  相似文献   

20.
"中缅油气管道"是我国陆上第三大能源通道,该项目的建设将改变其沿线周边的土地利用/覆盖现状,同时对沿线地区的自然环境和社会经济发展产生重要影响。本文选取中缅油气管道沿线的国内11个重要节点和缅甸境内4个重要节点作为研究区,以2012年和2015年2期Landsat7 ETM+和Landsat8 OLI影像数据作为数据源,利用决策树分类算法提取2012年和2015年2期中缅油气管道沿线重要节点的土地利用/覆被信息,分析2012年和2015年2个时期的中缅油气管道沿线15个重要节点土地利用/覆被的时空变化。研究结果表明:①15个节点中,除德宏芒市、保山隆阳区、缅甸若开邦外,其他11个节点的土地覆被变化均在20%左右;②15个节点中,最主要的土地覆被变化为植被和裸土的相互转换,其次为其他土地覆被类型向建筑的转换;③由于中缅油气管道项目的辐射作用,带动当地经济发展,改变当地的经济作物结构,因此造成大量的植被和裸土的相互转换,并造成建筑用地需求增加,出现大量的其他地表覆被类型向建筑的转换。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号