首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Watershed structure influences the timing, magnitude, and spatial location of water and solute entry to stream networks. In turn, stream reach transport velocities and stream network geometry (travel distances) further influence the timing of export from watersheds. Here, we examine how watershed and stream network organization can affect travel times of water from delivery to the stream network to arrival at the watershed outlet. We analysed watershed structure and network geometry and quantified the relationship between stream discharge and solute velocity across six study watersheds (11.4 to 62.8 km2) located in the Sawtooth Mountains of central Idaho, USA. Based on these analyses, we developed stream network travel time functions for each watershed. We found that watershed structure, stream network geometry, and the variable magnitude of inputs across the network can have a pronounced affect on water travel distances and velocities within a stream network. Accordingly, a sample taken at the watershed outlet is composed of water and solutes sourced from across the watershed that experienced a range of travel times in the stream network. We suggest that understanding and quantifying stream network travel time distributions are valuable for deconvolving signals observed at watershed outlets into their spatial and temporal sources, and separating terrestrial and in‐channel hydrological, biogeochemical, and ecological influences on in‐stream observations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Hydrological and hydrochemical processes in the critical zone of karst environments are controlled by the fracture‐conduit network. Modelling hydrological and hydrochemical dynamics in such heterogeneous hydrogeological settings remains a research challenge. In this study, water and solute transport in the dual flow system of the karst critical zone were investigated in a 73.5‐km2 catchment in southwest China. We developed a dual reservoir conceptual run‐off model combined with an autoregressive and moving average model with algorithms to assess dissolution rates in the “fast flow” and “slow flow” systems. This model was applied to 3 catchments with typical karst critical zone architectures, to show how flow exchange between fracture and conduit networks changes in relation to catchment storage dynamics. The flux of bidirectional water and solute exchange between the fissure and conduit system increases from the headwaters to the outfall due to the large area of the developed conduits and low hydraulic gradient in the lower catchment. Rainfall amounts have a significant influence on partitioning the relative proportions of flow and solutes derived from different sources reaching the underground outlet. The effect of rainfall on catchment function is modulated by the structure of the karst critical zone (e.g., epikarst and sinkholes). Thin epikarst and well‐developed sinkholes in the headwaters divert more surface water (younger water) into the underground channel network, leading to a higher fraction of rainfall recharge into the fast flow system and total outflow. Also, the contribution of carbonate weathering to mass export is also higher in the headwaters due to the infiltration of younger water with low solute concentrations through sinkholes.  相似文献   

3.
Modeling flow and transport using both temperature and dye tracing provides constraints that can improve understanding of karst networks. A laminar flow and transport model using the finite element subsurface flow model simulated the conduit connection between a sinking stream and spring in central Pennsylvania to evaluate how conduit morphology might affect dye transport. Single and overly tortuous conduit models resulted in high concentrations as dye flowed back into the conduit from the matrix after dye injections ceased. A forked conduit model diverted flow from the main conduit, reducing falling limb dye concentration. Latin hypercube sampling was performed to evaluate the sensitivity of 52 parameter combinations (conduit hydraulic conductivity, conduit cross-sectional area, matrix transmissivity, matrix porosity, and dispersivity) for four conduit geometry scenarios. Sensitivity of arrival time for 50% of the dye indicated no parameter combinations which simulate falling limb dye concentrations for tortuous geometries, confirming the importance of the forked geometry regardless of other parameters. Temperature data from high-resolution loggers were then incorporated into the forked conduit model to reproduce seasonal spring temperature using variable sink inflow. Unlike the dye trace models, the thermal models were sensitive to other model parameters, such as conduit cross-sectional area and matrix transmissivity. These results showed this dual approach (dye and temperature) to karst network modeling is useful for (1) exploring the role of conduit and matrix interaction for contaminant storage, (2) constraining karst conduit geometries, which are often poorly understood, and (3) quantifying the effect of seasonal trends on karst aquifers.  相似文献   

4.
The permeable conduit wall in a karst aquifer allows for water and solute to be exchanged between conduits and the limestone matrix. Contaminant sequestered in the limestone matrix is flushed into conduits following flood events. The contaminant released from the permeable wall will then mix with conduit water and will be transported downgradient in the conduit. A one-dimensional advection-dispersion equation is presented to describe this mixing-transport incorporating water flow and solute flux through the conduit wall. An analytical solution ignoring conduit dispersion is derived using the method of characteristics. Scale analysis is performed to provide a general guideline to estimate when conduit dispersion can be neglected. The solution also can be used to compute the distribution of solute in the matrix before flushing.  相似文献   

5.
A solution conduit has a permeable wall allowing for water exchange and solute transfer between the conduit and its surrounding aquifer matrix. In this paper, we use Laplace Transform to solve a one‐dimensional equation constructed using the Euler approach to describe advective transport of solute in a conduit, a production‐value problem. Both nonuniform cross‐section of the conduit and nonuniform seepage at the conduit wall are considered in the solution. Physical analysis using the Lagrangian approach and a lumping method is performed to verify the solution. Two‐way transfer between conduit water and matrix water is also investigated by using the solution for the production‐value problem as a first‐order approximation. The approximate solution agrees well with the exact solution if dimensionless travel time in the conduit is an order of magnitude smaller than unity. Our analytical solution is based on the assumption that the spatial and/or temporal heterogeneity in the wall solute flux is the dominant factor in the spreading of spring‐breakthrough curves, and conduit dispersion is only a secondary mechanism. Such an approach can lead to the better understanding of water exchange and solute transfer between conduits and aquifer matrix. Highlights:
    相似文献   

6.
Karst spring responses examined by process-based modeling   总被引:8,自引:0,他引:8  
Birk S  Liedl R  Sauter M 《Ground water》2006,44(6):832-836
Ground water in karst terrains is highly vulnerable to contamination due to the rapid transport of contaminants through the highly conductive conduit system. For contamination risk assessment purposes, information about hydraulic and geometric characteristics of the conduits and their hydraulic interaction with the fissured porous rock is an important prerequisite. The relationship between aquifer characteristics and short-term responses to recharge events of both spring discharge and physicochemical parameters of the discharged water was examined using a process-based flow and transport model. In the respective software, a pipe-network model, representing fast conduit flow, is coupled to MODFLOW, which simulates flow in the fissured porous rock. This hybrid flow model was extended to include modules simulating heat and reactive solute transport in conduits. The application of this modeling tool demonstrates that variations of physicochemical parameters, such as solute concentration and water temperature, depend to a large extent on the intensity and duration of recharge events and provide information about the structure and geometry of the conduit system as well as about the interaction between conduits and fissured porous rock. Moreover, the responses of solute concentration and temperature of spring discharge appear to reflect different processes, thus complementing each other in the aquifer characterization.  相似文献   

7.
The use of electrical resistivity surveys to locate karst conduits has shown mixed success. However, time‐lapse electrical resistivity imaging combined with salt injection improves conduit detection and can yield valuable insight into solute transport behaviour. We present a proof of concept above a known karst conduit in the Kentucky Horse Park (Lexington, Kentucky). A salt tracer solution was injected into a karst window over a 45‐min interval, and repeat resistivity surveys were collected every 20 min along a 125‐m transect near a monitoring well approximately 750 m downgradient from the injection site. In situ fluid conductivity measurements in the well peaked at approximately 25% of the initial value about 3 h after salt injection. Time‐lapse electrical resistivity inversions show two broad zones at the approximate conduit depth where resistivity decreased and then recovered in general agreement with in situ measurements. Combined salt injection and electrical resistivity imaging are a promising tool for locating karst conduits. The method is also useful for gaining insight into conduit geometry and could be expanded to include multiple electrical resistivity transects. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Flow and transport simulation in karst aquifers remains a significant challenge for the ground water modeling community. Darcy's law–based models cannot simulate the inertial flows characteristic of many karst aquifers. Eddies in these flows can strongly affect solute transport. The simple two-region conduit/matrix paradigm is inadequate for many purposes because it considers only a capacitance rather than a physical domain. Relatively new lattice Boltzmann methods (LBMs) are capable of solving inertial flows and associated solute transport in geometrically complex domains involving karst conduits and heterogeneous matrix rock. LBMs for flow and transport in heterogeneous porous media, which are needed to make the models applicable to large-scale problems, are still under development. Here we explore aspects of these future LBMs, present simple examples illustrating some of the processes that can be simulated, and compare the results with available analytical solutions. Simulations are contrived to mimic simple capacitance-based two-region models involving conduit (mobile) and matrix (immobile) regions and are compared against the analytical solution. There is a high correlation between LBM simulations and the analytical solution for two different mobile region fractions. In more realistic conduit/matrix simulation, the breakthrough curve showed classic features and the two-region model fit slightly better than the advection-dispersion equation (ADE). An LBM-based anisotropic dispersion solver is applied to simulate breakthrough curves from a heterogeneous porous medium, which fit the ADE solution. Finally, breakthrough from a karst-like system consisting of a conduit with inertial regime flow in a heterogeneous aquifer is compared with the advection-dispersion and two-region analytical solutions.  相似文献   

9.
Hydrological and biogeochemical processes in karst environments are strongly controlled by heterogeneous fracture-conduit networks. Quantifying the spatio-temporal variability of water transit time and young water fractions in such heterogeneous hydrogeological systems is fundamental to linking discharge and water quality dynamics in the karst critical zone. We used a tracer-aided conceptual hydrological model to track the fate of each hour of rain input individually. Using this approach, the variability of transit time distributions and young water fraction were estimated in the main landscape units in a karst catchment of Chenqi in Guizhou Province, Southwest China. The model predicted that the mean young water (i.e., <~2 months old) fraction of ground conduit flow is 0.31. Marked seasonal variabilities in water storage and hydrological connectivity between the conduit network and fractured matrix, as well as between hillslopes and topographic depression, drive the dynamics of young water fraction and travel time distributions in each landscape unit. Especially, the strong hydrological connectivity between the land surface and underground conduits caused by the direct infiltration through large fractures and sinkholes, leads the drastic increasement in young water fraction of runoff after heavy rain. Even though the contribution of young water to runoff is greater, the strong mixing and drainage of small fractures accelerate the old water release during high flows during the wet season. It is notable that the young water may sometimes be the most contaminated component contributing to the underground conduit network in karst catchments, because of the direct transfer of contaminants from the ground surface with rain water via large fractures and sinkholes.  相似文献   

10.
Li G 《Ground water》2011,49(4):584-592
Often the water flowing in a karst conduit is a combination of contaminated water entering at a sinkhole and cleaner water released from the limestone matrix. Transport processes in the conduit are controlled by advection, mixing (dilution and dispersion), and retention-release. In this article, a karst transport model considering advection, spatially varying dispersion, and dilution (from matrix seepage) is developed. Two approximate Green's functions are obtained using transformation of variables, respectively, for the initial-value problem and for the boundary-value problem. A numerical example illustrates that mixing associated with strong spatially varying conduit dispersion can cause strong skewness and long tailing in spring breakthrough curves. Comparison of the predicted breakthrough curve against that measured from a dye-tracing experiment between Ames Sink and Indian Spring, Northwest Florida, shows that the conduit dispersivity can be as large as 400 m. Such a large number is believed to imply strong solute interaction between the conduit and the matrix and/or multiple flow paths in a conduit network. It is concluded that Taylor dispersion is not dominant in transport in a karst conduit, and the complicated retention-release process between mobile- and immobile waters may be described by strong spatially varying conduit dispersion.  相似文献   

11.
Comparison of flowpaths to a well and spring in a karst aquifer   总被引:3,自引:0,他引:3  
Toran L  Herman EK  White WB 《Ground water》2007,45(3):281-287
The permeability of some karst aquifers consists of networks of poorly integrated conduits and dissolution-widened fractures. The flow includes conduit flow, especially during storm recharge, but lacks the focused recharge into single master conduits that occurs in more highly developed karst systems. The proportions of conduit and dispersed flow are difficult to quantify in such systems. This study examines the flowpaths in a small karst watershed, based on comparing the physical and chemical response to storm flow at both a spring and a well. By conducting continuous monitoring at both locations, a better understanding of the flowpaths in a poorly integrated network was obtained. A more permeable flowpath to the spring leads to faster storm response and lower ion concentrations. The flowpath to and from the well is more complicated. The higher ion content and slower storm response suggest slower, more dispersed flowpaths. However, the well has greater variation in ion chemistry. Periodic recharge may dilute well concentrations due to faster (conduit or fracture) flowpaths. Although karst systems such as this are difficult to characterize, applying a variety of geochemical and physical monitoring techniques at multiple locations illustrates that the flowpaths can vary in both space and time.  相似文献   

12.
A structure model was used to analyse solute‐transport parameter estimates based on tracer breakthrough curves. In the model system, groundwater flow is envisioned to be organised in a complex conduit network providing a variety of short circuits with relative small carrying capacities along different erosion levels. The discharge through the fully filled conduits is limited owing to void geometries and turbulent flow; thus, a hierarchic overflow system evolves where conduits are (re‐)activated or dried up depending on the flow condition. Exemplified on the Lurbach–Tanneben karst aquifer, the applicability of the model approach was tested. Information derived from multi‐tracer experiments performed at different volumetric flow rates enabled to develop a structural model of the karst network, under constraint of the geomorphological and hydrological evolution of the site. Depending on the flow rate, groundwater is divided into up to eight flow paths. The spatial hierarchy of flow paths controls the sequence of flow path activation. Conduits of the topmost level are strongly influenced by reversible alteration processes. Sedimentation or blocking causes an overflow of water to the next higher conduit. Flow path specific dissolutional denudation rates were estimated using the temporal development of the partial discharge. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Discharge exceedance probabilities are calculated for a simple model karst aquifer composed of a few multilevel conduits with recharge from a single sinking stream with an exponential flow exceedance distribution. It is assumed that outflow instantaneously matches inflow, so that the conduit volume is constant but discharge is governed by the head in a volumeless shaft at the top end of the system. It is shown that small single conduit aquifers will frequently overflow at the surface during floods and the exceedance probability of flow through the aquifer and over the surface can be defined as a function of the inflow distribution and the form of the aquifer. Systems with multiple conduits will overflow less frequently, but each conduit will exhibit a flow distribution characteristic of its form and position in the vertical hierarchy. Comparison of these findings with actual flow data from a conduit aquifer shows that the approach is valid, although imprecise. The model is unlikely to be applied directly, as it requires unusually detailed data. However, it provides for the first time an indication of typical flow durations for surface overflows and individual conduits in a karst aquifer. Contrasts in flow duration will have a profound influence on solutional and sedimentary processes in the karst system.  相似文献   

14.
Physics-based distributed models for simulating flow in karst systems are generally based on the discrete–continuum approach in which the flow in the three-dimensional fractured limestone matrix continuum is coupled with the flow in discrete one-dimensional conduits. In this study we present a newly designed discrete–continuum model for simulating flow in karst systems. We use a flexible spatial discretization such that complicated conduit networks can be incorporated. Turbulent conduit flow and turbulent surface flow are described by the diffusion wave equation whereas laminar variably saturated flow in the matrix is described by the Richards equation. Transients between free-surface and pressurized conduit flow are handled by changing the capacity term of the conduit flow equation. This new approach has the advantage that the transients in mixed conduit flow regimes can be handled without the Preissmann slot approach. Conduit–matrix coupling is based on the Peaceman’s well-index such that simulated exchange fluxes across the conduit–matrix interface are less sensitive to the spatial discretization. Coupling with the surface flow domain is based on numerical techniques commonly used in surface–subsurface models and storm water drainage models. Robust algorithms are used to simulate the non-linear flow processes in a coupled fashion. The model is verified and illustrated with simulation examples.  相似文献   

15.
Conduit properties and karstification in the unconfined Floridan aquifer   总被引:3,自引:0,他引:3  
Exchange of water between conduits and matrix is an important control on regional chemical compositions, karstification, and quality of ground water resources in karst aquifers. A sinking stream (Santa Fe River Sink) and its resurgence (River Rise) in the unconfined portion of the Floridan Aquifer provide the opportunity to monitor conduit inflow and outflow. The use of temperature as a tracer allows determination of residence times and velocities through the conduit system. Based on temperature records from two high water events, flow is reasonably represented as pipe flow with a cross-sectional area of 380 m2, although this model may be complicated by losses of water from the conduit system at higher discharge rates. Over the course of the study year, the River Rise discharged a total of 1.9 x 10(7) m3 more water than entered the River Sink, reflecting net contribution of ground water from the matrix into the conduit system. However, as River Sink discharge rates peaked following three rainfall events during the study period, the conduit system lost water, presumably into the matrix. Surface water in high flow events is typically undersaturated with respect to calcite and thus may lead to dissolution, depending on its residence time in the matrix. A calculation of local denudation is larger than other regional estimates, perhaps reflecting return of water to conduits before calcite equilibrium is reached. The exchange of matrix and conduit water is an important variable in karst hydrology that should be considered in management of these water resources.  相似文献   

16.
Quantifying hyporheic solute dynamics has been limited by our ability to assess the magnitude and extent of stream interactions with multiple domains: mobile subsurface storage (MSS, e.g., freely flowing pore water) and immobile subsurface storage (ISS, e.g., poorly connected pore water). Stream-tracer experiments coupled with solute transport modeling are frequently used to characterize lumped MSS and ISS dynamics, but are limited by the ability to sample only “mobile” water and by window of detection issues. Here, we couple simulations of near-surface electrical resistivity (ER) methods with conservative solute transport to directly compare solute transport with ER interpretations, and to determine the ability of ER to predict spatial and temporal trends of solute distribution and transport in stream–hyporheic systems. Results show that temporal moments from both ER and solute transport data are well correlated for locations where advection is not the dominant solute transport process. Mean arrival time and variance are especially well-predicted by ER interpretation, providing the potential to estimate rate-limited mass transport (i.e. diffusive) parameters from these data in a distributed domain, substantially increasing our knowledge of the fate and transport of subsurface solutes.  相似文献   

17.
This review focuses on investigations of groundwater flow and solute transport in karst aquifers through laboratory scale models (LSMs). In particular, LSMs have been used to generate new data under different hydraulic and contaminant transport conditions, testing of new approaches for site characterization, and providing new insights into flow and transport processes through complex karst aquifers. Due to the increasing need for LSMs to investigate a wide range of issues, associated with flow and solute migration karst aquifers this review attempts to classify, and introduce a framework for constructing a karst aquifer physical model that is more representative of field conditions. The LSMs are categorized into four groups: sand box, rock block, pipe/fracture network, and pipe-matrix coupling. These groups are compared and their advantages and disadvantages highlighted. The capabilities of such models have been extensively improved by new developments in experimental methods and measurement devices. Newer technologies such as 3D printing, computed tomography scanning, X-rays, nuclear magnetic resonance, novel geophysical techniques, and use of nanomaterials allow for greater flexibilities in conducting experiments. In order for LSMs to be representative of karst aquifers, a few requirements are introduced: (1) the ability to simulate heterogeneous distributions of karst hydraulic parameters, (2) establish Darcian and non-Darcian flow regimes and exchange between the matrix and conduits, (3) placement of adequate sampling points and intervals, and (4) achieving some degree of geometric, kinematic, and dynamic similitude to represent field conditions.  相似文献   

18.
Three-dimensional analytical solutions for solute transport in saturated, homogeneous porous media are developed. The models account for three-dimensional dispersion in a uniform flow field, first-order decay of aqueous phase and sorbed solutes with different decay rates, and nonequilibrium solute sorption onto the solid matrix of the porous formation. The governing solute transport equations are solved analytically by employing Laplace, Fourier and finite Fourier cosine transform techniques. Porous media with either semi-infinite or finite thickness are considered. Furthermore, continuous as well as periodic source loadings from either a point or an elliptic source geometry are examined. The effect of aquifer boundary conditions as well as the source geometry on solute transport in subsurface porous formations is investigated.  相似文献   

19.
We apply geospatial analysis to borehole imagery in an effort to develop new techniques to evaluate the spatial distribution and internal structure of karst conduits. Remote sensing software is used to classify a high resolution, digital borehole image of limestone bedrock from the Biscayne aquifer (South Florida, USA) into a binary image divided into cells of rock matrix and pores. Within a GIS, 2D porosity is calculated for a series of rectangular sampling windows placed over the binary image and then plotted as a function of depth. Potential conduits that intersect the borehole are identified as peaks of high porosity. A second GIS technique identifies a conduit as a continuous object that spans the entire borehole width. According to these criteria, geospatial analysis reveals ∼10 discrete conduits along the ∼15 m borehole image. Continuous sampling of the geologic medium intersected by the borehole provides insight into the internal structure of karst aquifers and the evolution of karst features. Most importantly, this pilot study demonstrates that GIS-based techniques are capable of quantifying the depths, dimensions, shapes, apertures and connectivity of potential conduits, physical attributes that impact flow in karst aquifers.  相似文献   

20.
Numerical simulations of variable-density flow and solute transport have been conducted to investigate dense plume migration for various configurations of 2D fracture networks. For orthogonal fractures, simulations demonstrate that dispersive mixing in fractures with small aperture does not stabilize vertical plume migration in fractures with large aperture. Simulations in non-orthogonal 2D fracture networks indicate that convection cells form and that they overlap both the porous matrix and fractures. Thus, transport rates in convection cells depend on matrix and fracture flow properties. A series of simulations in statistically equivalent networks of fractures with irregular orientation show that the migration of a dense plume is highly sensitive to the geometry of the network. If fractures in a random network are connected equidistantly to the solute source, few equidistantly distributed fractures favor density-driven transport. On the other hand, numerous fractures have a stabilizing effect, especially if diffusive transport rates are high. A sensitivity analysis for a network with few equidistantly distributed fractures shows that low fracture aperture, low matrix permeability and high matrix porosity impede density-driven transport because these parameters reduce groundwater flow velocities in both the matrix and the fractures. Enhanced molecular diffusion slows down density-driven transport because it favors solute diffusion from the fractures into the low-permeability porous matrix where groundwater velocities are smaller. For the configurations tested, variable-density flow and solute transport are most sensitive to the permeability and porosity of the matrix, which are properties that can be determined more accurately than the geometry and hydraulic properties of the fracture network, which have a smaller impact on density-driven transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号