首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 307 毫秒
1.
Image matching is emerging as a compelling alternative to airborne laser scanning (ALS) as a data source for forest inventory and management. There is currently an open discussion in the forest inventory community about whether, and to what extent, the new method can be applied to practical inventory campaigns. This paper aims to contribute to this discussion by comparing two different image matching algorithms (Semi-Global Matching [SGM] and Next-Generation Automatic Terrain Extraction [NGATE]) and ALS in a typical managed boreal forest environment in southern Finland. Spectral features from unrectified aerial images were included in the modeling and the potential of image matching in areas without a high resolution digital terrain model (DTM) was also explored. Plot level predictions for total volume, stem number, basal area, height of basal area median tree and diameter of basal area median tree were modeled using an area-based approach. Plot level dominant tree species were predicted using a random forest algorithm, also using an area-based approach. The statistical difference between the error rates from different datasets was evaluated using a bootstrap method.Results showed that ALS outperformed image matching with every forest attribute, even when a high resolution DTM was used for height normalization and spectral information from images was included. Dominant tree species classification with image matching achieved accuracy levels similar to ALS regardless of the resolution of the DTM when spectral metrics were used. Neither of the image matching algorithms consistently outperformed the other, but there were noticeably different error rates depending on the parameter configuration, spectral band, resolution of DTM, or response variable. This study showed that image matching provides reasonable point cloud data for forest inventory purposes, especially when a high resolution DTM is available and information from the understory is redundant.  相似文献   

2.
The use of forest biomass for bioenergy purposes, directly or through refinement processes, has increased in the last decade. One example of such use is the utilization of logging residues. Branch biomass constitutes typically a considerable part of the logging residues, and should be quantified and included in future forest inventories. Airborne laser scanning (ALS) is widely used when collecting data for forest inventories, and even methods to derive information at the single-tree level has been described. Procedures for estimation of single-tree branch biomass of Norway spruce using features derived from ALS data are proposed in the present study. As field reference data the dry weight branch biomass of 50 trees were obtained through destructive sampling. Variables were further derived from the ALS echoes from each tree, including crown volume calculated from an interpolated crown surface constructed with a radial basis function. Spatial information derived from the pulse vectors were also incorporated when calculating the crown volume. Regression models with branch biomass as response variable were fit to the data, and the prediction accuracy assessed through a cross-validation procedure. Random forest regression models were compared to stepwise and simple linear least squares models. In the present study branch biomass was estimated with a higher accuracy by the best ALS-based models than by existing allometric biomass equations based on field measurements. An improved prediction accuracy was observed when incorporating information from the laser pulse vectors into the calculation of the crown volume variable, and a linear model with the crown volume as a single predictor gave the best overall results with a root mean square error of 35% in the validation.  相似文献   

3.
Three-dimensional (3D) data from airborne laser scanning (ALS) and, more recently, digital aerial photogrammetry (DAP) have been successfully used to model forest attributes. While multi-temporal, wall-to-wall ALS data is not usually available, aerial imagery is regularly acquired in many regions. Thus, the combination of ALS and DAP data provide a sufficient temporal resolution to properly monitor forests. However, field data is needed to fit new forest attribute models for each 3D data acquisition, which is not always affordable. In this study, we examined whether transferability of growing stock volume (GSV) models may provide an improvement in the efficiency of forest inventories updating. We used two available ALS datasets acquired with different characteristics in 2009 and 2010, respectively, generated two DAP point clouds from imagery collected in 2010 and 2017, and utilized field data from two ground surveys conducted in 2009 and 2016-2017. We first analyzed the stability of point cloud derived metrics. Then, Support Vector Regression models based on the most stable metrics were fitted to assess model transferability by applying them to other datasets in four different cases: (1) ALS-ALS, (2) DAP-DAP temporal, (3) ALS-DAP and (4) ALS-DAP temporal. Some metrics were found to be enough stable in each case, so they could be used interchangeably between datasets. The application of models to other datasets resulted in unbiased predictions with relative root mean square error differences ranging from -8.27% to 14.59%. Results demonstrated that 3D-based GSV models may be transferable between point clouds of the same type as well as point clouds acquired using different technologies such as ALS and DAP, suggesting that DAP data may be used as a cost-efficient source of information for updating ALS-assisted forest inventories.  相似文献   

4.
The aim of the study was to (1) examine the classification of forest land using airborne laser scanning (ALS) data, satellite images and sample plots of the Finnish National Forest Inventory (NFI) as training data and to (2) identify best performing metrics for classifying forest land attributes. Six different schemes of forest land classification were studied: land use/land cover (LU/LC) classification using both national classes and FAO (Food and Agricultural Organization of the United Nations) classes, main type, site type, peat land type and drainage status. Special interest was to test different ALS-based surface metrics in classification of forest land attributes. Field data consisted of 828 NFI plots collected in 2008–2012 in southern Finland and remotely sensed data was from summer 2010. Multinomial logistic regression was used as the classification method. Classification of LU/LC classes were highly accurate (kappa-values 0.90 and 0.91) but also the classification of site type, peat land type and drainage status succeeded moderately well (kappa-values 0.51, 0.69 and 0.52). ALS-based surface metrics were found to be the most important predictor variables in classification of LU/LC class, main type and drainage status. In best classification models of forest site types both spectral metrics from satellite data and point cloud metrics from ALS were used. In turn, in the classification of peat land types ALS point cloud metrics played the most important role. Results indicated that the prediction of site type and forest land category could be incorporated into stand level forest management inventory system in Finland.  相似文献   

5.
This paper presents an application of Airborne Laser Scanning (ALS) data in conjunction with an IRS LISS-III image for mapping forest fuel types. For two study areas of 165 km2 and 487 km2 in Sicily (Italy), 16,761 plots of size 30-m × 30-m were distributed using a tessellation-based stratified sampling scheme. ALS metrics and spectral signatures from IRS extracted for each plot were used as predictors to classify forest fuel types observed and identified by photointerpretation and fieldwork. Following use of traditional parametric methods that produced unsatisfactory results, three non-parametric classification approaches were tested: (i) classification and regression tree (CART), (ii) the CART bagging method called Random Forests, and (iii) the CART bagging/boosting stochastic gradient boosting (SGB) approach. This contribution summarizes previous experiences using ALS data for estimating forest variables useful for fire management in general and for fuel type mapping, in particular. It summarizes characteristics of classification and regression trees, presents the pre-processing operation, the classification algorithms, and the achieved results. The results demonstrated superiority of the SGB method with overall accuracy of 84%. The most relevant ALS metric was canopy cover, defined as the percent of non-ground returns. Other relevant metrics included the spectral information from IRS and several other ALS metrics such as percentiles of the height distribution, the mean height of all returns, and the number of returns.  相似文献   

6.
Traditional field-based forest inventories tend to be expensive, time-consuming, and cover only a limited area of a forested region. Remote sensing (RS), especially airborne laser scanning (ALS) has opened new possibilities for operational forest inventories, particularly at the single-tree level, and in the prediction of single-tree characteristics. Throughout the world, forests have varying characteristics that necessitate the development of modern, effective, and versatile tools for ALS data processing. To address this need, we aimed to develop a tool for individual tree detection (ITD) utilising a self-calibrating algorithm procedure and to verify its accuracy using the complicated forest structure of near natural forests in the temperate zone.This study was carried out in the Polish part of the Białowieża Forest (BF). The airborne laser scanner (ALS) and color-infrared (CIR) datasets were acquired for more than 60 000 ha. Field-based measurements were performed to provide reference data at the single tree level. We introduced a novel ITD method that is self-calibrated and uses a hierarchical analyses of the canopy height model.There were more than 20 000 000 of trees in first layer in BF above 7 m height. Trees visible from above were divided into coniferous, deciduous and mixed trees that were then matched with an accuracy of 85 %, 85 % and 75 %, respectively. Compared to existing methods, the proposed method is more flexible and achieves better results, especially for deciduous species. Before application of the presented method to other regions, the calibration based on the developed optimisation procedure is needed.  相似文献   

7.
As an important canopy structure indicator, leaf area index (LAI) proved to be of considerable implications for forest ecosystem and ecological studies, and efficient techniques for accurate LAI acquisitions have long been highlighted. Airborne light detection and ranging (LiDAR), often termed as airborne laser scanning (ALS), once was extensively investigated for this task but showed limited performance due to its low sampling density. Now, ALS systems exhibit more competing capacities such as high density and multi-return sampling, and hence, people began to ask the questions like—“can ALS now work better on the task of LAI prediction?” As a re-examination, this study investigated the feasibility of LAI retrievals at the individual tree level based on high density and multi-return ALS, by directly considering the vertical distributions of laser points lying within each tree crown instead of by proposing feature variables such as quantiles involving laser point distribution modes at the plot level. The examination was operated in the case of four tree species (i.e. Picea abies, Pinus sylvestris, Populus tremula and Quercus robur) in a mixed forest, with their LAI-related reference data collected by using static terrestrial laser scanning (TLS). In light of the differences between ALS- and TLS-based LAI characterizations, the methods of voxelization of 3D scattered laser points, effective LAI (LAIe) that does not distinguish branches from canopies and unified cumulative LAI (ucLAI) that is often used to characterize the vertical profiles of crown leaf area densities (LADs) was used; then, the relationships between the ALS- and TLS-derived LAIes were determined, and so did ucLAIs. Tests indicated that the tree-level LAIes for the four tree species can be estimated based on the used airborne LiDAR (R2 = 0.07, 0.26, 0.43 and 0.21, respectively) and their ucLAIs can also be derived. Overall, this study has validated the usage of the contemporary high density multi-return airborne LiDARs for LAIe and LAD profile retrievals at the individual tree level, and the contribution are of high potential for advancing forest ecosystem modeling and ecological understanding.  相似文献   

8.
Modern forest management involves implementing optimal pruning regimes. These regimes aim to achieve the highest quality timber in the shortest possible rotation period. Although a valuable addition to forest management activities, tracking the application of these treatments in the field to ensure best practice management is not economically viable. This paper describes the use of Airborne Laser Scanner (ALS) data to track the rate of pruning in a Eucalyptus globulus stand. Data is obtained from an Unmanned Aerial Vehicle (UAV) and we describe automated processing routines that provide a cost-effective alternative to field sampling. We manually prune a 500 m2 plot to 2.5 m above the ground at rates of between 160 and 660 stems/ha. Utilising the high density ALS data, we first derived crown base height (CBH) with an RMSE of 0.60 m at each stage of pruning. Variability in the measurement of CBH resulted in both false positive (mean rate of 11%) and false negative detection (3.5%), however, detected rates of pruning of between 96% and 125% of the actual rate of pruning were achieved. The successful automated detection of pruning within this study highlights the suitability of UAV laser scanning as a cost-effective tool for monitoring forest management activities.  相似文献   

9.
The architecture of trees is of particular interest for 3D model creation in forestry and ecolocical applications. Terrestrial (TLS) and mobile laser scanning (MLS) systems are used to acquire detailed geometrical data of trees. Since 3D point clouds from laser scanning consist of large data amounts representing uninterpreted topographical information including noise and data gaps, an extraction of salient tree structures is important for further applications. We present a fully automated modular workflow for topological reliable reconstruction of tree architecture. Object-based point cloud processing such as branch extraction is combined with tree skeletonization. Branch extraction is performed using a segmentation procedure followed by segment-based analysis of form indices derived from eigenvector metrics. Extracted branch primitives are simplified and connected to line features during skeletonization. The modular workflow allows comprehensive parameter tests and error assessments that are used for a calibration of the module parameters with respect to various characteristics of the input data (e.g noise, scanning resolution, and the number of scan positions). The estimated parameter settings are validated using an exemplary MLS data set. The quality of input point cloud data, strongly influencing the quality of the skeleton results, can be improved by the presented branch extraction procedure. The potential for data improvement increases with increasing point densities. For our object-based appoach, we can show that the presence of erroneous structures and filtering artifacts have the strongest influence onto the quality of the derived skeletons. In contrast to traditional skeletonization approaches, the existance of data gaps has less influence onto the results.  相似文献   

10.
Airborne laser scanning (ALS) is a widely used technology in the mapping of environment and forests. Data acquisition costs and the accuracy of the forest inventory are closely dependent on some extrinsic parameters of the ALS survey. These parameters have been assessed in numerous studies about a decade ago, but since then ALS devices have developed and it is possible that previous findings do not hold true with newer technology. That is why, the effect of flying altitudes (2000, 2500 or 3000 m), scanning angles (±15° and ±20° off nadir) and scanning modes (single- and multiple pulses in air) with the area-based approach using a Leica ALS70HA-laser scanner was studied here. The study was conducted in a managed pine-dominated forest area in Finland, where eight separate discrete-return ALS data were acquired. The comparison of datasets was based on the bootstrap approach with 5-fold cross validation. Results indicated that the narrower scanning angle (±15° i.e. 30°) led to slightly more accurate estimates of plot volume (RMSE%: 21–24 vs. 22.5–25) and mean height (RMSE%: 8.5–11 vs. 9–12). We also tested the use case where the models are constructed using one data and then applied to other data gathered with different parameters. The most accurate models were identified using the bootstrap approach and applied to different datasets with and without refitting. The bias increased without refitting the models (bias%: volume 0 ± 10, mean height 0 ± 3), but in most cases the results did not differ much in terms of RMSE%. This confirms previous observations that models should only be used for datasets collected under similar data acquisition conditions. We also calculated the proportions of echoes as a function of height for different echo categories. This indicated that the accuracy of the inventory is affected more by the height distribution than the proportions of echo categories.  相似文献   

11.
Forest structural diversity metrics describing diversity in tree size and crown shape within forest stands can be used as indicators of biodiversity. These diversity metrics can be generated using airborne laser scanning (LiDAR) data to provide a rapid and cost effective alternative to ground-based inspection. Measures of tree height derived from LiDAR can be significantly affected by the canopy conditions at the time of data collection, in particular whether the canopy is under leaf-on or leaf-off conditions, but there have been no studies of the effects on structural diversity metrics. The aim of this research is to assess whether leaf-on/leaf-off changes in canopy conditions during LiDAR data collection affect the accuracy of calculated forest structural diversity metrics. We undertook a quantitative analysis of LiDAR ground detection and return height, and return height diversity from two airborne laser scanning surveys collected under leaf-on and leaf-off conditions to assess initial dataset differences. LiDAR data were then regressed against field-derived tree size diversity measurements using diversity metrics from each LiDAR dataset in isolation and, where appropriate, a mixture of the two. Models utilising leaf-off LiDAR diversity variables described DBH diversity, crown length diversity and crown width diversity more successfully than leaf-on (leaf-on models resulted in R² values of 0.66, 0.38 and 0.16, respectively, and leaf-off models 0.67, 0.37 and 0.23, respectively). When LiDAR datasets were combined into one model to describe tree height diversity and DBH diversity the models described 75% and 69% of the variance (R² of 0.75 for tree height diversity and 0.69 for DBH diversity). The results suggest that tree height diversity models derived from airborne LiDAR, collected (and where appropriate combined) under any seasonal conditions, can be used to differentiate between simple single and diverse multiple storey forest structure with confidence.  相似文献   

12.
Inventories of mixed broad-leaved forests of Iran mainly rely on terrestrial measurements. Due to rapid changes and disturbances and great complexity of the silvicultural systems of these multilayer forests, frequent repetition of conventional ground-based plot surveys is often cost prohibitive. Airborne laser scanning (ALS) and multispectral data offer an alternative or supplement to conventional inventories in the Hyrcanian forests of Iran. In this study, the capability of a combination of ALS and UltraCam-D data to model stand volume, tree density, and basal area using random forest (RF) algorithm was evaluated. Systematic sampling was applied to collect field plot data on a 150 m × 200 m sampling grid within a 1100 ha study area located at 36°38′- 36°42′N and 54°24′–54°25′E. A total of 308 circular plots (0.1 ha) were measured for calculation of stand volume, tree density, and basal area per hectare. For each plot, a set of variables was extracted from both ALS and multispectral data. The RF algorithm was used for modeling of the biophysical properties using ALS and UltraCam-D data separately and combined. The results showed that combining the ALS data and UltraCam-D images provided a slight increase in prediction accuracy compared to separate modeling. The RMSE as percentage of the mean, the mean difference between observed and predicted values, and standard deviation of the differences using a combination of ALS data and UltraCam-D images in an independent validation at 0.1-ha plot level were 31.7%, 1.1%, and 84 m3 ha−1 for stand volume; 27.2%, 0.86%, and 6.5 m2 ha−1 for basal area, and 35.8%, −4.6%, and 77.9 n ha−1 for tree density, respectively. Based on the results, we conclude that fusion of ALS and UltraCam-D data may be useful for modeling of stand volume, basal area, and tree density and thus gain insights into structural characteristics in the complex Hyrcanian forests.  相似文献   

13.
基于地面激光扫描数据的单木特征因子提取与分析   总被引:1,自引:0,他引:1  
田金苓  王佳  易正晖  冯仲科 《测绘科学》2012,37(5):179-180,189
本文利用三维激光扫描仪对树木进行扫描获取树点云数据,经过格式转换、分离、提取后,对树木各测量因子包括胸径、树高、树冠、材积量进行测定与测量方法与意义的分析。通过实验分析,可以得出:树冠测定因子通过测定树冠的叶面积指数来更精确地反映树冠的生理学意义;通过不规则三角网构建的多面体计算的树干体积较以平均断面积、中央断面积求树干材积更为准确与便捷。  相似文献   

14.
Accurate forest biomass mapping methods would provide the means for e.g. detecting bioenergy potential, biofuel and forest-bound carbon. The demand for practical biomass mapping methods at all forest levels is growing worldwide, and viable options are being developed. Airborne laser scanning (ALS) is a promising forest biomass mapping technique, due to its capability of measuring the three-dimensional forest vegetation structure. The objective of the study was to develop new methods for tree-level biomass estimation using metrics derived from ALS point clouds and to compare the results with field references collected using destructive sampling and with existing biomass models. The study area was located in Evo, southern Finland. ALS data was collected in 2009 with pulse density equalling approximately 10 pulses/m2. Linear models were developed for the following tree biomass components: total, stem wood, living branch and total canopy biomass. ALS-derived geometric and statistical point metrics were used as explanatory variables when creating the models. The total and stem biomass root mean square error per cents equalled 26.3% and 28.4% for Scots pine (Pinus sylvestris L.), and 36.8% and 27.6% for Norway spruce (Picea abies (L.) H. Karst.), respectively. The results showed that higher estimation accuracy for all biomass components can be achieved with models created in this study compared to existing allometric biomass models when ALS-derived height and diameter were used as input parameters. Best results were achieved when adding field-measured diameter and height as inputs in the existing biomass models. The only exceptions to this were the canopy and living branch biomass estimations for spruce. The achieved results are encouraging for the use of ALS-derived metrics in biomass mapping and for further development of the models.  相似文献   

15.
Site productivity and forest growth are critical inputs into projecting wood volume and biomass accumulation over time. Site productivity, which is determined most commonly using site index models is also the primary criterion to consider many forest management decisions. Most of the previous research utilizing the remote sensing data for assessment of site index with forest height are based on the existing site index models developed with traditional dendrometric methods. However, these traditional methods are both time-consuming and expensive. This study demonstrates how bi-temporal airborne laser scanning (ALS) data collected within the 8-year period can be used for the development of site index models for Scots pine. The accuracy of ALS-derived models was assessed by comparison to the reference site index model developed based on data from stem analysis of 174 felled Scots pine trees. We evaluated the effect of different height metrics and grid cell size on the trajectory of site index models developed from ALS-derived measurements. Four methods of estimating top height from ALS point clouds were evaluated: 95th, 99th and 100th percentiles of point clouds and an individual tree detection approach (ITD). The models were created for a range of grid cell sizes: 10 × 10 m, 30 × 30 m, and 50 × 50 m. The results indicate that bitemporal ALS data could substitute traditional methods that have been applied to date for stand growth modelling. It was found that top height increment can be estimated by using both ITD approach and the 100th percentile of point cloud giving an appropriate top height (TH) increment estimation. Observed growth curves of reference trees agreed best with the trajectories that were obtained based on TH calculated using ITD method (R2 = 0.892) and 100th percentile (R2 = 0.797). In case of TH obtained from 99th and 95th percentiles only weak correlation was found: R2 = 0.358 and R2 = 0.213, accordingly. The height growth models developed with 95th and 99th percentiles of point cloud were not compatible with the reference model. We also found that grid cell size did not affect the model height growth trajectories. Irrespective of the grid cell size, the obtained model trajectories for the given method of TH estimation are nearly identical for cells 10 × 10, 30 × 30 and 50 × 50 m.  相似文献   

16.
This study presents a hybrid framework for single tree detection from airborne laser scanning (ALS) data by integrating low-level image processing techniques into a high-level probabilistic framework. The proposed approach modeled tree crowns in a forest plot as a configuration of circular objects. We took advantage of low-level image processing techniques to generate candidate configurations from the canopy height model (CHM): the treetop positions were sampled within the over-extracted local maxima via local maxima filtering, and the crown sizes were derived from marker-controlled watershed segmentation using corresponding treetops as markers. The configuration containing the best possible set of detected tree objects was estimated by a global optimization solver. To achieve this, we introduced a Gibbs energy, which contains a data term that judges the fitness of the objects with respect to the data, and a prior term that prevents severe overlapping between tree crowns on the configuration space. The energy was then embedded into a Markov Chain Monte Carlo (MCMC) dynamics coupled with a simulated annealing to find its global minimum. In this research, we also proposed a Monte Carlo-based sampling method for parameter estimation. We tested the method on a temperate mature coniferous forest in Ontario, Canada and also on simulated coniferous forest plots with different degrees of crown overlap. The experimental results showed the effectiveness of our proposed method, which was capable of reducing the commission errors produced by local maxima filtering, thus increasing the overall detection accuracy by approximately 10% on all of the datasets.  相似文献   

17.
Wildlife habitat selection is determined by a wide range of factors including food availability, shelter, security and landscape heterogeneity all of which are closely related to the more readily mapped landcover types and disturbance regimes. Regional wildlife habitat studies often used moderate resolution multispectral satellite imagery for wall to wall mapping, because it offers a favourable mix of availability, cost and resolution. However, certain habitat characteristics such as canopy structure and topographic factors are not well discriminated with these passive, optical datasets. Airborne laser scanning (ALS) provides highly accurate three dimensional data on canopy structure and the underlying terrain, thereby offers significant enhancements to wildlife habitat mapping. In this paper, we introduce an approach to integrate ALS data and multispectral images to develop a new heuristic wildlife habitat classifier for western Alberta. Our method combines ALS direct measures of canopy height, and cover with optical estimates of species (conifer vs. deciduous) composition into a decision tree classifier for habitat – or landcover types. We believe this new approach is highly versatile and transferable, because class rules can be easily adapted for other species or functional groups. We discuss the implications of increased ALS availability for habitat mapping and wildlife management and provide recommendations for integrating multispectral and ALS data into wildlife management.  相似文献   

18.
遥感在森林精准培育中的应用现状与展望   总被引:1,自引:0,他引:1  
周凯  曹林 《遥感学报》2021,25(1):423-438
随着社会经济快速发展及人口增长,中国木材供需矛盾突出,对外依存度高。面对有限的土地资源,迫切需要更为高效、高质量地培育森林资源,在定向培育和集约经营等的各个环节实现培育技术精准化。现代遥感技术所构建的多平台、多角度、多模式立体观测体系及定量分析方法是森林精准培育的关键技术。以遥感技术为核心所构建的从土壤类型分析、土地适应性评价、生态环境模拟到林木育种、灌溉施肥、林木长势监测、病虫害防治等一体化、精准化的森林精准培育新体系,将全面支撑现代林业的整体提质增效和森林质量精准提升。本文首先介绍了RGB相机、多光谱、高光谱、激光雷达、热红外和荧光传感器在森林精准培育中应用现状,并对其应用特点及测量指标进行了综合比较;然后,重点介绍了遥感在林木良种选育、营养胁迫监测诊断及水肥精准喷灌以及森林病虫害防治与健康评估这3个森林精准培育重要方向上的应用,并分析了各应用方向的共性需求;最后,从3个方面,即多源遥感信息融合,人工智能、物联网及3S技术集成,以及遥感数据与生理生态模型和辐射传输模型等的集成应用,分析了未来遥感技术在森林精准培育中的发展趋势及应用前景。  相似文献   

19.
Forest monitoring tools are needed to promote effective and data driven forest management and forest policies. Remote sensing techniques can increase the speed and the cost-efficiency of the forest monitoring as well as large scale mapping of forest attribute (wall-to-wall approach). Digital Aerial Photogrammetry (DAP) is a common cost-effective alternative to airborne laser scanning (ALS) which can be based on aerial photos routinely acquired for general base maps. DAP based on such pre-existing dataset can be a cost effective source of large scale 3D data. In the context of forest characterization, when a quality Digital Terrain Model (DTM) is available, DAP can produce photogrammetric Canopy Height Model (pCHM) which describes the tree canopy height. While this potential seems pretty obvious, few studies have investigated the quality of regional pCHM based on aerial stereo images acquired by standard official aerial surveys. Our study proposes to evaluate the quality of pCHM individual tree height estimates based on raw images acquired following such protocol using a reference filed-measured tree height database. To further ensure the replicability of the approach, the pCHM tree height estimates benchmarking only relied on public forest inventory (FI) information and the photogrammetric protocol was based on low-cost and widely used photogrammetric software. Moreover, our study investigates the relationship between the pCHM tree height estimates based on the neighboring forest parameter provided by the FI program.Our results highlight the good agreement of tree height estimates provided by pCHM using DAP with both field measured and ALS tree height data. In terms of tree height modeling, our pCHM approach reached similar results than the same modeling strategy applied to ALS tree height estimates. Our study also identified some of the drivers of the pCHM tree height estimate error and found forest parameters like tree size (diameter at breast height) and tree type (evergreenness/deciduousness) as well as the terrain topography (slope) to be of higher importance than image survey parameters like the variation of the overlap or the sunlight condition in our dataset. In combination with the pCHM tree height estimate, the terrain slope, the Diameter at Breast Height (DBH) and the evergreenness factor were used to fit a multivariate model predicting the field measured tree height. This model presented better performance than the model linking the pCHM estimates to the field tree height estimates in terms of r² (0.90 VS 0.87) and root mean square error (RMSE, 1.78 VS 2.01 m). Such aspects are poorly addressed in literature and further research should focus on how pCHM approaches could integrate them to improve forest characterization using DAP and pCHM. Our promising results can be used to encourage the use of regional aerial orthophoto surveys archive to produce large scale quality tree height data at very low additional costs, notably in the context of updating national forest inventory programs.  相似文献   

20.
Terrestrial laser scanning has been widely used to analyze the 3D structure of a forest in detail and to generate data at the level of a reference plot for forest inventories without destructive measurements. Multi-scan terrestrial laser scanning is more commonly applied to collect plot-level data so that all of the stems can be detected and analyzed. However, it is necessary to match the point clouds of multiple scans to yield a point cloud with automated processing. Mismatches between datasets will lead to errors during the processing of multi-scan data. Classic registration methods based on flat surfaces cannot be directly applied in forest environments; therefore, artificial reference objects have conventionally been used to assist with scan matching. The use of artificial references requires additional labor and expertise, as well as greatly increasing the cost. In this study, we present an automated processing method for plot-level stem mapping that matches multiple scans without artificial references. In contrast to previous studies, the registration method developed in this study exploits the natural geometric characteristics among a set of tree stems in a plot and combines the point clouds of multiple scans into a unified coordinate system. Integrating multiple scans improves the overall performance of stem mapping in terms of the correctness of tree detection, as well as the bias and the root-mean-square errors of forest attributes such as diameter at breast height and tree height. In addition, the automated processing method makes stem mapping more reliable and consistent among plots, reduces the costs associated with plot-based stem mapping, and enhances the efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号