首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

A physically-based hillslope hydrological model with shallow overland flow and rapid subsurface stormflow components was developed and calibrated using field experiments conducted on a preferential path nested hillslope in northeast India. Virtual experiments were carried out to perform sensitivity analysis of the model using the automated parameter estimation (PEST) algorithm. Different physical parameters of the model were varied to study the resulting effects on overland flow and subsurface stormflow responses from the theoretical hillslopes. It was observed that topographical shapes had significant effects on overland flow hydrographs. The slope profiles, surface storage, relief, rainfall intensity and infiltration rates primarily controlled the overland flow response of the hillslopes. Prompt subsurface stormflow responses were mainly dominated by lateral preferential flow, as soil matrix flow rates were very slow. Rainfall intensity and soil macropore structures were the most influential parameters on subsurface stormflow. The number of connected soil macropores was a more sensitive parameter than the size of macropores. In hillslopes with highly active vertical and lateral preferential pathways, saturation excess overland flow was not evident. However, saturation excess overland flow was generated if the lateral macropores were disconnected. Under such conditions, rainfall intensity, duration and preferential flow rate governed the process of saturation excess overland flow generation from hillslopes.
Editor D. Koutsoyiannis; Associate editor C. Perrin  相似文献   

2.
In this paper, details of a conjunctive surface-subsurface numerical model for the simulation of overland flow are presented. In this model, the complete one-dimensional Saint-Venant equations for the surface flow are solved by a simple, explicit, essentially non-oscillating (ENO) scheme. The two-dimensional Richards equation in the mixed form for the subsurface flow is solved using an efficient strongly implicit finite-difference scheme. The explicit scheme for the surface flow component results in a simple method for connecting the surface and subsurface components. The model is verified using the experimental data and previous numerical results available in the literature. The proposed model is used to study the two-dimensionality effects due to non-homogeneous subsurface characteristics. Applicability of the model to handle complex subsurface conditions is demonstrated.  相似文献   

3.
4.
We present a numerical, catchment-scale model that solves flow equations of surface and subsurface flow in a three-dimensional domain. Surface flow is described by the two-dimensional parabolic approximation of the St. Venant equation, using Manning’s equation of motion; subsurface flow is described by the three-dimensional Richards’ equation for the unsaturated zone and by three-dimensional Darcy’s law for the saturated zone, using an integrated finite difference formulation. The hydrological component is a dynamic link library implemented within a comprehensive model which simulates surface energy, radiation budget, snow melt, potential evapotranspiration, plant development and plant water uptake. We tested the model by comparing distributed and integrated three-dimensional simulated and observed perched water depth (PWD), stream flow data, and soil water contents for a small catchment. Additional tests were performed for the snow melting algorithm as well as the different hydrological processes involved. The model successfully described the water balance and its components as evidenced by good agreement between measured and modelled data.  相似文献   

5.
W. T. Sloan  J. Ewen 《水文研究》1999,13(6):823-846
A method has been developed to simulate the long‐term migration of radionuclides in the near‐surface of a river catchment, following their release from a deep underground repository for radioactive waste. Previous (30‐year) simulations, conducted using the SHETRAN physically based modelling system, showed that long‐term (many decades) simulations are required to allow the system to reach steady state. Physically based, distributed models, such as SHETRAN, tend to be too computationally expensive for this task. Traditional lumped catchment‐scale models, on the other hand, do not give sufficiently detailed spatially distributed results. An intermediate approach to modelling has therefore been developed which allows flow and transport processes to be simulated with the spatial resolution normally associated with distributed models, whilst being computationally efficient.The approach involves constructing a lumped model in which the catchment is represented by a number of conceptual water storage compartments. The flow rates to and from these compartments are prescribed by functions that summarize the results from physically based distributed models run for a range of characteristic flow regimes. The physically based models used were, SHETRAN for the subsurface compartments, a particle tracking model for overland flow and an analytical model for channel routing. One important advantage of the method used in constructing the lumped model is that it makes down scaling possible, in the sense that fine‐scale information on the distributed hydrological regime, as simulated by the physically based distributed models, can be inferred from the variables in the lumped model that describe the hydrology at the catchment scale. A 250‐year flow simulation has been run and the down scaling process used to infer a 250‐year time‐series of three‐dimensional velocity fields for the subsurface of the catchment. This series was then used to drive a particle tracking simulation of contaminant migration. The concentration and spatial distribution of contaminants simulated by this model for the first 30 years were in close agreement with SHETRAN results. The remaining 220 years highlighted the fact that some of the most important transport pathways to the surface carry contaminants only very slowly so both the magnitude and spatial distribution of concentration in surface soils are not apparent over the shorter SHETRAN simulations. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
The modeling of thick vadose zones is particularly challenging because of difficulties in collecting a variety of measured sediment properties, which are required for parameterizing the model. Some models rely on synthetic data, whereas others are simplified by running as homogeneous sediment domains and relying on a single set of sediment properties. Few studies have simulated flow processes through a thick vadose zone using real and comprehensive data sets comprising multiple measurements. Here, we develop a flow model for a 7-m-thick vadose zone. This model, combining the numerical codes CTRAN/W with SEEP/W, includes the measured sediment hydraulic properties of the investigated vadose zone and incorporates the actual climate and subsurface conditions of the study site (precipitations, water-table elevations, and stable isotope data). The model is calibrated by fitting the simulated and measured vertical profiles of water content. Our flow model calculates a transit time of 1 year for the travel of water through the 7-m vadose zone; this estimate matches stable isotope-based results obtained previously for this site. A homogeneous sediment domain flow model, which considers only a single set of sediment properties, produces a transit time that is approximately half the duration of that of the heterogeneous flow model. This difference highlights the importance of assuming heterogeneous material within models of thick vadose zones and testifies to the advantage gained when using real sediment hydraulic properties to parametrize a flow model.  相似文献   

7.
Due to complex dynamics inherent in the physical models, numerical formulation of subsurface and overland flow coupling can be challenging to solve. ParFlow is a subsurface flow code that utilizes a structured grid discretization in order to benefit from fast and efficient structured solvers. Implicit coupling between subsurface and overland flow modes in ParFlow is obtained by prescribing an overland boundary condition at the top surface of the computational domain. This form of implicit coupling leads to the activation and deactivation of the overland boundary condition during simulations where ponding or drying events occur. This results in a discontinuity in the discrete system that can be challenging to resolve. Furthermore, the coupling relies on unstructured connectivities between the subsurface and surface components of the discrete system, which makes it challenging to use structured solvers to effectively capture the dynamics of the coupled flow. We present a formulation of the discretized algebraic system that enables the use of an analytic form of the Jacobian for the Newton–Krylov solver, while preserving the structured properties of the discretization. An effective multigrid preconditioner is extracted from the analytic Jacobian and used to precondition the Jacobian linear system solver. We compare the performance of the new solver against one that uses a finite difference approximation to the Jacobian within the Newton–Krylov approach, previously used in the literature. Numerical results explores the effectiveness of using the analytic Jacobian for the Newton–Krylov solver, and highlights the performance of the new preconditioner and its cost. The results indicate that the new solver is robust and generally outperforms the solver that is based on the finite difference approximation to the Jacobian, for problems where the overland boundary condition is activated and deactivated during the simulation. A parallel weak scaling study highlights the efficiency of the new solver.  相似文献   

8.
9.
There is global concern about headwater management and associated impacts on river flow. In many wet temperate zones peatlands can be found covering headwater catchments. In the UK there is major concern about how environmental change, driven by human interventions, has altered the surface cover of headwater blanket peatlands. However, the impact of such land‐cover changes on river flow is poorly understood. In particular, there is poor understanding of the impacts of different spatial configurations of bare peat or well‐vegetated, restored peat on river flow peaks in upland catchments. In this paper, a physically based, distributed and continuous catchment hydrological model was developed to explore such impacts. The original TOPMODEL, with its process representation being suitable for blanket peat catchments, was utilized as a prototype acting as the basis for the new model. The equations were downscaled from the catchment level to the cell level. The runoff produced by each cell is divided into subsurface flow and saturation‐excess overland flow before an overland flow calculation takes place. A new overland flow module with a set of detailed stochastic algorithms representing overland flow routing and re‐infiltration mechanisms was created to simulate saturation‐excess overland flow movement. The new model was tested in the Trout Beck catchment of the North Pennines of England and found to work well in this catchment. The influence of land cover on surface roughness could be explicitly represented in the model and the model was found to be sensitive to land cover. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
11.
A process‐based, spatially distributed hydrological model was developed to quantitatively simulate the energy and mass transfer processes and their interactions within arctic regions (arctic hydrological and thermal model, ARHYTHM). The model first determines the flow direction in each element, the channel drainage network and the drainage area based upon the digital elevation data. Then it simulates various physical processes: including snow ablation, subsurface flow, overland flow and channel flow routing, soil thawing and evapotranspiration. The kinematic wave method is used for conducting overland flow and channel flow routing. The subsurface flow is simulated using the Darcian approach. The energy balance scheme was the primary approach used in energy‐related process simulations (snowmelt and evapotranspiration), although there are options to model snowmelt by the degree‐day method and evapotranspiration by the Priestley–Taylor equation. This hydrological model simulates the dynamic interactions of each of these processes and can predict spatially distributed snowmelt, soil moisture and evapotranspiration over a watershed at each time step as well as discharge in any specified channel(s). The model was applied to Imnavait watershed (about 2·2 km2) and the Upper Kuparuk River basin (about 146 km2) in northern Alaska. Simulated results of spatially distributed soil moisture content, discharge at gauging stations, snowpack ablations curves and other results yield reasonable agreement, both spatially and temporally, with available data sets such as SAR imagery‐generated soil moisture data and field measurements of snowpack ablation, and discharge data at selected points. The initial timing of simulated discharge does not compare well with the measured data during snowmelt periods mainly because the effect of snow damming on runoff was not considered in the model. Results from the application of this model demonstrate that spatially distributed models have the potential for improving our understanding of hydrology for certain settings. Finally, a critical component that led to the performance of this modelling is the coupling of the mass and energy processes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
This paper reports results from field experiments and hydrological modelling on the dynamics of runoff generation in highly convergent parts of the landscape in a logged and burnt eucalypt forest in south‐eastern Victoria, Australia. Large‐scale rainfall simulation experiments were conducted to explore runoff generating mechanisms from harvested areas, and to assess the effectiveness of standard water quality protective measures, here a disturbed filter strip, in preventing accession of sediment to near‐stream areas. We then examined the likely effects of varying antecedent moisture conditions on surface and subsurface runoff generating mechanisms. Very small volumes of surface runoff were generated only at very high rainfall intensity rates that exceeded a 100 year recurrence interval event during the simulated experiments. There was little or no identifiable impact of either compaction from logging operations or fire‐induced hydrophobicity on surface infiltration or generation of surface runoff. Measured soil hydraulic properties and soil depths explained the paucity of surface runoff, and the dominance of subsurface storm flow as the prime runoff generating mechanism. Deep lateral subsurface flow was observed from the cut‐face of a fire access track and into a streamhead downslope of the experimental plots. Water balance modelling using Topog_Dynamic indicated the conditions under which saturated overland flow in this environment could be generated are rare, but that care should be taken in siting of roads and tracks in lower parts of convergent landscapes. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
Physics-based distributed models for simulating flow in karst systems are generally based on the discrete–continuum approach in which the flow in the three-dimensional fractured limestone matrix continuum is coupled with the flow in discrete one-dimensional conduits. In this study we present a newly designed discrete–continuum model for simulating flow in karst systems. We use a flexible spatial discretization such that complicated conduit networks can be incorporated. Turbulent conduit flow and turbulent surface flow are described by the diffusion wave equation whereas laminar variably saturated flow in the matrix is described by the Richards equation. Transients between free-surface and pressurized conduit flow are handled by changing the capacity term of the conduit flow equation. This new approach has the advantage that the transients in mixed conduit flow regimes can be handled without the Preissmann slot approach. Conduit–matrix coupling is based on the Peaceman’s well-index such that simulated exchange fluxes across the conduit–matrix interface are less sensitive to the spatial discretization. Coupling with the surface flow domain is based on numerical techniques commonly used in surface–subsurface models and storm water drainage models. Robust algorithms are used to simulate the non-linear flow processes in a coupled fashion. The model is verified and illustrated with simulation examples.  相似文献   

14.
Recent advancements in analytical solutions to quantify water and solute travel time distributions (TTDs) and the related StorAge Selection (SAS) functions synthesize catchment complexity into a simplified, lumped representation. Although these analytical approaches are efficient in application, they require rarely available long‐term and high‐frequency hydrochemical data for parameter estimation. Alternatively, integrated hydrologic models coupled to Lagrangian particle‐tracking approaches can directly simulate age under different catchment geometries and complexity, but at a greater computational expense. Here, we bridge the two approaches, using a physically based model to explore the uncertainty in the estimation of the SAS function shape. In particular, we study the influence of subsurface heterogeneity, interactions between distinct flow domains (i.e., the vadose zone and saturated groundwater), diversity of flow pathways, and recharge rate on the shape of TTDs and the SAS functions. We use an integrated hydrology model, ParFlow, linked with a particle‐tracking model, SLIM, to compute transient residence times (or ages) at every cell in the domain, facilitating a direct characterization of the SAS function. Steady‐state results reveal that the SAS function shape shows a wide range of variation with respect to the variability in the structure of subsurface heterogeneity. Ensembles of spatially correlated realizations of hydraulic conductivity indicate that the SAS functions in the saturated groundwater have an overall weak tendency toward sampling younger ages, whereas the vadose zone gives a strong preference for older ages. We further show that the influence of recharge rate on the TTD is tightly dependent on the variability of subsurface hydraulic conductivity.  相似文献   

15.
Rainfall takes many flowpaths to reach a stream, and the success of riparian buffers in water quality management is significantly influenced by riparian hydrology. This paper presents results from hydrometric monitoring of riparian buffer hydrology in a pasture catchment. Runoff processes and riparian flowpaths were investigated on two planar hillslopes with regenerating grass and E. globulus buffers. Surface runoff and subsurface flows (A‐ and B‐horizons) were measured for 3 years using surface runoff collectors, subsurface troughs and piezometers. Water volumes moving through the riparian buffers via the measured flowpaths were ranked B‐horizon ? surface runoff ≈ A‐horizon. Runoff volumes through the B‐horizon troughs were an order of magnitude greater than those recorded for the most productive surface runoff plots or the A‐horizon troughs. Subsurface runoff and saturation‐excess overland flow (SOF) were limited to the winter months, whereas infiltration‐excess overland flow (IEOF) can occur all year round during intense storms. Surface runoff was recorded on 33 occasions, mostly during winter (late May–early October), and total annual surface runoff volumes collected by the 20 unconfined (2 m wide) runoff plots varied between > 80 and < 20 m3. Subsurface flow only occurred in winter, and the 6 m wide B‐horizon subsurface troughs flowed above 1 l s?1 continuously, whereas the A‐horizon troughs flowed infrequently (<6 days per year). In summer, surface runoff occurred as IEOF during intense storms in the E. globulus buffer, but not in the grass buffer. Observations suggest that surface crusting reduced the soil's infiltration capacity in the E. globulus buffer. During winter, SOF and seepage were observed in both buffers, but subsurface flow through the B‐horizon was the dominant flowpath. Key hydrologic differences between the grass and tree buffers are the generation of IEOF in the E. globulus buffer during intense summer storms, and the smaller subsurface runoff volumes and fewer flow days in the E. globulus buffer. Low surface runoff volumes are likely to limit the potential of these buffers to filter pollutants from surface runoff. High subsurface flow volumes and saturated conductivities are also likely to limit the residence time of water in the subsurface domain. Based on their hydrologic performance, the key roles of riparian buffers in this landscape are likely to be displacing sediment and nutrient‐generating activities away from streams and stabilizing channel morphology. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Water is a major limiting factor in arid and semi‐arid agriculture. In the Sahelian zone of Africa, it is not always the limited amount of annual rainfall that constrains crop production, but rather the proportion of rainfall that enters the root zone and becomes plant‐available soil moisture. Maximizing the rain‐use efficiency and therefore limiting overland flow is an important issue for farmers. The objectives of this research were to model the processes of infiltration, runoff and subsequent erosion in a Sahelian environment and to study the spatial distribution of overland flow and soil erosion. The wide variety of existing water erosion models are not developed for the Sahel and so do not include the unique Sahelian processes. The topography of the Sahelian agricultural lands in northern Burkina Faso is such that field slopes are generally low (0–5°) and overland flow mostly occurs in the form of sheet flow, which may transport large amounts of fine, nutrient‐rich particles despite its low sediment transport capacity. Furthermore, pool formation in a field limits overland flow and causes resettlement of sediment resulting in the development of a surface crust. The EUROSEM model was rewritten in the dynamic modelling code of PCRaster and extended to account for the pool formation and crust development. The modelling results were calibrated with field data from the 2001 rainy season in the Katacheri catchment in northern Burkina Faso. It is concluded that the modified version of EUROSEM for the Sahel is a fully dynamic erosion model, able to simulate infiltration, runoff routing, pool formation, sediment transport, and erosion and deposition by inter‐rill processes over the land surface in individual storms at the scale of both runoff plots and fields. A good agreement is obtained between simulated and measured amounts of runoff and sediment discharge. Incorporating crust development during the event may enhance model performance, since the process has a large influence on infiltration capacity and sediment detachment in the Sahel. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
18.
In the semi‐arid Mediterranean environment, the rainfall–runoff relationships are complex because of the markedly irregular patterns in rainfall, the seasonal mismatch between evaporation and rainfall, and the spatial heterogeneity in landscape properties. Watersheds often display considerable non‐linear threshold behavior, which still make runoff generation an open research question. Our objectives in this context were: to identify the primary processes of runoff generation in a small natural catchment; to test whether a physically based model, which takes into consideration only the primary processes, is able to predict spatially distributed water‐table and stream discharge dynamics; and to use the hydrological model to increase our understanding of runoff generation mechanisms. The observed seasonal dynamics of soil moisture, water‐table depth, and stream discharge indicated that Hortonian overland‐flow was negligible and the main mechanism of runoff generation was saturated subsurface‐flow. This gives rise to base‐flow, controls the formation of the saturated areas, and contributes to storm‐flow together with saturation overland‐flow. The distributed model, with a 1D scheme for the kinematic surface‐flow, a 2D sub‐horizontal scheme for the saturated subsurface‐flow, and ignoring the unsaturated flow, performed efficiently in years when runoff volume was high and medium, although there was a smoothing effect on the observed water‐table. In dry years, small errors greatly reduced the efficiency of the model. The hydrological model has allowed to relate the runoff generation mechanisms with the land‐use. The forested hillslopes, where the calibrated soil conductivity was high, were never saturated, except at the foot of the slopes, where exfiltration of saturated subsurface‐flow contributed to storm‐flow. Saturation overland‐flow was only found near the streams, except when there were storm‐flow peaks, when it also occurred on hillslopes used for pasture, where soil conductivity was low. The bedrock–soil percolation, simulated by a threshold mechanism, further increased the non‐linearity of the rainfall–runoff processes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The removal of chemicals in solution by overland flow from agricultural land has the potential to be a significant source of chemical loss where chemicals are applied to the soil surface, as in zero tillage and surface‐mulched farming systems. Currently, we lack detailed understanding of the transfer mechanism between the soil solution and overland flow, particularly under field conditions. A model of solute transfer from soil solution to overland flow was developed. The model is based on the hypothesis that a solute is initially distributed uniformly throughout the soil pore space in a thin layer at the soil surface. A fundamental assumption of the model is that at the time runoff commences, any solute at the soil surface that could be transported into the soil with the infiltrating water will already have been convected away from the area of potential exchange. Solute remaining at the soil surface is therefore not subject to further infiltration and may be approximated as a layer of tracer on a plane impermeable surface. The model fitted experimental data very well in all but one trial. The model in its present form focuses on the exchange of solute between the soil solution and surface water after the commencement of runoff. Future model development requires the relationship between the mass transfer parameters of the model and the time to runoff to be defined. This would enable the model to be used for extrapolation beyond the specific experimental results of this study. The close agreement between experimental results and model simulations shows that the simple transfer equation proposed in this study has promise for estimating solute loss to surface runoff. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
We propose an improvement of the overland‐flow parameterization in a distributed hydrological model, which uses a constant horizontal grid resolution and employs the kinematic wave approximation for both hillslope and river channel flow. The standard parameterization lacks any channel flow characteristics for rivers, which results in reduced river flow velocities for streams narrower than the horizontal grid resolution. Moreover, the surface areas, through which these wider model rivers may exchange water with the subsurface, are larger than the real river channels potentially leading to unrealistic vertical flows. We propose an approximation of the subscale channel flow by scaling Manning's roughness in the kinematic wave formulation via a relationship between river width and grid cell size, following a simplified version of the Barré de Saint‐Venant equations (Manning–Strickler equations). The too large exchange areas between model rivers and the subsurface are compensated by a grid resolution‐dependent scaling of the infiltration/exfiltration rate across river beds. We test both scaling approaches in the integrated hydrological model ParFlow. An empirical relation is used for estimating the true river width from the mean annual discharge. Our simulations show that the scaling of the roughness coefficient and the hydraulic conductivity effectively corrects overland flow velocities calculated on the coarse grid leading to a better representation of flood waves in the river channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号