首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
阿尔卑斯山山体效应及其对林线的影响分析   总被引:1,自引:0,他引:1  
阿尔卑斯山是欧亚大陆上著名的山地,对欧洲的地理生态格局具有重要的影响。山体效应产生的原因在于隆起的高原或山地吸收了更多的太阳辐射。因此,论文以阿尔卑斯山为研究对象,利用收集到的气象台站观测数据、林线、数字高程数据,以及基于半球视域算法计算得到的太阳辐射数据等,分析阿尔卑斯山气温的空间分布格局以及最热月、最冷月、全年的太阳辐射量,同时以太阳辐射作为山体效应的代用因子,采用逐步回归分析方法构建了阿尔卑斯山林线分布模型,探究该山地的山体效应及其对林线的影响。研究结果表明:① 阿尔卑斯山具有明显的山体效应,山体内部的太阳辐射量远高于山体边缘地区,这也是山体内部气温和林线高度都高于山体边缘地区的主要原因。最热月、最冷月和全年总太阳辐射量在山体内部比边缘地区分别高10~20、20~40和200~400 kWh/m2。② 太阳辐射能更好地定量化山体效应,以太阳辐射为山体效应代用因子建立的林线分布模型具有更高的精度。与基于气温、降水构建的林线分布模型(R2= 0.522)相比,该模型具有更高的模拟精度(R2 = 0.736),同时太阳辐射对林线分布的贡献率最大(1月、7月太阳辐射的贡献率分别为34.75%、27.82%),超过了气温和降水的贡献率(分别为26.24%和11.17%)。  相似文献   

2.
青藏高原和阿尔卑斯山山体效应的对比研究   总被引:1,自引:0,他引:1  
索南东主  姚永慧  张百平 《地理研究》2020,39(11):2568-2580
山体效应不仅对气候产生重大影响,也对区域地理生态格局有深远影响,尤其是它对山地垂直带分布和结构类型等的影响已经为地理学家和地植物学家所认识。目前相关研究主要集中在山体效应定量化方面,缺少不同山地山体效应的对比研究,因此对山体效应的区域差异性了解不足。本文选择欧亚大陆上具有明显山体效应的两个山地青藏高原和阿尔卑斯山为研究对象,利用收集到的气象台站观测数据、林线和DEM数据以及基于MODIS地表温度估算的青藏高原和阿尔卑斯山气温数据等,通过对比分析青藏高原与阿尔卑斯山相同海拔高度上的气温以及林线分布高度等来探讨两个山地的山体效应差异性。分析结果表明青藏高原的山体效应比阿尔卑斯山更为强烈,表现为:① 由于山体效应影响,在相同海拔高度上(4500 m),青藏高原内部气温远高于阿尔卑斯山的气温,尤其是在最热月高原内部气温比阿尔卑斯山内部气温高10~15℃,在最冷月高原内部气温比阿尔卑斯山内部气温高5~10℃。② 由于山体效应影响,青藏高原内部林线也远高于阿尔卑斯山内部林线,约高2000~3000 m。本研究将为山体效应的影响因素分析奠定基础,同时对于揭示欧亚大陆山地生态系统格局具有一定的科学意义。  相似文献   

3.
根据收集到173个林线数据,采用纬度、经度和基面高度的三元一次方程拟合欧亚大陆东南部林线分布,计算各自的标准回归系数和贡献率,以此来确定山体基面高度(山体效应的简明表达形式)对林线分布高度的影响。结果表明,纬度、经度和山体基面高度对林线分布高度的贡献率分别为30.60%、26.53%、42.87%。以北纬32o为界线,对其以北、以南区域也分别进行了分析,基面高度的贡献率达到24.10%和39.11%。分析不同尺度和区域山体基面高度作用于林线的贡献率不难发现:在欧亚大陆东南部以基面高度代表的山体效应对于林线高度的影响显著,明显地超过了纬度和经度。基面高度的作用受气候条件和海陆位置影响较小,不论大陆内部或沿海,基面高度分异对山地垂直带分异的影响都相对独立和稳定。该结果定量地表明了山体效应对林线分布高度的重要作用。  相似文献   

4.
山体效应是隆起的山体所产生的热力效应,其结果之一就是相同垂直带界限自外围向内部有升高的趋势。本文结合MOD11C3地表温度产品和地面144个气象台站实测气象数据,估算青藏高原内外相同高度上的温差(也即高原山体效应值)。具体结论如下:(1)最大温差(10.04℃~11.70℃)出现在高原中南部,即雅鲁藏布江以北藏北高原以南。由此为核心向北、向东、向西均逐渐减小;(2)数据点上同高度内外温差与局部基面高度有紧密关系,基面高度每抬升100 m,温差增加约0.051℃,并有加速增大的趋势;(3)山体基面高度与山体效应存在明显的线性关系,其决定系数R2高达0.5306。但山体基面高度最高的区域山体效应并非最大,说明还有其他因子影响山体效应的大小,可能的因子包括大气湿度、纬度、地形开阔程度等,在建立山体效应数字模型时必须加以考虑;(4)高原山体效应对雪线分布高度的抬升作用更甚于其对林线。山体效应估值最大的区域,分布着6 000 m以上极高雪线;最高林线(4 900 m)分布于本研究中山体效应估算值较低的相对多雨区,因为林线的发育还要求一定的降水量。  相似文献   

5.
山体效应对北半球林线分布的影响分析   总被引:3,自引:1,他引:2  
赵芳  张百平  庞宇  姚永慧  韩芳  张朔  齐文文 《地理学报》2012,67(11):1556-1564
通过搜集整理了北半球516 个林线数据, 结合WorldClim 气象数据计算了林线数据点上的大陆度, 并依据SRTM高程数据提取了林线处的山体基面高度(作为山体效应的代用因子), 然后以纬度、大陆度和山体基面高度为解释变量, 建立三元回归模型。结果表明:线性回归模型的判定系数R2为0.904, 二次回归模型的R2高达0.912。相比先前不考虑基面高度的林线分布模型(R2 = 0.79), 纳入了山体基面高度的林线分布模型能够更加有效的拟合半球尺度的林线分布; 结果还表明, 山体基面高度对北半球林线高度分布的贡献率达到了48.94% (p =0.000), 而纬度和大陆度分别为45.02% (p = 0.000) 和6.04% (p = 0.000)。这揭示了山体效应对半球尺度林线分布具有重要的影响。基面高度在北美洲地区对林线高度的贡献率最大(50.49%, p=0.000), 在欧亚大陆东部地区为48.73% (p = 0.000), 在欧亚大陆西部地区为43.6% (p=0.000)。这一结果说明山体效应对林线分布高度的影响虽有区域差异, 但都有较高的贡献率。  相似文献   

6.
青藏高原增温效应对垂直带谱的影响   总被引:2,自引:0,他引:2  
青藏高原作为巨大的热源对亚洲气候、高原生态格局等产生重要的影响。但青藏高原的增温效应最初是20世纪50年代因其对亚洲气候的重大影响而被发现的,因此,大量的相关研究主要集中在高原夏季增温对气候的影响方面,而高原增温效应对高原地理生态格局的影响研究却非常少。利用收集到的气象台站观测数据、基于MODIS地表温度估算的青藏高原气温数据、林线数据和垂直带谱数据及DEM数据,通过对比分析高原内部与外围山区垂直带谱高度的变化及林线的分布规律,并以高原内部与边缘地区相同海拔高度上的气温差、最热月10℃等温线、15℃·月的温暖指数等温度指标来定量描述高原的增温效应及其对垂直带谱和林线的影响。研究结果表明:1由于青藏高原增温效应的影响,高原内部气温和生长季长度高于边缘地区,相同海拔高度上,高原内部各月气温比边缘地区高2~7℃;在4500 m高度上,高原内部各月气温比四川盆地高3.58℃(4月)到6.63℃(6月);最热月10℃等温线的海拔高度也从东部边缘(4000 m以下)向内部逐渐升高,在拉萨-改则一带则可出现在4600~5000 m的高度;15℃·月的温暖指数的海拔高度也从边缘向内部逐渐升高,在4500 m的海拔高度上,横断山区、高原南部和中部地区的温暖指数均能达到15℃·月以上,而其它边缘地区则都低于15℃·月。2青藏高原垂直带谱和林线的分布规律与增温效应的规律极其一致,即均从东部边缘向内部逐渐升高,表明增温效应抬升了高原内部垂直带谱的分布范围和高度:山地暗针叶林带的分布范围在高原内部比东部边缘地区高1000~1500 m;山地草甸带的分布范围在高原内部比东部边缘高出700~900 m;高原内部林线比外围地区高500~1000 m左右。最热月10℃等温线和15℃·月温暖指数的分布规律与林线分布规律一致,表明高原增温效应对垂直带谱的分布具有重要的影响。  相似文献   

7.
山体效应使山体内部的垂直植被带相对升高,影响山地的立体生态格局.台湾岛中央山脉在3500m以上,山地植被的分布高度不仅受到纬度和季风的影响,也必然受到山体效应的影响.采用台湾生物多样性信息中心发布的数据,利用多元线性回归模型分析纬度、山体效应(以山体基面高度为简单量化指标)以及季风(以冬雨量占全年降水量百分比为简明代表)对台湾常绿阔叶林分布上限的影响.结果表明,纬度、山体效应和季风为自变量的线性回归模型R2为0.562,回归方程显著,具有统计学意义,三个变量的贡献率分别为26.32%、64.12%与9.56%.这表明山体效应对台湾山地垂直带的影响非常显著,远远超过了纬度与季风的作用.同时还发现,冬雨量与垂直带分布高度的相关性以24.13°N为界,南北完全相反.该纬度以南,冬雨量与垂直带分布高度呈现较强的正相关性;而在以北,正相关性显著下降甚至出现了一定的负相关.后者应该与冬雨量过多有密切关系.  相似文献   

8.
基于MODIS的秦巴山地气温估算与山体效应分析   总被引:1,自引:0,他引:1  
秦巴山地作为横亘在中国南北过渡带的巨大山脉,其山体效应对中国中部植被和气候的非地带性分布产生了重要的影响,山体内外同海拔的温差是表征山体效应大小较为理想的指标。本研究结合MODIS地表温度(LST)数据、STRM-1 DEM数据和秦巴山地的118个气象站点的观测数据,分别采用普通线性回归(OLS)和地理加权回归(GWR)两种分析方法对秦巴山地的气温进行估算,在此基础上将秦巴山地各月气温转换为同海拔(1500 m,秦巴山地平均海拔)气温,对比分析秦巴山地的山体效应。结果表明:① 相比OLS分析,GWR分析方法的精度更高,各月回归模型的R 2均在0.89以上,均方根误差(RMSE)在0.68~0.98 ℃之间。② 利用GWR估算得到的同海拔气温,从东向西随海拔升高呈现了明显的升高的趋势,秦岭西部山地比东段升高约6 ℃和4.5 ℃;大巴山西部山地年均和7月份同海拔的气温较东段升高约8 ℃和5 ℃。③ 从南向北,以汉江为分界,秦岭与大巴山的同海拔的气温均呈现出由山体边缘向内部升高的趋势。④ 秦巴山地西部大起伏高山,秦岭大起伏高中山和大巴山大起伏中山,相比豫西汉中中山谷地,各月均同海拔气温分别升高了约3.85~9.28 ℃、1.49~3.34 ℃和0.43~3.05 ℃,平均温差约为3.50 ℃,说明秦巴山地大起伏中高山的山体效应十分明显。  相似文献   

9.
正全球山地植被垂直带基本类型有限,但其组合形式和结构千姿万态,为世界呈现出无限的山地垂直带谱,特别是同一类垂直带在不同纬度、不同离海距离、不同山体位置都表现出不同的高度分布。垂直带分布在山体或高原内外的高度差异,是非地带性作用的主要结果之一。但对于非地带性作用的规律和机理,一直是自然地理学中最为薄弱的环节。中国科学院地理科学与资源研究所张百平研究员等撰写《山体效应研究》于2015年9月由中国环境出版社出版,该书对山体效应及其影响进行了全面系统地研究,使对非地带性及其作用的认识上了一个台阶,也使对丰富多彩的山地垂直带谱的研究达到了新的科学高度。  相似文献   

10.
山体效应是地理地带性之外,在大尺度上影响垂直带分布的主要因素,山体基面高度则是山体效应的第一影响因子。青藏高原及其周边地区,雪线呈现出中心高、周围低,与山体基面高度相一致的环状分布模式。为分析山体基面高度对雪线分布的影响,本文共收集青藏高原及周边地区雪线数据142个,采用纬度、经度和基面高度为自变量的三元一次方程拟合研究区雪线分布,计算各自的标准回归系数和相对贡献率,再将基面高度划分成5个子集(0~1000 m、1001~2000 m、2001~3000 m、3001~4000 m和4001~5000 m),分析基面高度不同的山地对雪线的影响差异。结果表明:① 在青藏高原,纬度、经度和基面高度对雪线高度分布的相对贡献率分别为51.49%、16.31%和32.20%;② 随着基面高度的增高,各子集模型的决定系数虽有逐渐降低的趋势,但仍保持在较高的值域(R2=0.895~0.668),说明模型的有效性;③ 随基面高度的抬升,纬度和山体基面高度对雪线分布高度的相对贡献率分别表现出降低(92.6%~48.99%,R2=0.855)和增大(3.33%~31.76%,R2=0.582)的趋势,表明基面高度越高,其对雪线分布高度的影响越大。  相似文献   

11.
山体效应是地理地带性之外,在大尺度上影响垂直带分布的主要因素,山体基面高度则是山体效应的第一影响因子。青藏高原及其周边地区,雪线呈现出中心高、周围低,与山体基面高度相一致的环状分布模式。为分析山体基面高度对雪线分布的影响,本文共收集青藏高原及周边地区雪线数据142个,采用纬度、经度和基面高度为自变量的三元一次方程拟合研究区雪线分布,计算各自的标准回归系数和相对贡献率,再将基面高度划分成5个子集(0~1000 m、1001~2000 m、2001~3000 m、3001~4000 m和4001~5000 m),分析基面高度不同的山地对雪线的影响差异。结果表明:① 在青藏高原,纬度、经度和基面高度对雪线高度分布的相对贡献率分别为51.49%、16.31%和32.20%;② 随着基面高度的增高,各子集模型的决定系数虽有逐渐降低的趋势,但仍保持在较高的值域(R2=0.895~0.668),说明模型的有效性;③ 随基面高度的抬升,纬度和山体基面高度对雪线分布高度的相对贡献率分别表现出降低(92.6%~48.99%,R2=0.855)和增大(3.33%~31.76%,R2=0.582)的趋势,表明基面高度越高,其对雪线分布高度的影响越大。  相似文献   

12.
天山北坡高山林线分布的生态地理特征   总被引:1,自引:0,他引:1  
综合利用多源遥感影像和实地勘察资料识别天山北坡高山林线分布格局,结合区域气象数据和土壤理化性质,分析天山北坡林线分布的生态地理特征。结果表明:①天山北坡林线分布高度大约在2 600~2 850 m,从西向东林线分布高度呈上升趋势,奇台至巴里坤段林线高度上升最为显著;伊犁河谷段与玛纳斯段林线垂直宽度较宽。②影响天山北坡林线分布高度的关键气候因子为生长季温度(如年生物学温度3.35 ℃,最热月均温10.49 ℃,生长季均温8.26 ℃),特别是年生物学温度,能较好的指示天山北坡高山林线分布位置,且各气候指标均在全国均值范围之内,而影响巴音布鲁克地区森林发育的主要原因为冬季低温干旱。③伊犁林线过渡带和玛纳斯林线过渡带有机质、全氮及全磷的含量最高;酸碱性大致以阜康林线为界,向西呈酸性,向东呈碱性;土壤营养物质主要分布于表层(0~10 cm),深层(30~80 cm)含量低且变化不显著,具有明显的“表聚现象”;下层土壤pH值从西向东逐渐由弱酸性向弱碱性过渡;电导率空间变异性较强,各层变化特征不显著。  相似文献   

13.
青藏高原气温空间分布规律及其生态意义   总被引:6,自引:1,他引:5  
姚永慧  张百平 《地理研究》2015,34(11):2084-2094
作为世界第三极的青藏高原,其巨大的块体产生了显著的夏季增温作用,对亚洲乃至全球气候都具有重大影响。但由于高原自然条件严酷,山区气象观测台站很少,气象资料极度匮乏;如果依靠台站数据进行空间插值获得高原气温的空间分布数据,会由于插值点过少而产生较大误差并可能掩盖一些空间信息,因而难以全面反映高原气温的空间分布规律。利用基于MODIS地表温度数据估算的青藏高原气温数据,详细分析各月气温及重要等温线的空间分布格局,并结合林线和雪线数据,初步探讨了高原气温空间分布格局对高原地理生态格局的重要影响。研究表明:① 等温线的海拔高度自高原东北部、东部边缘向内部逐渐升高,等温线在高原内部比东部边缘高500~2000 m,表明相同海拔高度上气温自边缘向高原内部逐渐升高。② 高原西北部的羌塘高原、可可西里为高原的寒冷区,全年有7个月的气温低于0 ℃,3~4个月的气温低于-10 ℃;青藏高原南部(喜马拉雅山北坡—冈底斯山南坡)和中部(冈底斯山北坡—唐古拉山南坡)是高原的温暖区,全年有5个月的气温能达到5~10 ℃,有3个月的气温能超过10 ℃,尤其是拉萨—林芝—左贡一带在3500~4000 m以下的地区最冷月均温也能高于0 ℃。③ 北半球最高雪线和林线分别分布于高原的西南部和东南部,表明高原气温空间分布特征对本地的地理生态格局具有重要影响。  相似文献   

14.
林线作为重要的地理和生态界线,备受国内外学者的关注。然而林线和树线之间的过渡区内不同类型的植被斑块交错分布,呈现一定的随机性,导致林线和树线的分布界线也具有一定的模糊性。目前大多数研究将林线/树线简化为连续变化的曲线,难以表达和分析林线与树线的模糊性和过渡区内不同类型植被斑块分布的随机性。本研究采用复合高程信息的NDVI数据提取白马雪山和博格达山林线与树线数据点,构建林线与树线分布高度云模型,定量分析林线和树线分布的不确定性,在此基础上比较白马雪山与博格达山林线与树线影响因素的差异。主要结论:①构建了白马雪山和博格达山林线/树线分布高度云模型,以林线、树线分布高度云模型用期望(Ex)、熵(En)、超熵(He)3个数字特征来表达林线、树线分布的整体特性。②博格达山林线与树线分布高度云模型的熵(林线410.71 m、树线597.32 m)和超熵(林线66.22 m、树线280.86 m)大于白马雪山(熵:林线182.33 m、树线193.96 m;超熵:林线56.26 m、树线65.86 m),即博格达山林线与树线分布的不确定性高于白马雪山。③干燥度是白马雪山林线与树线分布高度贡献率最高的影响因素(50.26%、44.11%),其次是7月均温(12.76%、17.93%)和积雪效应(23.97%、11.48%),而博格达山林线与树线分布高度贡献率最高的影响因素是7月均温(48.15%、60.59%),其次是干燥度(28.57%、17.67%)。两地林线和树线分布的主导因素明显差异。本研究以白马雪山和博格达山林线与树线分布高度云模型的数字特征,表达林线和树线分布的模糊性和随机性,并比较分析两地林线与树线影响因素的差异,为精细分析垂直带分布的复杂性、定量分析垂直带影响因子的尺度变化和空间分异,提供了新的角度和方法。  相似文献   

15.
中国高山林线的分布高度与气候的关系   总被引:26,自引:0,他引:26  
王襄平  张玲  方精云 《地理学报》2004,59(6):871-879
通过研究我国高山林线的分布高度沿纬度、经度的变化格局,和对高山林线处的温度和基带降水等气候指标的分析,对我国高山林线分布高度与气候因子的关系进行探讨。结果表明:(1) 我国高山林线高度表现出明显的纬向和经向变化,总体趋势是:在北纬30o以北,高山林线高度随纬度升高而下降,下降速率为112 m/度左右;在30oN以南,则表现出较大的东西部差异:在东部,高山林线高度变化不明显,西部则随纬度增加呈上升趋势。在相似的纬度上,高山林线高度呈现出从东向西升高的趋势。高山林线在藏东南的洛隆、丁青、工布江达一带 (约29o~32oN,94o~96oE) 达到4 600 m,为世界最高林线高度,并以此为中心向四周降低。(2) 影响高山林线高度的主导气候因子为生长季温度条件。我国高山林线高度的温度指标为年生物温度3.5 oC,温暖指数14.2 oC·月,生长季平均温度8.2 oC。该指标相应海拔高度的地理差异,导致了我国高山林线高度的纬向、经向变化,和从沿海到内陆林线高度的差异。(3) 降水对高山林线高度有显著影响。在中高纬度地区,相同纬度上干旱区域的高山林线高于较湿润区域,降水量是通过温度间接作用于林线高度的。  相似文献   

16.
亚洲中部干旱区高山林线变化及其驱动机制研究展望   总被引:1,自引:1,他引:0  
气候变化对森林的影响和森林对气候的反馈作用是全球变化研究前沿,也是森林生态学重要研究方向之一.全球变化对森林的影响存在明显的区域差异,亚洲中部干旱区山地森林在全球变暖背景下正经历着显著变化,其中以高山林线的变化最具代表性.植被带谱清晰的天山北坡近50 a气候变异明显,是研究高山林线变化的理想区域.采用摄影测量技术及高分...  相似文献   

17.
基于DEM的秦岭山地1月气温及0℃等温线变化   总被引:9,自引:5,他引:4  
白红英  马新萍  高翔  侯钦磊 《地理学报》2012,67(11):1443-1450
以秦岭南北39 个气象站点1959-2009 年1 月平均气温为基础, 考虑地形因素对温度场的影响, 采取基于DEM的空间插值方法, 获取秦岭山地复杂地形下的1 月气温空间插值数据集, 并在此基础上提取1 月0℃等温线, 研究了50 年来秦岭山地1 月平均气温和1 月0℃等温线的变化情况。结果表明:秦岭南北1 月月均气温均表现为上升趋势, 温度变化倾向率约为0.2℃/10a;50 年来秦岭1 月0℃等温线发生了明显上升, 平均上升高度为143.7 m。从经度上看, 107°E~109°E 范围内1 月0℃等温线所处海拔高度的变化最为强烈, 50 年来上升高度达166.2 m, 明显高于东西两段;1993 年是秦岭地区气温明显上升的突变点, 气温突变后1 月0℃等温线比突变前平均上升了113.82 m。  相似文献   

18.
长白山北坡岳桦林线变动的水热条件分析   总被引:3,自引:0,他引:3  
近50年来长白山北坡林线种群呈现明显的扩张态势。为揭示林线变动机制,本文以长白山天池气象站的气象数据(1953-2007年)为基础,结合野外的气温观测,以温暖指数(WI)及湿润指数(HI)为生态气候指标,以16℃·月和68.8 mm/℃·月为阈值,通过数据保证率的计算推测55年来长白山北坡岳桦林线的水热条件变化。结果表明:以WI和HI指标确定的林线位置分别在1975~2460 m和1584~2231 m。WI与HI变化对林线高度变动影响的交互作用不显著(p>0.05),WI与HI变化呈显著负相关(p<0.01),两种林线变化也呈负相关(r=-0.11<0),交互作用和相关分析结果显示水热条件的不同步变化使岳桦林线上侵不能达到各自的潜在高度,林线位置波动在1975~2231 m。林线上缘波动的复杂程度高于下缘,波动幅度与胁迫力的大小呈正相关。  相似文献   

19.
喜马拉雅地区拥有世界上最高和最多样的林线。亚高山林线作为山地森林和高山植被之间最明显的边界之一,多年来一直吸引着研究者的兴趣。然而,由于地理位置偏远,与欧洲同领域的研究相比,喜马拉雅山脉的林线生态学研究不足。本文综述了气候变化情景下喜马拉雅地区的植物区系组成、林线的分布格局和气候条件,形成林线的碳供应机制,以及气候变化影响下林线的迁移和林木更新。研究发现西藏东部地区是喜马拉雅林线分布最高的地区,大果圆柏和川西云杉是分布最高的林线树种,林线是低温限制导致植物生长受限形成的,全球林线有相当一致的低温阈值,而水分和养分并非林线形成的全球限制因子。在未来全球变暖的情况下,预计林线将向更高海拔推进,但在大多数情况下,林线交错带树木更新增加比林线推进更常见。为了使我们能够预测人类活动和相关的全球变化对这一敏感区域的潜在影响和变化,需要对林线交错带进行更详细的机制研究。  相似文献   

20.
基于MODIS数据的青藏高原气温与增温效应估算   总被引:12,自引:2,他引:10  
姚永慧  张百平 《地理学报》2013,68(1):95-107
利用2001-2007 年MODIS地表温度数据、137 个气象观测台站数据和ASTERGDEM数据, 采用普通线性回归分析方法(OLS)及地理加权回归分析方法(GWR), 研究了高原月均地表温度与气温的相关关系, 最终选择精度较高的GWR分析方法, 建立了高原气温与地表温度、海拔高度的回归模型。各月气温GWR回归模型的决定系数(Adjusted R2) 都达到了0.91 以上(0.91~0.95), 标准误差(RMSE) 介于1.16~1.58℃;约70%以上的台站各月残差介于-1.5~1.5℃之间, 80%以上的台站的残差介于-2~2℃之间。根据该模型, 估算了青藏高原气温, 并在此基础上, 将高原及周边地区7 月份月均气温转换到4500 m和5000 m海拔高度上, 对比分析高原内部相对于外围地区的增温效应。研究结果表明:(1) 利用GWR方法, 结合地面台站的观测数据和MODIS Ts、DEM等, 对高原气温估算的精度高于以往普通回归分析模型估算的精度(RMSE=2~3℃), 精度可以提高到1.58℃;(2) 高原夏半年海拔5000 m左右的高山区气温能达到0℃以上, 尤其是7 月份, 海拔4000~5500 m的高山区的气温仍能达到10℃左右, 为山地森林的发育提供了温度条件, 使高原成为北半球林线分布最高的地方;(3) 高原的增温效应非常突出, 初步估算, 在相同的海拔高度上高原内部气温要比外围地区高6~10℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号