首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Christmas Mountains caldera complex developed approximately 42 Ma ago over an elliptical (8×5 km) laccolithic dome that formed during emplacement of the caldera magma body. Rocks of the caldera complex consist of tuffs, lavas, and volcaniclastic deposits, divided into five sequences. Three of the sequences contain major ash-flow tuffs whose eruption led to collapse of four calderas, all 1–1.5 km in diameter, over the dome. The oldest caldera-related rocks are sparsely porphyritic, rhyolitic, air-fall and ash-flow tuffs that record formation and collapse of a Plinian-type eruption column. Eruption of these tuffs induced collapse of a wedge along the western margin of the dome. A second, more abundantly porphyritic tuff led to collapse of a second caldera that partly overlapped the first. The last major eruptions were abundantly porphyritic, peralkaline quartz-trachyte ash-flow tuffs that ponded within two calderas over the crest of the dome. The tuffs are interbedded with coarse breccias that resulted from failure of the caldera walls. The Christmas Mountains caldera complex and two similar structures in Trans-Pecos Texas constitute a newly recognized caldera type, here termed a laccocaldera. They differ from more conventional calderas by having developed over thin laccolithic magma chambers rather than more deep-seated bodies, by their extreme precaldera doming and by their small size. However, they are similar to other calderas in having initial Plinian-type air-fall eruption followed by column collapse and ash-flow generation, multiple cycles of eruption, contemporaneous eruption and collapse, apparent pistonlike subsidence of the calderas, and compositional zoning within the magma chamber. Laccocalderas could occur else-where, particularly in alkalic magma belts in areas of undeformed sedimentary rocks.  相似文献   

2.
The Nazca Group, exposed east of Nazca, Peru, consists of a lower part composed of conglomerate and finer-grained clastic strata and an upper part made up of at least seven ash-flow sheets (cooling units or ignimbrites), collectively known as the Nazca Tuff. These tuffs were erupted between about 22 and 18 m.y. ago from a vent area in the vicinity of Pampa Galeras now marked by a collapse caldera. The early Miocene age of the Nazca Tuff provides additional evidence for a major pulse of largely pyroclastic felsic volcanism throughout the central Andes during the early Miocene. Recognition of the Pampa Galeras caldera supports the idea that many of these rocks were erupted from vent areas of the collapse-caldera type located near the eastern margin of the Coastal batholith.The Nazca Group overlies a major erosional surface cut on the Coastal batholith and its envelope that can be traced southward to the Chilean border. This surface is a continuation of the post-Incaic erosional surface to the north, which is overlain by conglomerate and radiometrically dated volcanic rock of late Eocene age. The post-Incaic surface therefore represents a major episode of regional uplift and pedimentation that followed early Tertiary orogeny. The absence of volcanic rocks of late Eocene/early Oligocene age overlying the Coastal batholith near Nazca and in southern Peru may reflect a general absence of post-Incaic volcanism in this portion of the Andes possibly related to differences in the angle of subduction and/or restriction of volcanic and volcaniclastic rocks of this age to depositional basins east of the batholith.  相似文献   

3.
 Diverse subsidence geometries and collapse processes for ash-flow calderas are inferred to reflect varying sizes, roof geometries, and depths of the source magma chambers, in combination with prior volcanic and regional tectonic influences. Based largely on a review of features at eroded pre-Quaternary calderas, a continuum of geometries and subsidence styles is inferred to exist, in both island-arc and continental settings, between small funnel calderas and larger plate (piston) subsidences bounded by arcuate faults. Within most ring-fault calderas, the subsided block is variably disrupted, due to differential movement during ash-flow eruptions and postcollapse magmatism, but highly chaotic piecemeal subsidence appears to be uncommon for large-diameter calderas. Small-scale downsag structures and accompanying extensional fractures develop along margins of most calderas during early stages of subsidence, but downsag is dominant only at calderas that have not subsided deeply. Calderas that are loci for multicyclic ash-flow eruption and subsidence cycles have the most complex internal structures. Large calderas have flared inner topographic walls due to landsliding of unstable slopes, and the resulting slide debris can constitute large proportions of caldera fill. Because the slide debris is concentrated near caldera walls, models from geophysical data can suggest a funnel geometry, even for large plate-subsidence calderas bounded by ring faults. Simple geometric models indicate that many large calderas have subsided 3–5 km, greater than the depth of most naturally exposed sections of intracaldera deposits. Many ring-fault plate-subsidence calderas and intrusive ring complexes have been recognized in the western U.S., Japan, and elsewhere, but no well-documented examples of exposed eroded calderas have large-scale funnel geometry or chaotically disrupted caldera floors. Reported ignimbrite "shields" in the central Andes, where large-volume ash-flows are inferred to have erupted without caldera collapse, seem alternatively interpretable as more conventional calderas that were filled to overflow by younger lavas and tuffs. Some exposed subcaldera intrusions provide insights concerning subsidence processes, but such intrusions may continue to evolve in volume, roof geometry, depth, and composition after formation of associated calderas. Received: 13 February 1997 / Accepted: 9 August 1997  相似文献   

4.
Roccamonfina, part of the Roman Potassic Volcanic Province, is an example of a composite volcano with a complex history of caldera development. The main caldera truncates a cone constructed predominantly of this caldera may have been associated with one of the ignimbritic eruptions of the Brown Leucitic Tuff (BLT) around 385 000 yr BP. The Campagnola Tuff, the youngest ignimbrite of the BLT, however, drapes the caldera margin and must postdate at least the initial stages of collapse. During the subsequent history of the caldera there were several major explosive eruptions. The largest of these was that of the Galluccio Tuff at about 300 000 yr BP. It is likely that there was further collapse within the main caldera associated with these eruptions. It is of note that despite these subsequent major explosive eruptions later collapse occurred within the confines of the main caldera. Between eruptions caldera lakes developed producing numerous lacustrine beds within the caldera fill. Extensive phases of phreatomagmatic activity generated thick sequences of pyroclastic surge and fall deposits. Activity within the main caldera ended with the growth of a large complex of basaltic trachyandestite lava domes around 150 000 yr BP. Early in the history of Roccamonfina sector collapse on the northern flank of the volcano formed the northern caldera. One of the youngest major events on Roccamonfina occurred at the head of this northern caldera with explosive activity producing the Conca Ignimbrite and associated caldera. There is no evidence that there was any linkage in the plumbing systems that fed eruptions in the main and northern calderas.  相似文献   

5.
Anisotropy of magnetic susceptibility (AMS) of the middle Tertiary Bloodgood Canyon and Shelley Peak Tuffs of the Mogollon-Datil volcanic field has been used to (1) evaluate the ability of AMS to constrain flow lineations in low-susceptibility ash-flow tuffs; (2) establish a correlation between magnetic fabric, magnetic mineralogy, tuff facies, and characteristics of the depositional setting; and (3) constrain source locations of the tuffs. The tuffs are associated with the overlapping Bursum caldera and Gila Cliff Dwellings basin. The high-silica Bloodgood Canyon Tuff fills the Gila Cliff Dwellings basin and occurs as thin outcrops outside of the basin. The older Shelley Peak Tuff occurs as thin outcrops both along the boundary between the two structures, and outside of the complex. AMS data were collected from 16 sites of Bloodgood Canyon Tuff basin fill, 19 sites of Bloodgood Canyon Tuff outflow, and 11 sites of Shelley Peak Tuff. Sites were classified on the basis of within-site clustering of orientations of principal susceptibility axes, based on the categories of Knight et al. (1986). Most microscopically visible oxide minerals in the Bloodgood Canyon Tuff outflow and basin fill, and in the Shelley Peak Tuff are members of the hematite-ilmenite solid solution series. However, IRM acquisition data indicate that Bloodgood Canyon Tuff basin fill and Shelley Peak Tuff have magnetic mineralogy dominated by single- or pseudo-single-domain magnetite, and that the magnetic mineralogy of the Bloodgood Canyon Tuff outflow is dominated by hematite. Hematite in Bloodgood Canyon Tuff outflow is likely to be the result of deuteric and/or low-temperature alteration of magnetite and iron silicate minerals. Bulk magnetic susceptibility is higher in magnetite-dominated ash-flow tuff (Bloodgood Canyon Tuff basin fill and Shelley Peak Tuff) than it is in hematite-dominated ash-flow tuff (Bloodgood Canyon Tuff outflow). Bloodgood Canyon Tuff outflow has the highest total anisotropy (H) of the three units, followed by Shelley Peak Tuff and Bloodgood Canyon Tuff basin fill. All three ash-flow tuffs are genearlly characterized by oblate susceptibility ellipsoids, with those of the Bloodgood Canyon Tuff basin fill nearest to spherical. At high values of total anisotropy, Shelley Peak Tuff susceptibility ellipsoids attain a prolate shape; those of Bloodgood Canyon Tuff outflow attain an increasingly oblate shape. Three factors may influence differences in total anisotropy and susceptibility ellipsoid shape: (1) ash which travelled the greatest distance before deposition may show the best development of magnetic fabric, particularly of magnetic lineation; (2) deposition of ash in a closed basin may inhibit laminar flow throughout the sheet and the resulting development of flow textures; and (3) replacement of magnetite and iron silicates preferentially oriented within the foliation plane by hematite with strong crystalline anisotropy may enhance the magnetic susceptibility within that plane. Scatter in AMS axis orientation within sites may result from: (1) greater orientation inaccuracy in block-sampled than in fielddrilled samples; (2) rheomorphism; and (3) low accuracy of AMS measurement in low-susceptibility ashflow tuffs. Evaluation of flow lineation based on AMS of sites with well-clustered K 1 axes indicates that (1) Bloodgood Canyon Tuff basin fill flowed along a generally northwest-southeast azimuth; (2) Shelley Peak Tuff located on the boundary of the Bursum caldera and the Gila Cliff Dwellings basin flowed along a nearly east-west azimuth; and (3) Bloodgood Canyon Tuff outflow sites have K 1 susceptibility axes generally radial to the Bursum-Gila Cliff Dwellings complex, but within-site scatter of K 1 orientations is generally too large to draw conclusions about flow lineation orientation. Limited petrographic work on pilot thin sections adds flow direction information to AMS-derived flow lineation information.  相似文献   

6.
During the past 1.2 m.y., a magma chamber of batholithic proportions has developed under the 100 by 30 km Toba Caldera Complex. Four separate eruptions have occurred from vents within the present collapse structure, which formed from eruption of the 2800 km3 Youngest Toba Tuff (YTT) at 74 ka. Eruption of the three older Toba Tuffs alternated from calderas situated in northern and southern portions of the present caldera. The northern caldera apparently developed upon a large andesitic stratovolcano. The calderas associated with the three older tuffs are obscured by caldera collapse and resurgence resulting from eruption of the YTT. Samosir Island and the Uluan Block are two sides of a single resurgent dome that has resurged since eruption of the YTT. Samosir Island is composed of thick YTT caldera fill, whereas the Uluan Block consists mainly of the Oldest Toba Tuff (OTT). In the past 74000 years lava domes have been extruded on Samosir Island and along the caldera's western ring fracture. This part of the ring fracture is the site of the only current activity at Toba: updoming and fumarolic activity. The Toba eruptions document the growth of the laterally continuous magma body which eventually erupted the YTT. Repose periods between the four Toba Tuffs range between 0.34 and 0.43 m.y. and give insights into pluton emplacement and magmatic evolution at Toba.  相似文献   

7.
Distinguishing strongly rheomorphic tuffs from extensive silicic lavas   总被引:2,自引:6,他引:2  
High-temperature silicic volcanic rocks, including strongly rheomorphic tuffs and extensive silicic lavas, have recently been recognized to be abundant in the geologic record. However, their mechanisms of eruption and emplacement are still controversial, and traditional criteria used to distinguish conventional ash-flow tuffs from silicic lavas largely fail to distinguish the high-temperature versions. We suggest the following criteria, ordered in decreasing ease of identification, to distinguish strongly rheomorphic tuffs from extensive silicic lavas: (1) the character of basal deposits; (2) the nature of distal parts of flows; (3) the relationship of units to pre-existing topography; and (4) the type of source. As a result of quenching against the ground, basal deposits best preserve primary features, can be observed in single outcrops, and do not require knowing the full extent of a unit. Lavas commonly develop basal breccias composed of a variety of textural types of the flow in a finer clastic matrix; such deposits are unique to lavas. Because the chilled base of an ashflow tuff generally does not participate in secondary flow, primary pyroclastic features are best preserved there. Massive, flow-banded bases are more consistent with a lava than a pyroclastic origin. Lavas are thick to their margins and have steep, abrupt flow fronts. Ashflow tuffs thin to no more than a few meters at their distal ends, where they generally do not show any secondary flow features. Lavas are stopped by topographic barriers unless the flow is much thicker than the barrier. Ash-flow tuffs moving at even relatively slow velocities can climb over barriers much higher than the resulting deposit. Lavas dominantly erupt from fissures and maintain fairly uniform thicknesses throughout their extents. Tuffs commonly erupt from calderas where they can pond to thicknesses many times those of their outflow deposits. These criteria may also prove effective in distinguishing extensive silicic lavas from a postulated rock type termed lava-like ignimbrite. The latter have characteristics of lavas except for great areal extents, up to many tens of kilometers. These rocks have been interpreted as ash-flow tuffs that formed from low, boiling-over eruption columns, based almost entirely on their great extents and the belief that silicic lavas could not flow such distances. However, we interpret the best known examples of lava-like ignimbrites to be lavas. This interpretation should be tested through additional documentation of their characteristics and research on the boiling-over eruption mechanism and the kinds of deposits it can produce. Flow bands, flow folds, ramps, elongate vesicles, and probably upper breccias occur in both lavas and strongly rheomorphic tuffs and are therefore not diagnostic. Pumice and shards also occur in both tuffs and lavas, although they occur throughout ash-flow tuffs and generally only in marginal breccias of lavas. Dense welding, secondary flow, and intense alteration accompanying crystallization at high temperature commonly obliterate primary textures in both thick, rheomorphic tuffs and thick lavas. High-temperature silicic volcanic rocks are dominantly associated with tholeiitic flood basalts. Extensive silicic lavas could be appropriately termed flood rhyolites.  相似文献   

8.
Diverse latest Pliocene volcanic and plutonic rocks in the north-central Caucasus Mountains of southern Russia are newly interpreted as components of a large caldera system that erupted a compositionally zoned rhyolite-dacite ash-flow sheet at 2.83 ± 0.02 Ma (sanidine and biotite 40Ar/39Ar). Despite its location within a cratonic collision zone, the Chegem system is structurally and petrologically similar to typical calderas of continental-margin volcanic arcs. Erosional remnants of the outflow Chegem Tuff sheet extend at least 50 km north from the source caldera in the upper Chegem River. These outflow remnants were previously interpreted by others as erupted from several local vents, but petrologic similarities indicate a common origin and correlation with thick intracaldera Chegem Tuff. The 11 × 15 km caldera and associated intrusions are superbly exposed over a vertical range of 2,300 m in deep canyons above treeline (elev. to 3,800 m). Densely welded intracaldera Chegem Tuff, previously described by others as a rhyolite lava plateau, forms a single cooling unit, is > 2 km thick, and contains large slide blocks from the caldera walls. Caldera subsidence was accommodated along several concentric ring fractures. No prevolcanic floor is exposed within the central core of the caldera. The caldera-filling tuff is overlain by andesitic lavas and cut by a 2.84 ± 0.03-Ma porphyritic granodiorite intrusion that has a cooling age analytically indistinguishable from that of the tuffs. The Eldjurta Granite, a pluton exposed low in the next large canyon (Baksan River) 10 km to the northwest of the caldera, yields variable K-feldspar and biotite ages (2.8 to 1.0 Ma) through a 5-km vertical range in surface and drill-hole samples. These variable dates appear to record a prolonged complex cooling history within upper parts of another caldera-related pluton. Major W-Mo ore deposits at the Tirniauz mine are hosted in skarns and hornfels along the roof of the Eldjurta Granite, and associated aplitic phases have textural features of Climax-type molybdenite porphyries in the western USA. Similar 40Ar/39Ar ages, mineral chemistry, and bulk-rock compositions indicate that the Chegem Tuff, intracaldera intrusion, and Eldjurta Granite are all parts of a large magmatic system that broadly resembles the middle Tertiary Questa caldera system and associated Mo deposits in northern New Mexico, USA. Because of their young age and superb three-dimensional exposures, rocks of the Chegem-Tirniauz region offer exceptional opportunities for detailed study of caldera structures, compositional gradients in volcanic rocks relative to cogenetic granites, and the thermal and fluid-flow history of a large young upper-crustal magmatic system.  相似文献   

9.
Abstract The Himeji–Yamasaki region in the Inner Zone of southwest Japan is underlain mainly by Late Cretaceous volcanic rocks called the Ikuno Group or the Hiromine and Aioi Groups. A new stratigraphic and geochronological study shows that the volcanic rocks in this area consist of 15 eroded caldera volcanoes between 82 and 65 Ma; they are, in order of decreasing age, the Hiromine, Hoden, Ibo, Okawachi, Seppikosan, Hayashida, Shinokubi, Fukusaki, Kurooyama, Ise, Fukadanigawa, Nagusayama, Matobayama, Yumesaki and Mineyama Formations. These calderas vary in diameter from 1 to 20 km and are bounded by steep unconformities; they coalesce and overlap each other. The individual caldera fills are composed mainly of single voluminous pyroclastic flow deposits, which are often interleaved with debris avalanche deposits and occasionally underlie lacustrine deposits. The intracaldera pyroclastic flow deposits are made up of massive, welded or non‐welded tuff breccia to lapilli tuff, and are characterized by their great thickness. The debris avalanche deposits are ill‐sorted breccia, generated by the collapse of the caldera wall toward the caldera floor during the pyroclastic‐flow eruption. The large calderas that are more than 10 km in diameter contain original values of approximately 100 km3 of intracaldera pyroclastic flow deposits. These large calderas are similar to the well‐known Valles‐type calderas in their dimensions, although it is uncertain whether their caldera floors are coherent plates or incoherent pieces. Conversely, the small calderas have diatreme‐like subsurface structures. The variety of the caldera volcanoes in this area is caused by the difference in the volume of caldera‐forming pyroclastic eruptions, as the large and small calderas coexisted. The caldera‐forming eruption rates in Late Cretaceous southwest Japan, including the studied area, were similar to those in late Cenozoic central Andes and northeast Honshu arc, Japan, but obviously smaller than those of late Cenozoic intracratonic caldera clusters in western North America and the Quaternary extensional volcanic arcs in Taupo, New Zealand. The widespread Late Cretaceous felsic igneous rocks in southwest Japan were generated by a long‐term accumulation of low‐rate granitic magmatism at the eastern margin of the Eurasian Plate.  相似文献   

10.
Petrological studies of 12 volcanic rock units in the northeast segment of the Taum Sauk Caldera, the major structural feature in the western part of the St. Francois Mountains, indicate that they were probably derived from the same magma chamber. These calc-alkalic rocks become progressively silica and alkali rich and calcium poor from the base to the top of the stratigraphic column. In the part of the northeast segment of the caldera studied in detail, the extrusives are over 5 thick and have a volume of over 500 km3. Rock units consisting of ash-flow tuffs, bedded airfall tuffs and lava flows were apparently deposited within a single episode of volcanic activity, since no signs of extensive erosion were observed among them. Although the rocks are completely devitrified, the preservation of pyroclastic and flow features is excellent. These volcanics are exposed representatives of a 1.3–1.4 b.y. old belt of volcanics and associated plutons which extends from southern Ohio to the Texas Panhandle any may represent a belt of continental accretion.  相似文献   

11.
Along the south coast of Arabia, between Aden and the southern entrance to the Red Sea, there are six central vent volcanoes of probable Pliocene age. All are characterised by the interstratification of basic and acidic extrusives, the formation of large central calderas at a late stage in the volcanic cycle and the subsequent infilling of these calderas with horizontal acidic ignimbrites and basic lavas. Lying 60 miles to the west of Aden and of particular interest is Jebel Khariz, the largest and best preserved of the six volcanic centres, covering a roughly circular area of about 100 square miles and rising to a height of 2,766 feet. The volcanic sequence of Jebel Khariz is broadly divisible into two suites: a) alkali-rich rhyolites and trachytes which occur as flows and pyroclastic horizons and form about 80 per cent of the volume of the cone, and b) effusives of basaltic composition that occur in the caldera, locally on the south-east and south-west flanks and in a small parasitic cone on the northern flank. The alkali-rich acidic suite includes lavas, ash-flow and ash-fall rocks as well as vent and flow breccias, Generally, all rocks of this suite have phenocrysts of anorthoclase, and may contain phenocrysts of fayalitic olivine, aegirine-augite, magnetite and/or quartz. The fine grained matrix is composed of the same minerals with skeletal riebeckite and, in some cases, cossyrite. The basaltic suite is characteristically porphyritic, the phenocrysts being of calcic plagioclase, clinopyroxene, olivine and magnetite in a fine-grained mesostasis of plagioclase, olivine, clinopyroxene and ore. The plagioclase, on initial investigation, appears to lie in the labradorite-bytownite range, the olivine is commonly replaced by iddingsite and the clinopyroxene is most commonly a pale mauve titanaugite. Near the centre of the volcanic pile, as exposed in the caldera wall, masses of rhyolitic composition can be seen to form over half of the volcanic sequence. These masses are markedly lenzoid in cross-section normal to the flow direction and display intricate flow folding; they are considered to have been extruded as viscous lava. Further from the volcanic centre, these acidic extrusives become less markedly lenzoid until in the distal areas of individual units, some 5 miles from the caldera, they have spread out to form sheet-like masses covering as much as 10 square miles to a uniform thickness rarely exceeding 25 feet. The presence of agglomeratic bases, hard compact central sections and less compact upper divisions, together with the ubiquitous presence of columnar jointing and occasional shard textures suggest that these distal parts of each extrusive unit have been formed by an ash-flow/ash-fall mechanism. It is postulated that the majority of the Jebel Khariz volcanic pile was formed by emission of acidic material, effusive in the central area, but deposited mainly by an ash-flow mechanism around the flanks of the cone. This could be due to either the synchronous eruption of viscous lava from the central vent with ash flow eruptions on the flanks; or, more probably, to the progression of an individual volcanic episode through an initial ash-flow phase followed by the effusion of viscous lava, all emanating from the central vent.  相似文献   

12.
Detailed stratigraphic analysis of the Green Tuff of Pantelleria shows that this formation can be divided into several members designateda throughh from base to top. These members have a coherent pattern when traced from outcrop to outcrop throughout the island shedding light on their origin. Only memberg completely mantles the entire island. The distribution of the other members is controlled by prevailing wind direction or by topography. Membera is entirely of fall origin. Membersc ande are of fall and/or surge type. Membersb,d, andh have the characteristics of thin welded ash-flow tuffs. Membersf andg are ash-flow tuffs with textural characteristics of compound cooling units. Most of the ash-flow tuffs exhibit characteristics of ignimbrites: vertical fluidization pipes, local concentrations of lithic lapilli, imbrication of clasts, and valley ponding. Memberg is unusual in that it is highly-welded, exhibits large-scale rheomorphic structures, contains huge lithic clasts, and has near-vertical foliation where it adheres to cliffs and caldera walls.Granulometric data from the members identified in the field as ignimbrites confirms this conclusion, as do density profiles through the various members.  相似文献   

13.
The Donguinyó-Huichapan caldera complex is located 110 km to the NNW of Mexico City, in the central sector of the Mexican Volcanic Belt. It is a 10 km in diameter complex apparently with two overlapping calderas, each one related to an ignimbrite sequence that contrasts in composition, mineralogy, welding, distribution, and physical aspect. The geologic evolution of this complex includes the following phases, 1) A first caldera formed at 5.0 ± 0.3 Ma, with the eruption of several discrete pulses of andesitic to trachydacitic pyroclastic flows that produced a series of densely welded ignimbrites; 2) At 4.6 ± 0.3 Ma, several small shield volcanoes and cinder cones built the rim of this caldera and erupted basaltic-andesite and andesitic lava flows; 3) At 4.2 ± 0.2 Ma, a second caldera was formed associated to the eruption of the Huichapan Tuff, which is a rhyolitic pyroclastic sequence consisting of minor unwelded ignimbrites, pumice fall and surge deposits, and a voluminous welded ignimbrite; 4) Also yielding an age of 4.2 ± 0.2 Ma, several trachydacitic lava domes were extruded along the new ring fracture and formed the rim of the Huichapan caldera, as well as five intra-caldera domes of dacitic and trachydacitic composition. Peripheral volcanism includes a large 2.5 ± 0.1 Ma shield volcano that was emplaced on the Huichapan caldera rim.The two calderas that form the Donguinyó-Huichapan complex have contrasting differences in volcanic styles that were apparently due to their differences in composition. Products erupted by the Donguinyó caldera are basaltic-andesite to trachydacitic in composition, whereas Huichapan caldera products are all high-silica rhyolites.  相似文献   

14.
Abstract The Ohmine Granitic Rocks are a series of granitic rocks that are distributed in a chain stretching along the central axis of the Kii Peninsula. Their precise ages have not been determined, although precise ages have been reported for other geological units of the early to middle Miocene distributed over the peninsula. In this study, biotite K–Ar ages were obtained for the six major granitic plutons of the Ohmine Granitic Rocks: Dorogawa, Shirakura, Kose, Asahi, Tenguyama and Shiratani. Most are aged from 14.8 to 14.6 Ma. Although one pluton is older (15.4 ± 0.2 Ma) and two are younger (14.0 ± 0.2 Ma and 13.4 ± 0.1 Ma), these ages are excluded from the discussion of the mutual correlation among the plutons because some ambiguities exist in their ages. The age of the southernmost unit, the Katago–Mukuro Dykes, was not determined because of its intense alteration, but stratigraphic constraints suggest that it is younger than 16.1 Ma. The majority of the Ohmine Granitic Rocks concentrate within a narrow age window of approximately 14.8–14.6 Ma, although their geochemical/petrographical characteristics suggest that they were generated by multiple magma batches. The results of this study also reveal the simultaneous occurrence of the major activities of the Ohmine Granitic Rocks and the gigantic felsic igneous activities in the Kii Peninsula, such as the Kumano Acidic Rocks and the Muro Pyroclastic Flow Deposit.  相似文献   

15.
Late-Pleistocene volcanic products on Lipari consist mainly of pyroclastic surge deposits (Monte Guardia sequence) and fine-grained brown tuffs. Radiometric age determination on carbon from thin soils at the top of the tuffs indicate that they have several ages of emplacement ranging from more than 35,000 to 16,800 years ago. Chemical and microprobe data on glass and mineral fragments from these tuffs show that they belong to a shoshonite or high-K series. This composition is compatible with an origin related to the magma system of Vulcano, but not with the magma system on Lipari. These tuffs have a widespread distribution on several of the Aeolian islands as well as on the northern part of Sicily. They have features typical of ash-flow tuffs of hydromagmatic origin. We propose that they originated from submarine eruptions from the Vulcanello vent before this volcano emerged above sea level.  相似文献   

16.
Seven Pliocene volcanoes, one of which is described in detail, occur in the northern part of the Kenya Rift. They have low-angle, shield like forms, and comprise lavas, pumice tuffs and ash-flow tuffs almost wholly of trachytic composition. Each volcano possesses a structurally complex source zone in which plugs, dykes and pumice tuffs are concentrated and in which clearly defined craters and calderas are uncommon. By contrast, the flank zones are stratiform with slopes of about 5° and are composed of lavas and ash-flow sheets erupted in a highly fluid condition. The volcanoes range up to 50 km in diameter and are elongated parallel to the general trend of the rift reflecting a tectonic control on the distribution of the vents and their products. This combination of morphological, structural and compositional features suggests that the volcanoes are of a type not described before. Notes on the petrography of the lavas are included and it is suggested that the trachytes are petrogenetically related to alkali basalts, compositionally similar to those which form the substrate to the trachyte volcanoes.  相似文献   

17.
Southern Kyushu, Japan, includes a chain of large and small calderas and active volcanoes, and the greatest part of it is covered with thick pyroclastic ejecta. The regional and local structures of this area are discussed from the standpoint of physical volcanology, with consideration of all available data.The regional structure of this area is examined in the light of gravity and geomagnetic anomalies. Two layers of the earth's uppermost crust are defined by spectrum analysis of the gravity anomalies. These two layers are identical with the two identified by seismicwave velocities. The Bouguer gravity anomalies are relatively high and rather monotonous over outcrops of the Mesozoic basement and the granite, but are relatively low and perturbed over calderas and caldera-like structures. Two low-gravity anomalies in Kagoshima Bay are remarkable. One is circular, with its center on the Aira caldera. The other is elongated between the Satsuma and Oosumi peninsulas. The southern end of the latter anomaly is occupied by the Ata caldera. Discussion of the gravity anomalies of the Aira caldera suggests that the subsurface basement has a funnel shape and is overlain by ‘fallback’. The sub bottom geology of the caldera suggests that it is formed by a few smaller depressions, though the distribution of the overall gravity anomalies is parallel with its shape.The southern part of Kagoshima Bay is characterized by a graben-like topography and low-gravity anomalies and, moreover, by several calderas. The middle part, between the Aira and Ata calderas, may have a graben-like structure. A profile crossing the bay through Sakurajima volcano is modeled on the basis of results from drilling and gravity surveys. The basement has a graben-like structure and is filled with coarse and low-density deposits, and the structure continues northwards to the Aira caldera with a funnel shape.A comparison of this area with the Taupo-Rotorua depression in New Zealand and Lake Toba in Indonesia, leads the authors to the conclusion that such major volcanic depressions may have been formed by amalgamation of a series of caldera-like structures which were formed by multiple violent explosions accompanied by ejection of a tremendous amount of pyroclastic material.  相似文献   

18.
Geology of the peralkaline volcano at Pantelleria,Strait of Sicily   总被引:1,自引:1,他引:1  
Situated in a submerged continental rift, Pantelleria is a volcanic island with a subaerial eruptive history longer than 300 Ka. Its eruptive behavior, edifice morphologies, and complex, multiunit geologic history are representative of strongly peralkaline centers. It is dominated by the 6-km-wide Cinque Denti caldera, which formed ca. 45 Ka ago during eruption of the Green Tuff, a strongly rheomorphic unit zoned from pantellerite to trachyte and consisting of falls, surges, and pyroclastic flows. Soon after collapse, trachyte lava flows from an intracaldera central vent built a broad cone that compensated isostatically for the volume of the caldera and nearly filled it. Progressive chemical evolution of the chamber between 45 and 18 Ka ago is recorded in the increasing peralkalinity of the youngest lava of the intracaldera trachyte cone and the few lavas erupted northwest of the caldera. Beginning about 18 Ka ago, inflation of the chamber opened old ring fractures and new radial fractures, along which recently differentiated pantellerite constructed more than 25 pumice cones and shields. Continued uplift raised the northwest half of the intracaldera trachyte cone 275 m, creating the island's present summit, Montagna Grande, by trapdoor uplift. Pantellerite erupted along the trapdoor faults and their hingeline, forming numerous pumice cones and agglutinate sheets as well as five lava domes. Degassing and drawdown of the upper pantelleritic part of a compositionally and thermally stratified magma chamber during this 18-3-Ka episode led to entrainment of subjacent, crystal-rich, pantelleritic trachyte magma as crenulate inclusions. Progressive mixing between host and inclusions resulted in a secular decrease in the degree of evolution of the 0.82 km3 of magma erupted during the episode.The 45-Ka-old caldera is nested within the La Vecchia caldera, which is thought to have formed around 114 Ka ago. This older caldera was filled by three widespread welded units erupted 106, 94, and 79 Ka ago. Reactivation of the ring fracture ca. 67 Ka ago is indicated by venting of a large pantellerite centero and a chain of small shields along the ring fault. For each of the two nested calderas, the onset of postcaldera ring-fracture volcanism coincides with a low stand of sea level.Rates of chemical regeneration within the chamber are rapid, the 3% crystallization/Ka of the post-Green Tuff period being typical. Highly evolved pantellerites are rare, however, because intervals between major eruptions (averaging 13–6 Ka during the last 190 Ka) are short. Benmoreites and mugearites are entirely lacking. Fe-Ti-rich alkalic basalts have erupted peripherally along NW-trending lineaments parallel to the enclosing rift but not within the nested calderas, suggesting that felsic magma persists beneath them. The most recent basaltic eruption (in 1891) took place 4 km northwest of Pantelleria, manifesting the long-term northwestward migration of the volcanic focus. These strongly differentiated basalts reflect low-pressure fractional crystallization of partial melts of garnet peridotite that coalesce in small magma reservoirs replenished only infrequently in this continental rift environment.  相似文献   

19.
U–Pb geochronology and trace element chemistry of zircons in a microscale analysis were applied to the Ishizuchi caldera in the Outer Zone of Southwest Japan in order to estimate the timescale of the magma process, in particular, the magma differentiation. This caldera is composed mainly of ring fault complexes, major pyroclastic flow deposits, and felsic intrusion including central plutons. Using SHRIMP‐IIe, our new U–Pb zircon ages obtained from the major pyroclastic flow deposits (Tengudake pyroclastic flow deposits), granitic rocks from central plutons (Soushikei granodiorite and Teppoishigawa quartz monzonite), and rhyolite from the outer ring dike (Tenchuseki rhyolite) and the inner ring dike (Bansyodani rhyolite) are 14.80 ±0.11 Ma, 14.56 ±0.10 Ma, 14.53 ±0.12 Ma, 14.55 ±0.11 Ma and 14.21 ±0.19 Ma, respectively. Based on the U–Pb ages, the Hf contents and the REE patterns of the zircons, three stages are recognized in the evolutionary history of the magma chamber beneath the Ishizuchi caldera: (i) climactic Tengudake pyroclastic flow eruption; (ii) Tenchuseki rhyolite intrusion into the outer ring dike and central pluton intrusion; and (iii) Bansyodani rhyolite intrusion in the inner ring dike. These results indicate a magma evolution history of the Ishizuchi caldera system which took at least ca 600 kyr from the climatic caldera‐forming eruption to the post‐caldera intrusions. Our new geochronological data suggest that the Ishizuchi caldera formed as part of the voluminous and episodic magmatism that occurred in the wide zone along the Miocene forearc basin of Southwest Japan during the inception of the young Philippine Sea Plate subduction.  相似文献   

20.
The Pagosa Peak Dacite is an unusual pyroclastic deposit that immediately predated eruption of the enormous Fish Canyon Tuff (5000 km3) from the La Garita caldera at 28 Ma. The Pagosa Peak Dacite is thick (to 1 km), voluminous (>200 km3), and has a high aspect ratio (1:50) similar to those of silicic lava flows. It contains a high proportion (40–60%) of juvenile clasts (to 3–4 m) emplaced as viscous magma that was less vesiculated than typical pumice. Accidental lithic fragments are absent above the basal 5–10% of the unit. Thick densely welded proximal deposits flowed rheomorphically due to gravitational spreading, despite the very high viscosity of the crystal-rich magma, resulting in a macroscopic appearance similar to flow-layered silicic lava. Although it is a separate depositional unit, the Pagosa Peak Dacite is indistinguishable from the overlying Fish Canyon Tuff in bulk-rock chemistry, phenocryst compositions, and 40Ar/39Ar age.The unusual characteristics of this deposit are interpreted as consequences of eruption by low-column pyroclastic fountaining and lateral transport as dense, poorly inflated pyroclastic flows. The inferred eruptive style may be in part related to synchronous disruption of the southern margin of the Fish Canyon magma chamber by block faulting. The Pagosa Peak eruptive sources are apparently buried in the southern La Garita caldera, where northerly extensions of observed syneruptive faults served as fissure vents. Cumulative vent cross-sections were large, leading to relatively low emission velocities for a given discharge rate. Many successive pyroclastic flows accumulated sufficiently rapidly to weld densely as a cooling unit up to 1000 m thick and to retain heat adequately to permit rheomorphic flow. Explosive potential of the magma may have been reduced by degassing during ascent through fissure conduits, leading to fracture-dominated magma fragmentation at low vesicularity. Subsequent collapse of the 75×35 km2 La Garita caldera and eruption of the Fish Canyon Tuff were probably triggered by destabilization of the chamber roof as magma was withdrawn during the Pagosa Peak eruption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号