首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results of an experimental study on the countermeasure of scour depth at circular piers are presented. Experiments were conducted for pier scour with and without a splitter plate under a steady, uniform clear-water flow condition. The results of pier scour without splitter plate were used as a reference. Different combinations of lengths and thicknesses of splitter plates were tested attaching each of them to a pier at the upstream vertical plane of symmetry. Two different median sediment sizes (d 50 = 0.96 and 1.8 mm) were considered as bed sediment. The experimental results show that the scour depth consistently decreases with an increase in splitter plate length, while the scour depth remains independent of splitter plate thickness. In addition, temporal evolution of scour depth at piers with and without a splitter plate is observed. The best combination is found to be with a splitter plate thickness of b/5 and a length of 2b. Here, b denotes the pier diameter. An empirical formula for the estimation of equilibrium scour depth at piers with splitter plates is obtained from a multiple linear regression analysis of the experimental data. The flow fields for various combinations of circular piers with and without splitter plate including plain bed and equilibrium scour conditions were measured by using an acoustic Doppler velocimeter. The turbulent flow fields for various configurations are investigated by plotting the velocity vectors and the turbulent kinetic energy contours on vertical and horizontal planes. The splitter plate attached to the pier deflects the approach flow and thus weakens the strength of the downflow and the horseshoe vortex, being instrumental in reducing the equilibrium scour depth at piers. The proposed method of pier scour countermeasure is easy to install and cost effective as well.  相似文献   

2.
Various methods to control scour around bridge piers have been proposed.In the present study the application of cable or collar and a combination of cable and collar were examined experimentally,as countermeasures against local scouring at a smooth circular bridge pier,close to threshold flow conditions of initiation of uniform sediment motion.The results show that the simultaneous use of cable and collar has high efficiency in reducing the scour depth.The best configuration was found for a cable-pier diameter ratio of 0.15 and thread angle of 15°,in which the scour depth in upstream of the pier reduced to about 53%.In the case of a pier protected with cable and collar the scouring postponed more than pier protected with collar and the rate of scouring is less than in pier protected with collar.These advantages can reduce the risk of pier failure when the duration of flood is short. The results indicate that the scour reduction increases as the cable diameter increased and the thread angle decreased.  相似文献   

3.
In the current study, 108 flume experiments with non-uniform, cohesionless sediments have been done to investigate the local scour process around four pairs of side-by-side bridge piers under both open channel and ice-covered flow conditions. Similar to local scour around bridge piers under open channel conditions and a single bridge pier, it was observed in the experiments that the maximum scour depth always occurred at the upstream face of the pier under ice-covered conditions. Further, the smaller the pier size and the greater the spacing distance between the bridge piers, the weaker the horseshoe vortices around the bridge piers, and, thus, the shallower the scour holes around them. Finally, empirical equations were developed to estimate the maximum scour depth around two side-by-side bridge piers under both open channel and ice-covered flow conditions.  相似文献   

4.
Influence of large woody debris on sediment scour at bridge piers   总被引:2,自引:0,他引:2  
Large woody debris(LWD) reduces the flow area,deviate the flow and increases the velocity in correspondence of the bridge pier,therefore increases the maximum scour hole depth and accelerates sediment removal.Logs and drifts accumulated on bridge piers are of different dimensions.According to logs characteristics and river morphology,drift accumulations can either extend downstream the bridge pier or they can accumulate totally upstream.This paper aims to analyze the effect of drift accumulation planimetry on bridge pier scour.The experimental investigation has been carried out at the PITLAB hydraulic centre of Civil Engineering Department,University of Pisa,Italy.Drift accumulation was characterized by different relative longitudinal lengths,flow area occlusions,length of longitudinal drift and downstream planimetrical positions relative to the pier center.The experimental investigation has been carried out in clear-water conditions.Several pier sizes,channel widths and sediment materials have been tested.Maximum scour hole in presence of drift accumulation have been compared to the maximum scour hole for an isolated pier.Finally,data were compared with previous literature findings,which highlight the effect of the downstream extension of drift accumulation on bridge pier scour.New relationships have been proposed to predict the effect of drift accumulation on bridge pier scour,both in terms of relative maximum scour and temporal scour evolution.  相似文献   

5.
SCOUR MITIGATION AT BRIDGE PIERS USING SACRIFICIAL PILES   总被引:1,自引:0,他引:1  
To mitigate scour around bridge piers, sacrificial piles are economic method where natural processes are involved. The arrangement should be such that scoured materials from the sacrificial piles should have enough volume to fill the scour hole created upstream of the pier in such a way that sediments are trapped inside the scour hole. This concept differs from earlier study made with sacrificial piles that mainly deals to reduce the strength of horseshoe vortex. To determine the effect of sacrificial piles for scour mitigation, alternative arrangements of piles were tested in front of a rectangular pier under clear-water condition and found that when the group of piles is placed at a distance of twice the projected width of the pier, for which percentage of blockage of the pier width is 60%, the scour volume can be reduced upto 61% while the maximum scour depth can be reduced upto 50%.  相似文献   

6.
In this paper reduction of scour around group of two and three piers using circular collar has been carried out for the case of clear-water flow over uniform sediment. The efficiency of collars, with different sizes and spaces between piers is studied through experiments in group of two and three piers. The result reveals that collar has more influence in reduction of scour depth in rear piers than the first pier. Also, when the spacing between the piers increases the area without protection between the piers is washed away resulting deeper scour holes at the rear piers.  相似文献   

7.
《国际泥沙研究》2016,(3):244-250
The equilibrium scour depth at uniform single bridge piers depends on a large number of variables,including the pier horizontal cross-section shape and its alignment angle towards the flow direction.The influence of these variables has been studied by only a few researchers,mostly,on the basis of tests that were far from approaching equilibrium.This experimental study aims at revisiting the influence of piers' shape and alignment on local scouring for length-width ratios smaller than or equal to 4,by increasing the experimental evidence.Fifty five long-duration laboratory tests were run under steady,clear-water flow,close to the threshold for initiation of sediment motion.Five pier shapes were considered:circular,rectangular square-nosed,rectangular round-nosed,oblong,and zero-spacing(packed) pile-groups;the tested skew-angles were 0°,30°,45°,60°,and 90°.It was concluded that i) the shape factor can be taken as 1.0,for rectangular round-nosed and oblong cross-section piers,and as 1.2,for rectangular squarenosed and packed pile-group cross-section piers,ii) the shape factor does not vary significantly with the duration of tests,this way confirming the robustness of the shape factors reported to date,iii) the effect of shape is present at skewed piers although the associated coefficients remain in the narrow range of1.0-1.2,and iv) for length-width ratios smaller than 4,the shape factor is of the same order of magnitude as the skew angle factor and should not be neglected.  相似文献   

8.
Since local scour at bridge piers in rivers and estuaries is a major cause of bridge failure, estimation of the maximum local scour depth is of great importance to hydraulic and coastal engineers. Although numerous studies that focus on scour-depth prediction have been done and published, understanding of the flow and turbulence characteristics of the horseshoe vortex that drives the scour mechanism in a developing scour hole still is immature. This study aims to quantify the detailed turbulent flow field in a developing clear-water scour hole at a circular pier using Particle Image Velocimetry (PIV). The distributions of velocity fields, turbulence intensities, and Reynolds shear stresses of the horseshoe vortex that form in front of the pier at different scour stages (t=0, 0.5, 1, 12, 24, and 48 h) are presented in this paper. During scour development, the horseshoe vortex system was found to evolve from one initially small vortex to three vortices. The strength and size of the main vortex are found to increase with increasing scour depth. The regions of both the maximum turbulence intensity and Reynolds shear stress are found to form at a location upstream of the main vortex, where the large turbulent eddies have the highest possibility of occurrence. Results from this study not only provide new insight into the complex flow-sediment interaction at bridge piers, but also provide valuable experimental databases for advanced numerical simulations.  相似文献   

9.
The mechanism of bridge pier scour becomes more complex in the presence of debris accumulation upstream of the pier. While using countermeasures may be effective in reducing scour, their efficacy could be undermined in such a situation. The current study investigates the effectiveness of using a collar in the presence of different types of floating debris accumulation in reducing scour around a cylindrical bridge pier with non-cohesive bed sediment. The experimental results reveal that using a c...  相似文献   

10.
This paper examines the effect of dune migration on local scour around bridge piers. Experiments show that local scour depths fluctuate in response to the translation of dunes past the scour hole. The scour depths measured in a model study conducted in live-bed conditions contain both scour due to the pier and that due to dunes. The con' tribution from scour due to the dunes may form a significant fraction of the total scour depth measured in model investigations. Therefore, it is imperative to separate these two components of scour for analysis and comparison. The study proposes that an equilibrium or time-average scour depth normalized using pier diameter be used for analysis, and the contribution from dunes to the total scour depth be added independently. Dune size, in the absence of field or measured data, may be estimated using published predictive curves. Comparisons between computed and measured scour depths show a good correlation, and 90% of all the data tested fall within a scatter of 15%.  相似文献   

11.
In this work, investigation on the development of local scour around an oblong pier in a 180 degree flume bend is presented. Scour hole can cause failure of the bridge especially during the river floods. In this study, the use of oblong collars for reducing the effects of local scour at a bridge pier is presented together with the time aspect of the scour development. Tests were conducted using one oblong pier in positions of 60degree under one flow conditions. The study was conducted using a physical hydraulic model operated under clear-water conditions in cohesionless bed material. In this study, the time development of the local scour around the oblong pier fitted with and without collar plates was studied. Investigated was the effect of size and elevation collar on the time development of scour and its efficacy at preventing scour at a bridge pier. The time development of the scour hole around the model pier with and without a collar installed was compared with similar studies on bridge piers. The results of the model study indicated that the maximum depth of scour is highly dependent on the experimental duration. It was observed that, as the minimum depth of scour occurs for the square collar at width of 3B placed at elevation of 0.1B below the bed and the size of a collar plate increases, the scour decreases. Measuring depth of scouring based on experimental observation, an empirical relation is developed with regression coefficient 95%.  相似文献   

12.
Interference of an upstream pier on local scour at downstream piers   总被引:1,自引:0,他引:1  
In this study, three kinds of pier arrangements were tested. They are (i) two piers in tandem, (ii) two piers in staggered arrangement, and (iii) three piers in symmetrically staggered arrangements. In the arrangement of two piers in tandem, the equilibrium scour depth at downstream pier decreases with an increase in downstream distance up to approximately eight times pier diameter and then increases with further increase in downstream distance. However, the scour depth at downstream pier is always smaller than that at upstream pier. In the arrangement of two staggered piers, the scour depth at the downstream pier for L/b = 4, where L is the offset distance and b is the pier diameter, is the same as that of the upstream pier at S = 8b, where S is the streamwise spacing or distance between piers. Further, for three piers in staggered arrangement, as the lateral spacing between downstream piers increases, the equilibrium scour depth at downstream pier decreases.  相似文献   

13.
《国际泥沙研究》2022,37(6):737-753
An experimental investigation on flow fields within the scour holes upstream and downstream of circular piers positioned in tandem and staggered arrangements is reported and compared with isolated piers on mobile beds with uniform sediment. The instantaneous bed elevations and instantaneous three dimensional (3D) velocities were measured using a 5 MHz Ultrasonic Ranging system and 16 MHz micro down looking acoustic Doppler velocimeter, respectively. The velocity and flow depth were measured at different locations under near equilibrium bed scour conditions. The measured 3D velocities were processed for the computation of flow parameters, such as velocity fields, streamline patterns, vorticity fields, and circulation. Furthermore, turbulence intensities, turbulent kinetic energy, Reynolds shear stresses, and bed shear stresses around the piers for all three pier configurations were computed from the detrended velocity signals to identify significant differences in the flow parameters and turbulence in the tandem and staggered pier arrangements as compared to those for an isolated pier. A recirculation zone was found near the bed in front of the rear pier in the tandem case from the streamline patterns. The vortices in the bi-vortex system were observed to be opposite to each other in the gap between the three piers in the staggered case. A strong secondary vortex also was observed apart from the primary vortex at the foot of the pier (θ = 0°) in all the three configurations. The strength of the horseshoe vortex (combination of primary and secondary vortices) was found to be higher at the front piers of the staggered arrangement as compared to those of the tandem piers, followed by the isolated pier. The bed shear stresses were found to be higher for the staggered piers than for the tandem piers in the direction of flow (θ = 0°). However, a 50% reduction in the bed shear stresses was observed behind the tandem piers at θ = 180°. The study reported in this paper provides the foundation for further investigation of countermeasures against local scour around tandem and staggered bridge piers on a mobile bed with non-uniform sediment.  相似文献   

14.
Various methods are proposed to control scouring around bridge piers. In the present study application of riprap alone and combinations of riprap and collar were examined experimentally for scour control around cylindrical bridge piers. Tests were conducted with seven riprap sizes and with two different sizes of collars. Empirical equations were developed for stable riprap diameter for two cases of piers with and without collar protection. Extent of riprap layer is also presented for these two cases. The results showed that in the range of b/dR≤7.5 (where b is pier diameter and dR is riprap size) using a collar reduced the stable riprap size. It was also concluded that using collar reduced the riprap layer extension in front and sides of the pier.  相似文献   

15.
An experimental study was conducted to investigate the feasibility of a proposed rapid repair technique for severely earthquake-damaged bridge piers with flexural-shear failure mode. Six circular pier specimens were first tested to severe damage in flexural-shear mode and repaired using early-strength concrete with high-fluidity and carbon fiber reinforced polymers (CFRP). After about four days, the repaired specimens were tested to failure again. The seismic behavior of the repaired specimens was evaluated and compared to the original specimens. Test results indicate that the proposed repair technique is highly effective. Both shear strength and lateral displacement of the repaired piers increased when compared to the original specimens, and the failure mechanism of the piers shifted from flexural-shear failure to ductile flexural failure. Finally, a simple design model based on the Seible formulation for post-earthquake repair design was compared to the experimental results. It is concluded that the design equation for bridge pier strengthening before an earthquake could be applicable to seismic repairs after an earthquake if the shear strength contribution of the spiral bars in the repaired piers is disregarded and 1.5 times more FRP sheets is provided.  相似文献   

16.
This paper presents the results of comprehensive laboratory experiments to investigate the effects of hooked-collar on the scour development around a vertical pier with a lenticular cross section. The flow around the pier was uniform, steady, and under the clear-water condition. The axial scour profiles for cases without and with a lenticular hooked-collar were measured and the effects of hooked-collar dimensions and elevation from the bed were examined. To compute the efficiency of hooked-colla...  相似文献   

17.
钢管混凝土桥墩抗震性能试验研究   总被引:1,自引:0,他引:1  
臧华  刘钊  李红英  涂永明 《地震学刊》2010,(4):442-446,451
为研究钢管混凝土桥墩的抗震性能,对钢管混凝土桥墩和钢筋混凝土桥墩进行了拟静力对比试验研究。根据试件的破坏发展过程以及各试件的滞回曲线和骨架曲线,分析了其滞回性能、耗能能力、延性、强度退化及刚度退化等抗震性能。试验结果表明,钢管混凝土桥墩的抗震性能明显好于钢筋混凝土桥墩。在含钢率和轴力相同的情况下,钢管混凝土桥墩的滞回曲线比钢筋混凝土桥墩丰满得多,前者的耗能能力约为后者的4.46倍,钢管混凝土桥墩的延性大于钢筋混凝土桥墩;随着轴压比的增大,钢管混凝土桥墩延性有所下降,强度退化加快,但对其刚度退化的影响不大。  相似文献   

18.
The scouring around bridge foundations is a significant concern in civil engineering. Several research has been conducted experimentally and numerically to study the maximum scour depth around the foundations of a bridge in open channel conditions. In cold regions, where ice forms on lakes, reservoirs, and rivers, the interaction between ice and hydraulic structures is further complicated. The flow distribution varies significantly leading to deeper and larger scouring around bridge foundations....  相似文献   

19.
Most models for predicting pressure-flow scour depth are based on use of the continuity and energy equations. The current study presents a model to predict pressure-flow scour depth using the momentum equation considering the jet flow deflected by the bridge deck. When approaching the bridge deck, the upstream flow acts as a jet flow that deviates toward the bed. Below the bridge deck, a combined jet-flow is created as a result of merging the initial jet-flow and the pressure-flow. The continuit...  相似文献   

20.
Water Resources - The scour and flow field patterns with accumulation of debris around bridge piers are completely different due to the reduction of flow area and the increase in depth average...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号