首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate change in the Great Lakes Basin of North America over the next several decades is projected to lead to significant changes to coastal environments. Groundwater-driven coastal bluff recession should increase in areas where groundwater forcing is important and lead to increased loss of coastal uplands. The latter is an issue in NW Pennsylvania because of coastal development pressures, and because the state ranks within the top five US states in grape production, most of which occurs within 5 km of the Lake Erie coastline. In 2007, viticulture contributed almost $2.4 billion to the state economy. An analysis of a 20-km stretch of coast shows that bluff retreat is pervasive and variable under current climatic conditions. Over a 9-year time frame, bluff change rates ranged from ?4.2 to +0.98 m/year. In general, higher retreat rates (?0.2 to ?0.65 m/year) occurred along the sandy central beach–ridge sector which lacks significant surface drainage. Lower retreat rates (?0.10 to ?0.25 m/year) occurred along coastal sectors where surface drainage networks are well developed. Conservative estimates of groundwater discharge at the bluff correlate strongly (r = 0.74, p < 0.001) with bluff retreat rate. Groundwater is inferred to be the principal driving mechanism for both bluff retreat and spatial variability in retreat rates on this coast. Other common factors that may spatially influence bluff retreat elsewhere (bluff height, land use, beach width) do not correlate strongly with retreat rate.  相似文献   

2.
Arctic permafrost coasts are sensitive to changing climate. The lengthening open water season and the increasing open water area are likely to induce greater erosion and threaten community and industry infrastructure as well as dramatically change nutrient pathways in the near-shore zone. The shallow, mediterranean Arctic Ocean is likely to be strongly affected by changes in currently poorly observed arctic coastal dynamics. We present a geomorphological classification scheme for the arctic coast, with 101,447?km of coastline in 1,315 segments. The average rate of erosion for the arctic coast is 0.5?m? year?1 with high local and regional variability. Highest rates are observed in the Laptev, East Siberian, and Beaufort Seas. Strong spatial variability in associated database bluff height, ground carbon and ice content, and coastline movement highlights the need to estimate the relative importance of shifting coastal fluxes to the Arctic Ocean at multiple spatial scales.  相似文献   

3.
The tsunami inundation flows on Banda Aceh, Indonesia reached 5 km inland during the December 26, 2004, event and devastated most of the houses, buildings, and infrastructure along the coast and killed more than 167,000 people. The overland flows from the northwest coast and the west coast collided at Lampisang village approximately 3.7 km from Ulee Lheue (northwest coast) and 6.8 km from Lhok Nga (west coast) as reported by survivors. Inundation modeling based on the nonlinear shallow-water wave equations reproduces the inundation pattern and demonstrates a colliding of the overland flows. The model suggests that wave characteristics on the northwest coast of Banda Aceh were different from those on the waves that impacted upon the west coast. The areas, which experienced higher inundation levels, did not always experience greatest overland flow speeds, and the damage areas mostly coincide with the flow speed distribution rather than the runup and inundation depth.  相似文献   

4.
The Atlantic shoreline in Patagonia, southernmost South America, is a paraglacial coast that has undergone extensive erosion and retreat since the late Pleistocene, releasing a large volume of sand and gravel to southward littoral drift. Despite regional erosive conditions, accretionary landforms developed during the Holocene in three coastal reentrants. These are, from north to south along a 200 km long shoreline stretch: (1) the cuspate foreland that underlies Bustamante Point, in the Rı́o Gallegos Estuary; (2) the cuspate foreland with incipient spit underlying Dungeness Point, in the eastern Strait of Magellan; (3) the San Sebastián Bay tidal flat; and (4) the El Páramo Spit, partly enclosing the San Sebastián Bay. These accretionary landforms contain a record of relative sea level changes for approximately the past 7 ka, and indicate a tectonically driven drop of about 3 m during growth of Bustamante Point and of 1–2 m in the other areas. Differential sea level fall influenced development of the landforms, with slower rates favoring spit development in the south.  相似文献   

5.
Landsat enhanced thematic mapper imagery (ETM) of 2002 and aerial photography of 1955, combined with published charts and field observations were used to interpret coastal changes in the zone between Kitchener drain and Damietta spit in the northeastern Nile delta, previously recognized as a vulnerable zone to the effects of any sea level rise resulting from global warming. The interpretation resulted in recognition of several changes in nine identified geomorphological land types: beach and coastal flat, coastal dunes, agricultural deltaic land, sabkhas, fish farms, Manzala lagoon, saltpans, marshes and urban centers. Reclamation of vast areas of the coastal dunes and of Manzala lagoon added about 420 km2 to the agricultural deltaic land. About 48 km2 of backshore flats, marshes, salt pans and Manzala lagoon have been converted to productive fish farms. The main urban centers have expanded; nearly 12.1 km2 have been added to their areas, and new urban centers (Damietta harbor and the New Damietta city) with total area reach of ~35.3 km2 have been constructed at the expense of vast areas of Manzala lagoon, coastal dunes, and backshore flats. As a consequence of human activities, the size of Manzala lagoon has been reduced to more than 65%. Shoreline changes have been determined from beach profile survey (1990–2000), and comparison of 1955 aerial photographs and ETM satellite image of 2002 reveal alongshore patterns of erosion versus accretion. The short-term rate of shoreline retreat (1990–2000) has increased in the downdrift side of Damietta harbor (≃14 m/year), whereas areas of accretion exist within the embayment of Gamasa and in the shadow of Ras El Bar detached breakwaters system, with a maximum shoreline advance of ~15 m/year. A sandy spit, 12 km long, has developed southeast of Damietta promontory. These erosion/accretion patterns denote the natural processes of wave-induced longshore currents and sediment transport, in addition, the impact of man-made coastal protection structures.  相似文献   

6.
Quantitative estimates of land-level change during the giant AD 1700 Cascadia earthquake along the Oregon coast are inferred from relative sea-level changes reconstructed from fossil foraminiferal assemblages preserved within the stratigraphic record. A transfer function, based upon a regional training set of modern sediment samples from Oregon estuaries, is calibrated to fossil assemblages in sequences of samples across buried peat-mud and peat-sand contacts marking the AD 1700 earthquake. Reconstructions of sample elevations with sample-specific errors estimate the amount of coastal subsidence during the earthquake at six sites along 400 km of coast. The elevation estimates are supported by lithological, carbon isotope, and faunal tidal zonation data. Coseismic subsidence at Nehalem River, Nestucca River, Salmon River, Alsea Bay, Siuslaw River and South Slough varies between 0.18 m and 0.85 m with errors between 0.18 m and 0.32 m. These subsidence estimates are more precise, consistent, and generally lower than previous semi-quantitative estimates. Following earlier comparisons of semi-quantitative subsidence estimates with elastic dislocation models of megathrust rupture during great earthquakes, our lower estimates for central and northern Oregon are consistent with modeled rates of strain accumulation and amounts of slip on the subduction megathrust, and thus, with a magnitude of 9 for the AD 1700 earthquake.  相似文献   

7.
A set of six Landsat satellite images with 5–9 years apart was used in a post-classification analysis to map changes occurred at Rosetta promontory between 1973 and 2008 due to coastal erosion. Spectral information were extracted from two multi-spectral scanner (MSS) images (1973 and 1978), three thematic mapper (TM) images (1984, 1990, and 1999), and one enhanced thematic mapper plus (ETM+) image (2008). To estimate the quantity of land loss in terms of coastal erosion, a supervised classification scheme was applied to each image to highlight only two classes: seawater and land. The area of each class was then estimated from the number of pixels pertaining to this class in every image. In addition, the shoreline position was digitized to address retreat/advance pattern throughout the study period. Results showed that Rosetta promontory had lost 12.29 km2 of land between 1973 and 2008 and the shoreline withdrew southward about 3.5 km due to coastal erosion. Most land loss and shoreline retreat occurred between 1973 and 1978 (0.55 km2/year and 132 m/year, respectively). Coastal protection structures were constructed successively at the promontory. These structures have considerably contributed to reduce coastal erosion; however, they promoted downdrift erosion.  相似文献   

8.
Long-term retreat rates of Puget Sound's unconsolidated sediment shorelines have been difficult to quantify, and little systematic research has been completed to constrain retreat in this area. We put forward a new application of cosmogenic 10Be exposure dating to assess long-term shoreline retreat on Whidbey Island, WA by dating lag boulders exposed on the shore platform as the shoreline erodes. Production of 10Be in shoreline boulders is modulated by both tidal submergence and topographic shielding from the retreating bluff. By modeling the combined effect of these variables on 10Be production, the timing of exposure can be determined and used to calculate long-term (103–104 yr) bluff retreat rates. In rare cases, retreat rates are underestimated due to inherited 10Be. Within the study area, average retreat rates ranged between 0 and 8 cm yr? 1. Our results demonstrate the utility of cosmogenic nuclides for determining long-term shoreline retreat rates in areas with thick sediment cover, where large numbers of samples can be collected, and where the pre-depositional history of the boulders is uncomplicated.  相似文献   

9.
Recent projections of global climate change necessitate improved methodologies that quantify shoreline variability. Updated analyses of shoreline movement provide important information that can aid and inform likely intervention policies. This paper uses the Analyzing Moving Boundaries Using R (AMBUR) technique to evaluate shoreline change trends over the time period 1856 to 2015. Special emphasis was placed on recent rates of change, during the 1994 to 2015 period of active storm conditions. Small segments, on the order of tens of kilometers, along two sandy barrier island regions on Florida’s Gulf and Atlantic coasts were chosen for this study. The overall average rate of change over the 159-year period along Little St. George Island was ??0.62?±?0.12 m/year, with approximately 65% of shoreline segments eroding and 35% advancing. During periods of storm clustering (1994–2015), retreat rates along portions of this Gulf coast barrier accelerated to ??5.49?±?1.4 m/year. Along the northern portion of Merritt Island on Florida’s Atlantic coast, the overall mean rate of change was 0.22?±?0.08 m/year, indicative of a shoreline in a state of relative dynamic equilibrium. In direct contrast with the Gulf coast shoreline segment, the majority of transects (65%) evaluated along the oceanfront of Merritt Island over the long term displayed a seaward advance. Results indicate that episodes of clustered storm activity with fairly quick return intervals generally produce dramatic morphological alteration of the coast and can delay natural beach recovery. Additionally, the data show that tidal inlet dynamics, shoreline orientation, along with engineering projects, act over a variety of spatial and temporal scales to influence shoreline evolution. Further, the trends of shoreline movement observed in this study indicate that nearshore bathymetry—the presence of shoals—wields some influence on the behavior of local segments of the shoreline.  相似文献   

10.
The investigations were carried out in order to evaluate change of the beaches profile during the period 1993–2008 and to elucidate main trends of the coastal dynamics. Morphometric indicators (beach width, height and inclination) were measured every year during the period 1993–2008 in 70 measuring stations located along the coastline. It was determined that the dynamic shoreline of the mainland during 1993–2008 receded by 10.2 m and the dynamic shoreline of the Curonian Spit advanced into the sea by 8.3 m. The different morphometric beach indicators changed to varying extents over the period 1993–2008, but comparison of values for 1993 and 2008 showed that those changes were small. The average beach width increased by 1.2 m on the mainland coast and by 0.5 m on the Curonian Spit coast. The average beach height also increased negligibly: by 0.5 m on the mainland coast and by 0.1 m on the Curonian Spit coast. The average beach slope inclination increased by 0.012 (from 0.065 to 0.077) on the mainland coast and by 0.005 (from 0.073 to 0.078) on the Curonian Spit coast. The measurements show that, despite being the most dynamic elements in the coastal system, these beaches managed to retain their morphometric indicators almost unchanged during the period of observation.  相似文献   

11.

Septic systems located near coastal waterways can contribute to nutrients that lead to eutrophication, harmful algal blooms, and high levels of fecal coliforms such as E. coli. This study defines pathways and timescales of nitrogen transport released from septic systems using a groundwater-flow and nitrogen transport model of a coastal subdivision connected to 2,000 septic systems and dissected by a dense network of canals. Lift station effluent data are used as a proxy to quantify average household septic nitrogen and fluid contributions of 11 kg/year and 160 m3/year, respectively. These fluxes are upscaled and applied to five sewer conversion zones, each having a known number of septic systems. Model results provide a basis for assessing nitrogen transport timescales associated with (1) coastal groundwaters for regions with high septic density near the coastline and (2) groundwater–canal interaction. Timescales associated with nitrogen removal by natural groundwater flow in a sandy surficial aquifer, following septic to sewer conversion, are predicted by the model to be on the order of 2–3 years for 50% reduction and 8–10 years for 90% reduction. Both numerical and collected field data indicate that canals significantly influence groundwater flow and have the potential to convey nitrogen to coastal waters at rates several orders of magnitude higher than introduced by submarine discharge along the coast. Pre and post sewer conversion data on nitrate and total nitrogen in shallow groundwater from a nearby field site, obtained post-model development, support the nitrogen concentrations and timescales predicted by the numerical model.

  相似文献   

12.
13.
This paper provides a new deglacial chronology for retreat of the Irish Ice Sheet from the continental shelf of western Ireland to the adjoining coastline, a region where the timing and drivers of ice recession have never been fully constrained. Previous work suggests maximum ice-sheet extent on the outer western continental shelf occurred at ~26–24 cal. ka BP with the initial retreat of the ice marked by the production of grounding-zone wedges between 23–21.1 cal. ka BP. However, the timing and rate of ice-sheet retreat from the inner continental shelf to the present coast are largely unknown. This paper reports 31 new terrestrial cosmogenic nuclide (TCN) ages from erratics and ice-moulded bedrock and three new optically stimulated luminescence (OSL) ages on deglacial outwash. The TCN data constrain deglaciation of the near coast (Aran Islands) to ~19.5–18.5 ka. This infers ice retreated rapidly from the mid-shelf after 21 ka, but the combined effects of bathymetric shallowing and pinning acted to stabilize the ice at the Aran Islands. However, marginal stability was short-lived, with multiple coastal sites along the Connemara/Galway coasts demonstrating ice recession under terrestrial conditions by 18.2–17. ka. This pattern of retreat continued as ice retreated eastward through inner Galway Bay by 16.5 ka. South of Galway, the Kilkee–Kilrush Moraine Complex and Scattery Island moraines point to late stage re-advances of the ice sheet into southern County Clare ~14.1–13.3 ka, but the large errors associated with the OSL ages make correlation with other regional re-advances difficult. It seems more likely that these moraines are the product of regional ice lobes adjusting to internal ice-sheet dynamics during deglaciation in the time window 17–16 ka.  相似文献   

14.
Integrated hydrogeochemical and geophysical methods were used to study the salinity of groundwater aquifers along the coastal area of north Kelantan. For the hydrogeochemical investigation, analysis of major ion contents of the groundwater was conducted, and other chemical parameters such as pH and total dissolved solids were also determined. For the geophysical study, both geoelectrical resistivity soundings and reflection seismic surveys were conducted to determine the characteristics of the subsurface and groundwater contained within the aquifers. The pH values range from 6.2 to 6.8, indicating that the groundwater in the study area is slightly acidic. Low content of chloride suggests that the groundwater in the first aquifer is fresh, with an average concentration of about 15.8 mg/l and high geoelectrical resistivity (>45 ohm m). On the other hand, the groundwater in the second aquifer is brackish, with chloride concentration ranging from 500 mg/l to 3,600 mg/l and very low geoelectrical resistivity (<45 ohm m) as well as high concentration of total dissolved solids (>1,000 mg/l). The groundwater in the third aquifer is fresh, with chloride concentrations generally ranging from 2 mg/l to 210 mg/l and geoelectrical resistivity of greater than 45 ohm m. Fresh and saltwater interface in the first aquifer is generally located directly in the area of the coast, but, for the second aquifer, both hydrogeochemical and geoelectrical resistivity results indicate that the fresh water and saltwater interface is located as far as 6 km from the beach. The considerable chloride ion content initially suggests that the salinity of the groundwater in the second aquifer is probably caused by the intrusion of seawater. However, continuous monitoring of the chloride content of the second aquifer indicated no significant changes with time, from which it can be inferred that the salinity of the groundwater is not affected by seasonal seawater intrusion. Schoeller diagrams illustrate that sulphate concentrations of the groundwater of the second aquifer are relatively low compared to those of the recent seawater. Therefore, this result suggests that the brackish water in the second aquifer is probably from ancient seawater that was trapped within the sediments for a long period of time, rather than due to direct seawater intrusion.  相似文献   

15.
After retreat of the Cordilleran Ice Sheet (CIS) and subsequent glacio‐isostatic adjustment of the central coast of British Columbia (BC), Canada, a complex coastline emerged as relative sea level rapidly reached equilibrium and maintained stability over the end of the Late Pleistocene and Holocene. This study provides a late Quaternary reconstruction of the landscape evolution of a geographically distinct location on the central BC coast, northwest Calvert Island, which experienced a re‐advance of the CIS near the end of the Late Pleistocene and minimal subsequent relative sea‐level change. Geomorphological observations from LiDAR imagery, sedimentological and palaeoecological evidence from exposures, cores and shovel pits, and a robust luminescence and 14C‐based chronology spanning the last 15 000 years are used to reconstruct the landscape of northwest Calvert Island following CIS retreat. A single‐aliquot regenerative dose protocol that was developed specifically for luminescence dating of the sediments on Calvert Island was utilized in this study. Localized proglacial sedimentation was linked to the glacial re‐advance experienced at the end of the Late Pleistocene. Extensive coastal reconfiguration (e.g. rapid shoreline progradation of >1 m a−1) occurred in the absence of extensive RSL change, which was the main driver of coastal change elsewhere along the BC coast. Changes in climate, small magnitude changes in RSL, and fire all probably played a role in isolated aeolian landform development and stabilization in the study area. An important contribution of this study is the documentation of the multi‐disciplinary approach for reconstructing palaeogeography, using multiple geochronological methods, micro‐ and macro‐sedimentology, the palaeoecology inferred from both macro and microfossils (e.g. diatoms and foraminifers), stratigraphy, field mapping and remote sensing. In addition, these findings inform our understanding of the drivers of coastal sedimentary processes, particularly in the temperate coastal rainforest region of BC, and the role that fire may play in those processes. Coastal palaeogeography studies in the region will become increasingly important as discoveries of Late Pleistocene human habitation along the coastal migration route continue to be documented.  相似文献   

16.
Studies of the Nile Delta coast have indicated wide values of local subsidence, ranging from 0.4 to 5 mm/yr. Trend analysis of sea-level rise and shoreline retreat at two Nile Delta promontories have been studied. Records from tide gauges at Alexandria (1944–1989) and Port Said (1926–1987), north of the Nile delta coast, indicate a submergence of the land and/or a rise of the sea-level of 2 and 2.4 mm/yr, respectively.Dramatic erosion has occurred on some beaches of the Nile Delta. This is greatest at the tips of the Rosetta and Damietta promontories, with shoreline retreat up to 58 m/yr. Relationship between the shoreline retreat and sea level trends in terms of correlation analysis and application of the Bruun Rule indicates that the sea level rise has, by itself, a relatively minor effect on coastal erosion. The sea-level trend at the Nile delta coast is found to be only one of several effects on shoreline retreat. Major recent effects include a combination of cut-off of sediment supply to the coast by damming the River Nile and local hydrodynamic forces of waves and currents. Estimates of local future sea-level rise by the year 2100 at Alexandria and Port Said, respectively, is expected to be 37.9 and 44.2 cm. These expectations, combined with other factors, could accelerate coastal erosion, inundate wetlands and lowlands, and increase the salinity of lakes and aquifers.  相似文献   

17.
More than 4,000 sinkholes have formed since the 1980s within a 60-km-long and 1-km-wide strip along the western coast of the Dead Sea (DS) in Israel. Their formation rate accelerated in recent years to >400 sinkholes per year. They cluster mostly in specific sites up to 1,000 m long and 200 m wide, which align parallel to the general direction of the fault systems associated with the DS Rift. The abrupt appearance of the sinkholes reflects changes to the groundwater regime around the shrinking DS. The eastward retreat of the shoreline and the lake-level drop (1 m/year in recent years) cause an eastward and downward migration of the fresh/saline groundwater interface. Consequently, a subsurface salt layer, which was previously enveloped by saline groundwater, is gradually being invaded and submerged by relatively fresh groundwater, and cavities form due to the rapid dissolution of the salt. Collapse of the overlying sediments into these cavities results in sinkholes at the surface. An association between sinkhole sites and land subsidence is revealed by interferometric synthetic aperture radar (InSAR) measurements. On a broad scale (hundreds of meters), subsidence occurs due to compaction of fine-grained sediments as groundwater levels decline along the retreating DS shoreline. At smaller scales (tens of meters), subsidence appears above subsurface cavities in association with the sinkholes, serving in many cases as sinkhole precursors, a few weeks to more than a year before their actual appearance at the surface. This paper overviews the processes of sinkhole formation and their relation to land subsidence.  相似文献   

18.
This study evaluates the impacts resulting from the construction of two large-scale detached breakwater systems on the Nile delta coast of Egypt at Baltim and Ras El Bar beaches (~18.3 km shoreline length). The two protective systems were installed in a water depth of between 3 and 4 m and consist of 17 units in total (each ~250 m long). A comprehensive monitoring program spanning the years 1990 to 2002 was implemented and included beach-nearshore profiles, grain size distribution of seabed sand and information related to the background coastal processes. Evaluation of these systems concentrates on the physical impacts on coastal morphodynamics, mitigation and their design implications. The beach and nearshore sedimentation (erosion/accretion patterns) and grain texture of seabed sediment in the study areas have been substantially disrupted due to the interruption of longshore transport by the shore-parallel detached breakwaters. Rate of shoreline and seabed changes as well as alongshore sediment volume have been substantially affected, resulting in accretion in the breakwater landward sides (tombolo or salient) followed by downdrift erosion. The preconstruction beach erosion at Baltim (–5 m/year) and at Ras El Bar (–6 m/year) has been replaced, respectively, by the formation of sand tombolo (35 m/year) and salient (9 m/year). On the other hand, beach erosion has been substantially increased in the downdrift sides of these protective systems, being –20 m/year at Baltim and –9 m/year at Ras El Bar. Further seaward, the two protective systems at Baltim and Ras El Bar have accumulated seabed sand at maximum rates of 30 and 20 cm/year and associated with downdrift erosion of –45 and –20 cm/year, respectively. Strong gyres and eddies formed in the breakwater gabs have drastically affected swimmers and subsequently caused a significant number of drownings each summer, averaging 35 and 67 victims/year at Baltim and Ras El Bar beaches, respectively. This study provides baseline information needed to help implement mitigation measures for these breakwater systems.  相似文献   

19.
Aerial photographs taken in the 1963 and 2001 and bathymetric charts, in conjunction with coastal processes are analyzed to assess changes in rate of shoreline position, seabed level, and seabed grain sizes along the Tabarka–Berkoukech beach at the north-western Tunisian coastline. The littoral cell of this beach, 12-km-long, is bounded by pronounced embayments and rocky headlands separated by sandy stretches. Although not yet very much undeveloped, this littoral is still experienced degradation and modification, especially along its shoreline, with significant coastal erosion at some places. Results obtained from analysis of shoreline position indicate that El Morjene Beach is experienced a landward retreat of more than −62 m, at a maximum rate of −1.64 m/year, whereas the El corniche beach is advanced about 16–144 m, at an average rate of 0.42 m–3.78 m/year. This beach accretion has been formed on the updrift side of the Tabarka port constructed between 1966 and 1970. Comparison of bottom contours deduced from bathymetric charts surveyed in 1881 and 1996 off the coastline between Tabarka Port and El Morjene Beach identifies erosional areas (sediment source) and accretionary zones (sediment sink). Erosion (0.87–4.35 cm/year) occurs between El kebir River Mouth and El Morjene beach, whereas accretion exists in the zone down wind of the port ranges between 0.87 and 5.21 cm/year. Morphological analyses of the shoreline and the seabed of the study nearshore area indicate that shoreline retreat corresponds to areas of seabed scour (sediment source) while shoreline accretion is associated with areas of seabed deposition (sediment sink). Furthermore, simulation of wave propagation using STWAVE model combined with grain size distributions of the seabed shows that fine sands are much dominated in depositional areas with low wave energy, whereas coarser sands in erosive zones with high wave energy. The results obtained suggest that the change of seabed morphology, wave height pattern and grain size sediment have a great influence on the modification of shoreline morphology and dynamics.  相似文献   

20.
A sudden disturbance in water level was recorded by hydrographs monitoring wells in the coastal city Dammam, Saudi Arabia on December 26, 2004. The water level was being recorded from the shallow (1–3 M deep) coastal aquifer at that time. In two wells, this disturbance was observed ~12 h after the Sumatra earthquake/tsunami event of December 26, 2004. The timing of this event is synchronous in two wells near the coast, but an inland well away from the coast line did not show any such disturbance. It is hypothesized that this disturbance, we call it the “shock event”, is resulted by sudden impact of tsunamis traveling in the Arabian Gulf from southeast toward northwest. As the tsunamis propagated, they suddenly impacted the coastal shallow groundwater aquifer resulting in the “shock event”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号