首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The unconditional stochastic studies on groundwater flow and solute transport in a nonstationary conductivity field show that the standard deviations of the hydraulic head and solute flux are very large in comparison with their mean values (Zhang et al. in Water Resour Res 36:2107–2120, 2000; Wu et al. in J Hydrol 275:208–228, 2003; Hu et al. in Adv Water Resour 26:513–531, 2003). In this study, we develop a numerical method of moments conditioning on measurements of hydraulic conductivity and head to reduce the variances of the head and the solute flux. A Lagrangian perturbation method is applied to develop the framework for solute transport in a nonstationary flow field. Since analytically derived moments equations are too complicated to solve analytically, a numerical finite difference method is implemented to obtain the solutions. Instead of using an unconditional conductivity field as an input to calculate groundwater velocity, we combine a geostatistical method and a method of moment for flow to conditionally simulate the distributions of head and velocity based on the measurements of hydraulic conductivity and head at some points. The developed theory is applied in several case studies to investigate the influences of the measurements of hydraulic conductivity and/or the hydraulic head on the variances of the predictive head and the solute flux in nonstationary flow fields. The study results show that the conditional calculation will significantly reduce the head variance. Since the hydraulic head measurement points are treated as the interior boundary (Dirichlet boundary) conditions, conditioning on both the hydraulic conductivity and the head measurements is much better than conditioning only on conductivity measurements for reduction of head variance. However, for solute flux, variance reduction by the conditional study is not so significant.  相似文献   

2.
A field experiment consisting of geophysical logging and tracer testing was conducted in a single well that penetrated a sand-and-gravel aquifer at the U.S. Geological Survey Toxic Substances Hydrology research site on Cape Cod, Massachusetts. Geophysical logs and flowmeter/pumping measurements were obtained to estimate vertical profiles of porosity ϕ, hydraulic conductivity K, temperature, and bulk electrical conductivity under background, freshwater conditions. Saline-tracer fluid was then injected into the well for 2 h and its radial migration into the surrounding deposits was monitored by recording an electromagnetic-induction log every 10 min. The field data are analyzed and interpreted primarily through the use of Archie's (1942) law to investigate the role of topological factors such as pore geometry and connectivity, and grain size and packing configuration in regulating fluid flow through these coarse-grained materials. The logs reveal no significant correlation between K and ϕ, and imply that groundwater models that link these two properties may not be useful at this site. Rather, it is the distribution and connectivity of the fluid phase as defined by formation factor F, cementation index m, and tortuosity α that primarily control the hydraulic conductivity. Results show that F correlates well with K, thereby indicating that induction logs provide qualitative information on the distribution of hydraulic conductivity. A comparison of α, which incorporates porosity data, with K produces only a slightly better correlation and further emphasizes the weak influence of the bulk value of ϕ on K.  相似文献   

3.
Accurate estimation of aquifer parameters, especially from crystalline hard rock area, assumes a special significance for management of groundwater resources. The aquifer parameters are usually estimated through pumping tests carried out on water wells. While it may be costly and time consuming for carrying out pumping tests at a number of sites, the application of geophysical methods in combination with hydro-geochemical information proves to be potential and cost effective to estimate aquifer parameters. Here a method to estimate aquifer parameters such as hydraulic conductivity, formation factor, porosity and transmissivity is presented by utilizing electrical conductivity values analysed via hydro-geochemical analysis of existing wells and the respective vertical electrical sounding (VES) points of Sindhudurg district, western Maharashtra, India. Further, prior to interpolating the distribution of aquifer parameters of the study area, variogram modelling was carried out using data driven techniques of kriging, automatic relevance determination based Bayesian neural networks (ARD-BNN) and adaptive neuro-fuzzy neural networks (ANFIS). In total, four variogram model fitting techniques such as spherical, exponential, ARD-BNN and ANFIS were compared. According to the obtained results, the spherical variogram model in interpolating transmissivity, ARD-BNN variogram model in interpolating porosity, exponential variogram model in interpolating aquifer thickness and ANFIS variogram model in interpolating hydraulic conductivity outperformed rest of the variogram models. Accordingly, the accurate aquifer parameters maps of the study area were produced by using the best variogram model. The present results suggest that there are relatively high value of hydraulic conductivity, porosity and transmissivity at Parule, Mogarne, Kudal, and Zarap, which would be useful to characterize the aquifer system over western Maharashtra.  相似文献   

4.
Mixed carbonate and siliciclastic marine sediments commonly become freshwater aquifers in eastern coastal regions of the United States and many other global locations. As these deposits age, the carbonate fraction of the sediment is commonly removed by dissolution and the aquifer can become a solely siliciclastic system or contain zones or beds of pure quartz sand. During aquifer evolution, the sediment grain size characteristics, hydraulic conductivity, and porosity change. An investigation of these changes using mixed carbonate/siliciclastic sediment samples collected from a modern barrier island beach in southern Florida showed that the average mean grain diameter decreased with removal of the carbonate fraction, but the average hydraulic conductivity and porosity increased slightly, but not to statistical significance. This counterintuitive result occurs because of the change in the pore types from a combined shelter and intergranular pore system producing a dual porosity system in the mixed sediments to a single intergranular pore system in the siliciclastic sediment fraction. Within the mixed carbonate/siliciclastic sediment, in the pure carbonate fraction, large shell fractions form grain‐supported large pores, which become filled with sand‐sized quartz as the shell fragments decrease in size or as the sediment becomes compacted. The hydraulic conductivity increases because the shell fragments that were oriented perpendicular to flow caused an increase in the length of the flow path, or a larger scale tortuosity, compared with the flow through pure quartz sand.  相似文献   

5.
This paper presents a formulation accounting for the effect of delayed drainage phenomenon (DDP) on the breakthrough of contaminant flux in an aquitard, by considering the movement of soil particles, porosity variation, hydraulic head variation, and transient flow during the consolidation. The water flow equation in an aquitard was based on the Terzaghi's consolidation theory, and the contaminant transport equation was derived on the basis of the mass balance law. Two cases were used to illustrate the effect of DDP on the contaminant transport in an aquitard of small deformation. It is found that the breakthrough time of contaminant in an aquitard is very long, which is mainly ascribed to the low permeability of aquitard and sorption of soil particles. It is also found that the increase of depletion, which is in general induced by the increase of thickness and specific storativity and the decrease of hydraulic conductivity, enhances the impact of DDP on the contaminant transport in an aquitard. A larger delay index (τ0) of DDP gives a greater delay breakthrough time (DBT) of solute transport in an aquitard, which controls the difference of the breakthrough time of contaminant transport in aquitards with and without the occurrence of DDP. For the cases where advection plays a dominant role during the process of solute transport, τ0 is almost linearly correlated with DBT, and the ratio of DBT over the breakthrough time without consideration of DDP also approximately shows a linear relationship with the ratio of specific storativity to porosity, given a fixed drawdown in the adjacent aquifer with the sorption being ignored.  相似文献   

6.
Depth-discrete aquifer in formal ion was obtained using recently developed adaptations and improvements to conventional characterization techniques. These improvements included running neutron porosity and hulk density geophysical logging tools through a cased hole, performing an enhanced point-dilution tracer test for monitoring tracer concentration as a function of Lime and depth, and using pressure derivatives for diagnostic and quantitative analysis of constant rate discharge lest data. Data results from the use of these techniques were used to develop a conceptual model of a heterogeneous aquifer. Depth-discrete aquifer information was required to effectively design field-scale deployment and monitoring of an in situ bioremediation technology.
Geophysical logging and point-dilution tracer test results provided the relative distribution of porosity and horizontal hydraulic conductivity, respectively, with depth and correlated well. Hydraulic pumping tests were conducted to estimate mean values for transmissivity and effective hydraulic conductivity, Tracer lest and geophysical logging results indicated that ground water flow was predominant in the upper approximate 10 feet of the aquifer investigated. These results were used to delineate a more representative interval thickness for estimating effective hydraulic conductivity. Hydraulic conductivity, calculated using this representative interval, was estimated lo be 73 ft/d, approximately three limes higher than that calculated using the full length of the screened test interval.  相似文献   

7.
When the purpose of aquifer testing is to yield data for modeling aqueous mass transport, pumping tests and gradient measurement can only partially satisfy characterization requirements. Effective porosity, ground water flow velocity, and the vertical distribution of hydraulic conductivity within the aquifer are left as unknowns. Single well tracer methods, when added to the testing program, can be used to estimate these parameters. A drift, and pumpback test yields porosity and velocity, and point-dilution testing yields depth-discrete hydraulic information, A single emplacement of tracer into a test well is sufficient to conduct both tests. The tracer tests are facilitated by a simple method for injecting and evenly distributing the tracer solution into a wellbore, and by new ion-selective electrode instrumentation, specifically designed for submersible service, for monitoring the concentration of tracers such as bromide.  相似文献   

8.
A solute breakthrough curve measured during a two-well tracer test was successfully predicted in 1986 using specialized contaminant transport models. Water was injected into a confined, unconsolidated sand aquifer and pumped out 125 feet (38.3 m) away at the same steady rate. The injected water was spiked with bromide for over three days; the outflow concentration was monitored for a month. Based on previous tests, the horizontal hydraulic conductivity of the thick aquifer varied by a factor of seven among 12 layers. Assuming stratified flow with small dispersivities, two research groups accurately predicted breakthrough with three-dimensional (12-layer) models using curvilinear elements following the arc-shaped flowlines in this test.
Can contaminant transport models commonly used in industry, that use rectangular blocks, also reproduce this breakthrough curve? The two-well test was simulated with four MODFLOW-based models, MT3D (FD and HMOC options), MODFLOWT, MOC3D, and MODFLOW-SURFACT.
Using the same 12 layers and small dispersivity used in the successful 1986 simulations, these models fit almost as accurately as the models using curvilinear blocks. Subtle variations in the curves illustrate differences among the codes. Sensitivities of the results to number and size of grid blocks, number of layers, boundary conditions, and values of dispersivity and porosity are briefly presented. The fit between calculated and measured breakthrough curves degenerated as the number of layers and/or grid blocks decreased, reflecting a loss of model predictive power as the level of characterization lessened. Therefore, the breakthrough curve for most field sites can be predicted only qualitatively due to limited characterization of the hydrogeology and contaminant source strength.  相似文献   

9.
Hydraulic tomography (HT) is a method for resolving the spatial distribution of hydraulic parameters to some extent, but many details important for solute transport usually remain unresolved. We present a methodology to improve solute transport predictions by combining data from HT with the breakthrough curve (BTC) of a single forced‐gradient tracer test. We estimated the three dimensional (3D) hydraulic‐conductivity field in an alluvial aquifer by inverting tomographic pumping tests performed at the Hydrogeological Research Site Lauswiesen close to Tübingen, Germany, using a regularized pilot‐point method. We compared the estimated parameter field to available profiles of hydraulic‐conductivity variations from direct‐push injection logging (DPIL), and validated the hydraulic‐conductivity field with hydraulic‐head measurements of tests not used in the inversion. After validation, spatially uniform parameters for dual‐domain transport were estimated by fitting tracer data collected during a forced‐gradient tracer test. The dual‐domain assumption was used to parameterize effects of the unresolved heterogeneity of the aquifer and deemed necessary to fit the shape of the BTC using reasonable parameter values. The estimated hydraulic‐conductivity field and transport parameters were subsequently used to successfully predict a second independent tracer test. Our work provides an efficient and practical approach to predict solute transport in heterogeneous aquifers without performing elaborate field tracer tests with a tomographic layout.  相似文献   

10.
In a previous study, a denitrification wall was constructed in a sand aquifer using sawdust as the carbon substrate. Ground water bypassed around this sawdust wall due to reduced hydraulic conductivity. We investigated potential reasons for this by testing two new walls and conducting laboratory studies. The first wall was constructed by mixing aquifer material in situ without substrate addition to investigate the effects of the construction technique (mixed wall). A second, biochip wall, was constructed using coarse wood chips to determine the effect of size of the particles in the amendment on hydraulic conductivity. The aquifer hydraulic conductivity was 35.4 m/d, while in the mixed wall it was 2.8 m/d and in the biochip wall 3.4 m/d. This indicated that the mixing of the aquifer sands below the water table allowed the particles to re-sort themselves into a matrix with a significantly lower hydraulic conductivity than the process that originally formed the aquifer. The addition of a coarser substrate in the biochip wall significantly increased total porosity and decreased bulk density, but hydraulic conductivity remained low compared to the aquifer. Laboratory cores of aquifer sand mixed under dry and wet conditions mimicked the reduction in hydraulic conductivity observed in the field within the mixed wall. The addition of sawdust to the laboratory cores resulted in a significantly higher hydraulic conductivity when mixed dry compared to cores mixed wet. This reduction in the hydraulic conductivity of the sand/sawdust cores mixed under saturated conditions repeated what occurred in the field in the original sawdust wall. This indicated that laboratory investigations can be a useful tool to highlight potential reductions in field hydraulic conductivities that may occur when differing materials are mixed under field conditions.  相似文献   

11.
A two-dimensional numerical transport model is developed to determine the effect of aquifer anisotropy and heterogeneity on mass transfer from a dense nonaqueous phase liquid (DNAPL) pool. The appropriate steady state groundwater flow equation is solved implicitly whereas the equation describing the transport of a sorbing contaminant in a confined aquifer is solved by the alternating direction implicit method. Statistical anisotropy in the aquifer is introduced by two-dimensional, random log-normal hydraulic conductivity field realizations with different directional correlation lengths. Model simulations indicate that DNAPL pool dissolution is enhanced by increasing the mean log-transformed hydraulic conductivity, groundwater flow velocity, and/or anisotropy ratio. The variance of the log-transformed hydraulic conductivity distribution is shown to be inversely proportional to the average mass transfer coefficient.  相似文献   

12.
We jointly invert field data of flowmeter and multiple pumping tests in fully screened wells to estimate hydraulic conductivity using a geostatistical method. We use the steady-state drawdowns of pumping tests and the discharge profiles of flowmeter tests as our data in the inference. The discharge profiles need not be converted to absolute hydraulic conductivities. Consequently, we do not need measurements of depth-averaged hydraulic conductivity at well locations. The flowmeter profiles contain information about relative vertical distributions of hydraulic conductivity, while drawdown measurements of pumping tests provide information about horizontal fluctuation of the depth-averaged hydraulic conductivity. We apply the method to data obtained at the Krauthausen test site of the Forschungszentrum Jülich, Germany. The resulting estimate of our joint three-dimensional (3D) geostatistical inversion shows an improved 3D structure in comparison to the inversion of pumping test data only.  相似文献   

13.
This study investigates the behavior of flux and head in a strongly heterogeneous three-dimensional aquifer system. The analyses relied on data from 520 slug tests together with 38,000 one-foot core intervals lithological data from the site of the General Separations Area in central Savannah River Site, South Carolina, USA. The skewness in the hydraulic conductivity histograms supported the geologic information for the top two aquifers, but revealed stronger clay content, than was reported for the bottom aquifer. The log-normal distribution model described adequately the hydraulic conductivity measurements for all three aquifers although, other distributions described equally well the bottom aquifer measurements. No apparent anisotropy on the horizontal plane was found for the three aquifers, but ratios of horizontal to vertical correlation lengths between 33 and 75 indicated a strong stratification at the site. Three-dimensional Monte Carlo stochastic simulations utilized a grid with larger elements than the support volume of measurements, but of sub-REV (representative elementary volume) dimensions. This necessitated, on one hand, the use of upscaled hydraulic conductivity expressions, but on the other hand did not allow for the use of anisotropic effective hydraulic conductivity expressions (Sarris and Paleologos in J Stoch Environ Res Risk Assess 18: 188–197, 2004). Flux mean and standard deviations components were evaluated on three vertical cross-sections. The mean and variance of the horizontal flux component normal to a no-flow boundary tended to zero at approximately two to three integral scales from that boundary. Close to a prescribed head boundary both the mean and variance of the horizontal flux component normal to the boundary increased from a stable value attained at a distance of about five integral scales from that boundary. The velocity field 〈qx〉 was found to be mildly anisotropic in the top two aquifers, becoming highly anisotropic in the bottom aquifer; 〈qy〉 was anisotropic in all three aquifers with directions of high continuity normal to those of the 〈qx〉 field; finally, 〈qz〉 was highly anisotropic in all three aquifers, with higher continuity along the east–west direction. The mean head field was found to be continuous, despite the high heterogeneity of the underlying hydraulic conductivity field. Directions of high continuity were in alignment with field boundaries and mean flow direction. Conditioning did not influence significantly the expected value of the flux terms, with more pronounced being the effect on the standard deviation of the flux vector components. Conditioning reduced the standard deviations of the horizontal flux components by as much as 50% in the bottom aquifer. Variability in the head cross-sections was affected only marginally, with an average 10% reduction in the respective standard deviation. Finally, the location of the conditioning data did not appear to have a significant effect on the surrounding area, with uniform reduction in standard deviations.  相似文献   

14.
Mehl S  Hill MC 《Ground water》2001,39(2):300-307
Five common numerical techniques for solving the advection-dispersion equation (finite difference, predictor corrector, total variation diminishing, method of characteristics, and modified method of characteristics) were tested using simulations of a controlled conservative tracer-test experiment through a heterogeneous, two-dimensional sand tank. The experimental facility was constructed using discrete, randomly distributed, homogeneous blocks of five sand types. This experimental model provides an opportunity to compare the solution techniques: the heterogeneous hydraulic-conductivity distribution of known structure can be accurately represented by a numerical model, and detailed measurements can be compared with simulated concentrations and total flow through the tank. The present work uses this opportunity to investigate how three common types of results--simulated breakthrough curves, sensitivity analysis, and calibrated parameter values--change in this heterogeneous situation given the different methods of simulating solute transport. The breakthrough curves show that simulated peak concentrations, even at very fine grid spacings, varied between the techniques because of different amounts of numerical dispersion. Sensitivity-analysis results revealed: (1) a high correlation between hydraulic conductivity and porosity given the concentration and flow observations used, so that both could not be estimated; and (2) that the breakthrough curve data did not provide enough information to estimate individual values of dispersivity for the five sands. This study demonstrates that the choice of assigned dispersivity and the amount of numerical dispersion present in the solution technique influence estimated hydraulic conductivity values to a surprising degree.  相似文献   

15.
Heterogeneity in the physical properties of an aquifer can significantly affect the viability of aquifer storage and recovery (ASR) by reducing the recoverable proportion of low-salinity water where the ambient ground water is brackish or saline. This study investigated the relationship between knowledge of heterogeneity and predictions of solute transport and recovery efficiency by combining permeability and ASR-based tracer testing with modeling. Multiscale permeability testing of a sandy limestone aquifer at an ASR trial site showed that small-scale core data give lower-bound estimates of aquifer hydraulic conductivity (K), intermediate-scale downhole flowmeter data offer valuable information on variations in K with depth, and large-scale pumping test data provide an integrated measure of the effective K that is useful to constrain ground water models. Chloride breakthrough and thermal profiling data measured during two cycles of ASR showed that the movement of injected water is predominantly within two stratigraphic layers identified from the flowmeter data. The behavior of the injectant was reasonably well simulated with a four-layer numerical model that required minimal calibration. Verification in the second cycle achieved acceptable results given the model's simplicity. Without accounting for the aquifer's layered structure, high precision could be achieved on either piezometer breakthrough or recovered water quality, but not both. This study demonstrates the merit of an integrated approach to characterizing aquifers targeted for ASR.  相似文献   

16.
Two different deterministic and two alternative stochastic (i.e., geostatistical) approaches to modeling the distribution of hydraulic conductivity (K) in a nonuniform (sigma2ln(K)) = 0.29) glacial sand aquifer were used to explore the influence of conceptual model selection on simulations of three-dimensional tracer movement. The deterministic K models employed included a homogeneous effective K and a perfectly stratified 14 layer model. Stochastic K models were constructed using sequential Gaussian simulation and sequential i ndicator simulation conditioned to available K values estimated from measured grain size distributions. Standard simulation software packages MODFLOW, MT3DMS, and MODPATH were used to model three-dimensional ground water flow and transport in a field tracer test, where a pulse of bromide was injected through an array of three fully screened wells and extracted through a single fully screened well approximately 8 m away. Agreement between observed and simulated transport behavior was assessed through direct comparison of breakthrough curves (BTCs) and selected breakthrough metrics at the extraction well and at 26 individual multilevel sample ports distributed irregularly between the injection and extraction wells. Results indicate that conceptual models incorporating formation variability are better able to capture observed breakthrough behavior. Root mean square (RMS) error of the deterministic models bracketed the ensemble mean RMS error of stochastic models for simulated concentration vs. time series, but not for individual BTC characteristic metrics. The spatial variability models evaluated here may be better suited to simulating breakthrough behavior measured in wells screened over large intervals than at arbitrarily distributed observation points within a nonuniform aquifer domain.  相似文献   

17.
A groundwater flow model has been developed in order to study the chalk aquifer of Paris Basin, based on most of the geological and hydrological available data. The numerical processes are intended to modelling the groundwater flow in the Senonian (Late Cretaceous) formations and to visualize the tracer movement in groundwater resources in the experimental site of LaSalle Beauvais (northern part Paris Basin). Both objectives were achieved as follows: (i) the comprehension of the spatial distribution of the hydraulic conductivity in the chalk aquifer taking into account the characteristics of the hydrogeological system and (ii) the use of the analytical solution for describing one‐dimensional to two‐dimensional solute transport in a unidirectional steady‐state flow tracer with scale‐dependent dispersion. Advection and diffusion mechanisms are taken into account. Comparison between the breakthrough curves of the analytical and the numerical solutions provided an excellent agreement for various ranges of scale‐related transport parameters of interest. The developed power series solution facilitates fast prediction of the breakthrough curves at each observation point. Thus, the derived new solutions are widely applicable and are very useful for the validation of numerical transport. The numerical approach is carried out by MT3DMS, a Modular 3‐D Multi‐Species Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems, and based on total variation‐diminishing method using the ULTIMATE algorithm. The estimation of the infected surface could constitute an approach in water management and allows to prevent the risks of pollution and to manage the groundwater resource from a durable development perspective. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
19.
Estimation of hydraulic parameters is essential to understand the interaction between groundwater flow and seawater intrusion. Though several studies have addressed hydraulic parameter estimation, based on pumping tests as well as geophysical methods, not many studies have addressed the problem with clayey formations being present. In this study, a methodology is proposed to estimate anisotropic hydraulic conductivity and porosity values for the coastal aquifer with unconsolidated formations. For this purpose, the one-dimensional resistivity of the aquifer and the groundwater conductivity data are used to estimate porosity at discrete points. The hydraulic conductivity values are estimated by its mutual dependence with porosity and petrophysical parameters. From these estimated values, the bilinear relationship between hydraulic conductivity and aquifer resistivity is established based on the clay content of the sampled formation. The methodology is applied on a coastal aquifer along with the coastal Karnataka, India, which has significant clayey formations embedded in unconsolidated rock. The estimation of hydraulic conductivity values from the established correlations has a correlation coefficient of 0.83 with pumping test data, indicating good reliability of the methodology. The established correlations also enable the estimation of horizontal hydraulic conductivity on two-dimensional resistivity sections, which was not addressed by earlier studies. The inventive approach of using the established bilinear correlations at one-dimensional to two-dimensional resistivity sections is verified by the comparison method. The horizontal hydraulic conductivity agrees with previous findings from inverse modelling. Additionally, this study provides critical insights into the estimation of vertical hydraulic conductivity and an equation is formulated which relates vertical hydraulic conductivity with horizontal. Based on the approach presented, the anisotropic hydraulic conductivity of any type aquifer with embedded clayey formations can be estimated. The anisotropic hydraulic conductivity has the potential to be used as an important input to the groundwater models.  相似文献   

20.
Zheng C  Gorelick SM 《Ground water》2003,41(2):142-155
Several recent studies at the Macrodispersion Experiment (MADE) site in Columbus, Mississippi, have indicated that the relative preferential flowpaths and flow barriers resulting from decimeter-scale aquifer heterogeneities appear to have a dominant effect on plume-scale solute transport. Numerical experiments are thus conducted in this study to explore the key characteristics of solute transport in two-dimensional flow fields influenced by decimeter-scale preferential flowpaths. A hypothetical but geologically plausible network of 10 cm wide channels of high hydraulic conductivity is used to represent the relative preferential flowpaths embedded in an otherwise homogeneous aquifer. When the hydraulic conductivity in the channels is 100 times greater than that in the remaining portion of the aquifer, the calculated concentration distributions under three source configurations all exhibit highly asymmetrical, non-Gaussian patterns. These patterns, with peak concentrations close to the source and extensive spreading downgradient, resemble that observed at the MADE site tracer tests. When the contrast between the channel and nonchannel hydraulic conductivities is reduced to 30:1 from 100:1, the calculated mass distribution curve starts to approach a Gaussian one with the peak concentration near the central portion of the plume. Additional analysis based on a field-scale model demonstrates that the existence of decimeter-scale preferential flowpaths can have potentially far-reaching implications for ground water remediation. Failure to account for them in numerical simulation could lead to overestimation of the effectiveness of the remedial measure under consideration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号