首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We study numerically the photogravitational version of the problem of four bodies, where an infinitesimal particle is moving under the Newtonian gravitational attraction of three bodies which are finite, moving in circles around their center of mass fixed at the origin of the coordinate system, according to the solution of Lagrange where they are always at the vertices of an equilateral triangle. The fourth body does not affect the motion of the three bodies (primaries). We consider that the primary body m 1 is dominant and is a source of radiation while the other two small primaries m 2 and m 3 are equal. In this case (photogravitational) we examine the linear stability of the Lagrange triangle solution. The allowed regions of motion as determined by the zero-velocity surface and corresponding equipotential curves, as well as the positions of the equilibrium points on the orbital plane are given. The existence and the number of the collinear and the non-collinear equilibrium points of the problem depends on the mass parameters of the primaries and the radiation factor q 1. Critical masses m 3 and radiation q 1 associated with the existence and the number of the equilibrium points are given. The stability of the relative equilibrium solutions in all cases are also studied. In the last section we investigate the existence and location of the out of orbital plane equilibrium points of the problem. We found that such critical points exist. These points lie in the (x,z) plane in symmetrical positions with respect to (x,y) plane. The stability of these points are also examined.  相似文献   

2.
This article deals with the region of motion in the Sitnikov four-body problem where three bodies (called primaries) of equal masses fixed at the vertices of an equilateral triangle. Fourth mass which is finite confined to moves only along a line perpendicular to the instantaneous plane of the motions of the primaries. Contrary to the Sitnikov problem with one massless body the primaries are moving in non-Keplerian orbits about their centre of mass. It is investigated that for very small range of energy h the motion is possible only in small region of phase space. Condition of bounded motions has been derived. We have explored the structure of phase space with the help of properly chosen surfaces of section. Poincarè surfaces of section for the energy range ?0.480≤h≤?0.345 have been computed. We have chosen the plane (q 1,p 1) as surface of section, with q 1 is the distance of a primary from the centre of mass. We plot the respective points when the fourth body crosses the plane q 2=0. For low energy the central fixed point is stable but for higher value of energy splits in to an unstable and two stable fixed points. The central unstable fixed point once again splits for higher energy into a stable and three unstable fixed points. It is found that at h=?0.345 the whole phase space is filled with chaotic orbits.  相似文献   

3.
Past studies of the structure of solar magnetic fields have used magnetograph data to compute selected field lines for comparison with the morphology of structures seen in various spectral wavelengths. While those analyses examine one of the integral properties of magnetic fields (field lines), they are not complete since they fail to determine the other important integral property: the boundaries of the flux of field lines of given connectivity. In the present analysis we determine such a system of boundaries, called separatrices, for the current free field of two p-f spot pairs so as to exhibit the line of self-intersection, called the separator. The analysis is compared with previous analytical work. These computer results, confirming earlier studies carried out using iron fillings, show that the separatrix has the form of two intersecting ovoids, defining four flux cells. New features which have emerged from this study include the observation that the projections of the separatrix in a plane perpendicular to the separator at its highest point do not intersect at 90° as has been widely believed, but rather closer to 60° in the case studied. The separator is very nearly circular over most of its length. The two neutral points (B = 0) which appear at the photospheric ends of the separator have the mixed radial-hyperbolic form as expected, a feature requiring every field line lying on the separatrix to connect with at least one of the two neutral points. The rotation of line direction with height (shear) is graphically illustrated in the potential field case studied here. We also exhibit a magnetic arcade.  相似文献   

4.
We have studied the stability of location of various equilibrium points of a passive micron size particle in the field of radiating binary stellar system within the framework of circular restricted three body problem. Influence of radial radiation pressure and Poynting-Robertson drag (PR-drag) on the equilibrium points and their stability in the binary stellar systems RW-Monocerotis and Krüger-60 has been studied. It is shown that both collinear and off axis equilibrium points are linearly unstable for increasing value of β 1 (ratio of radiation to gravitational force of the massive component) in presence of PR-drag for the binary systems. Further we find that out of plane equilibrium points (L i , i=6,7) may exists for range of values of β 1>1 for these binary systems in the presence of PR-drag. Our linear stability analysis shows that the motion near the equilibrium points L 6,7 of the binary systems is unstable both in the absence and presence of PR-drag.  相似文献   

5.
We analyze nearly periodic solutions in the plane problem of three equal-mass bodies by numerically simulating the dynamics of triple systems. We identify families of orbits in which all three points are on one straight line (syzygy) at the initial time. In this case, at fixed total energy of a triple system, the set of initial conditions is a bounded region in four-dimensional parameter space. We scan this region and identify sets of trajectories in which the coordinates and velocities of all bodies are close to their initial values at certain times (which are approximately multiples of the period). We classify the nearly periodic orbits by the structure of trajectory loops over one period. We have found the families of orbits generated by von Schubart’s stable periodic orbit revealed in the rectilinear three-body problem. We have also found families of hierarchical, nearly periodic trajectories with prograde and retrograde motions. In the orbits with prograde motions, the trajectory loops of two close bodies form looplike structures. The trajectories with retrograde motions are characterized by leafed structures. Orbits with central and axial symmetries are identified among the families found.  相似文献   

6.
The equilibrium points of charged particles moving under the Lorentz forces of two parallel or anti-parallel magnetic dipoles located at the two primaries of the Restricted Three-Body Problem are calculated. The magnetic moments of the dipoles are taken perpendicular to the plane of motion of the primaries. The configuration studied simulates the case of close-binary stars with dominant zero-order harmonics in the magnetic field of each star. Depending on the mass parameter and the magnetic moment ratio of the two dipoles, it is found that there exist from one to nine equilibrium points in the plane of motion of the primaries. On the synodical axis of the primaries, depending on the above two ratios, there exist one, two three, or five equilibrium points, while off this axis the number of equilibrium points is zero, two or four.  相似文献   

7.
The formulation of the tensor virial equations is generalized to unrelaxed configurations, where virial equilibrium does not coincide with dynamical (or hydrostatic) equilibrium. Homeoidally striated, Jacobi ellipsoids, which generalize classical Jacobi ellipsoids, are studied in detail. Further investigation is devoted to the generation of sequences of virial equilibrium configurations where the anisotropy parameters are left unchanged, including both flattened and elongated, triaxial configurations, and the determination of the related bifurcation points. An application is made to dark matter haloes hosting giant galaxies (M ≈ 1012 m), with regard to assigned initial and final configuration, following and generalizing to many respects a procedure conceived by Thuan & Gott (1975). The dependence of the limiting axis ratios, below which no configuration is allowed for the sequence under consideration, on the change in mass, total energy, and angular momentum, during the evolution, is illustrated in some representative situations. The dependence of the axis ratios, ε31 and ε21, on a parameter, related to the initial conditions of the density perturbation, is analysed in connection with a few special cases. The same is done for the rotation parameters. Within the range of the rotation parameter, λ, deduced from high‐resolution numerical simulations, the shape of dark matter haloes is mainly decided by the amount of anisotropy in residual velocity distribution. On the other hand, the contribution of rotation has only a minor effect on the meridional plane, and no effect on the equatorial plane, as bifurcation points occur for larger values of λ. To this respect, dark matter haloes are found to resemble giant elliptical galaxies. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Galsgaard  K.  Priest  E.R.  Nordlund  Å. 《Solar physics》2000,193(1-2):1-16
In two dimensions magnetic energy release takes place at locations where the magnetic field strength becomes zero and has an x-point topology. The x-point topology can collapse into two y-points connected by a current sheet when the advection of magnetic flux into the x-point is larger than the dissipation of magnetic flux at the x-point. In three dimensions magnetic fields may also contain singularities in the form of three-dimensional null points. Three-dimensional nulls are created in pairs and are therefore, at least in the initial stages, always connected by at least one field line – the separator. The separator line is defined by the intersection of the fan planes of the two nulls. In the plane perpendicular to a single separator the field line topology locally has a two dimensional x-point structure. Using a numerical approach we find that the collapse of the separator can be initiated at the two nulls by a velocity shear across the fan plane. It is found that for a current concentration to connect the two nulls along the separator, the current sheet can only obtain two different orientations relative to the field line structure of the nulls. The sheet has to have an orientation midway between the fan plane and the spine axis of each null. As part of this process the spine axes are found to lose their identity by transforming into an integrated part of the separator surfaces that divide space into four magnetically independent regions around the current sheet.  相似文献   

9.
The location and the stability in the linear sense of the libration points in the restricted problem have been studied when there are perturbations in the potentials between the bodies. It is seen that if the perturbing functions satisfy certain conditions, there are five libration points, two triangular and three collinear. It is further observed that the collinear points are unstable and for the triangular points, the range of stability increases or decreases depending upon whetherP> or <0 wherep depends upon the perturbing functions. The theory is verified in the following four cases:
  1. There are no perturbations in the potentials (classical problem).
  2. Only the bigger primary is an oblate spheroid whose axis of symmetry is perpendicular to the plane of relative motion (circular) of the primaries.
  3. Both the primaries are oblate spheroids whose axes of symmetry are perpendicular to the plane of relative motion (circular) of the primaries.
  4. The primaries are spherical in shape and the bigger is a source of radiation.
  相似文献   

10.
In this article we treat the 'Extended Sitnikov Problem' where three bodies of equal masses stay always in the Sitnikov configuration. One of the bodies is confined to a motion perpendicular to the instantaneous plane of motion of the two other bodies (called the primaries), which are always equally far away from the barycenter of the system (and from the third body). In contrary to the Sitnikov Problem with one mass less body the primaries are not moving on Keplerian orbits. After a qualitative analysis of possible motions in the 'Extended Sitnikov Problem' we explore the structure of phase space with the aid of properly chosen surfaces of section. It turns out that for very small energies H the motion is possible only in small region of phase space and only thin layers of chaos appear in this region of mostly regular motion. We have chosen the plane ( ) as surface of section, where r is the distance between the primaries; we plot the respective points when the three bodies are 'aligned'. The fixed point which corresponds to the 1 : 2 resonant orbit between the primaries' period and the period of motion of the third mass is in the middle of the region of motion. For low energies this fixed point is stable, then for an increased value of the energy splits into an unstable and two stable fixed points. The unstable fixed point splits again for larger energies into a stable and two unstable ones. For energies close toH = 0 the stable center splits one more time into an unstable and two stable ones. With increasing energy more and more of the phase space is filled with chaotic orbits with very long intermediate time intervals in between two crossings of the surface of section. We also checked the rotation numbers for some specific orbits. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
The stability of Trojan type orbits around Neptune is studied. As the first part of our investigation, we present in this paper a global view of the stability of Trojans on inclined orbits. Using the frequency analysis method based on the fast Fourier transform technique, we construct high-resolution dynamical maps on the plane of initial semimajor axis a 0 versus inclination i 0. These maps show three most stable regions, with i 0 in the range of  (0°, 12°), (22°, 36°)  and  (51°, 59°),  respectively, where the Trojans are most probably expected to be found. The similarity between the maps for the leading and trailing triangular Lagrange points L 4 and L 5 confirms the dynamical symmetry between these two points. By computing the power spectrum and the proper frequencies of the Trojan motion, we figure out the mechanisms that trigger chaos in the motion. The Kozai resonance found at high inclination varies the eccentricity and inclination of orbits, while the  ν8  secular resonance around   i 0∼ 44°  pumps up the eccentricity. Both mechanisms lead to eccentric orbits and encounters with Uranus that introduce strong perturbation and drive the objects away from the Trojan like orbits. This explains the clearance of Trojan at high inclination  (>60°)  and an unstable gap around  44°  on the dynamical map. An empirical theory is derived from the numerical results, with which the main secular resonances are located on the initial plane of  ( a 0, i 0)  . The fine structures in the dynamical maps can be explained by these secular resonances.  相似文献   

12.
The dynamics of the two Jupiter triangular libration points perturbed by Saturn is studied in this paper. Unlike some previous works that studied the same problem via the pure numerical approach, this study is done in a semianalytic way. Using a literal solution, we are able to explain the asymmetry of two orbits around the two libration points with symmetric initial conditions. The literal solution consists of many frequencies. The amplitudes of each frequency are the same for both libration points, but the initial phase angles are different. This difference causes a temporary spatial asymmetry in the motions around the two points, but this asymmetry gradually disappears when the time goes to infinity. The results show that the two Jupiter triangular libration points should have symmetric spatial stable regions in the present status of Jupiter and Saturn. As a test of the literal solution, we study the resonances that have been extensively studied in Robutel and Gabern (Mon Not R Astron Soc 372:1463–1482, 2006). The resonance structures predicted by our analytic theory agree well with those found in Robutel and Gabern (Mon Not R Astron Soc 372:1463–1482, 2006) via a numerical approach. Two kinds of chaotic orbits are discussed. They have different behaviors in the frequency map. The first kind of chaotic orbits (inner chaotic orbits) is of small to moderate amplitudes, while the second kind of chaotic orbits (outer chaotic orbits) is of relatively larger amplitudes. Using analytical theory, we qualitatively explain the transition process from the inner chaotic orbits to the outer chaotic orbits with increasing amplitudes. A critical value of the diffusion rate is given to separate them in the frequency map. In a forthcoming paper, we will study the same problem but keep the planets in migration. The time asymmetry, which is unimportant in this paper, may cause an observable difference in the two Jupiter Trojan groups during a very fast planet migration process.  相似文献   

13.
14.
The restricted problem of 2 + 2 homogenous axisymmetric ellipsoids such that their equatorial planes coincide with the orbital plane of the centers of mass is considered. The equilibrium solutions of this problem are shown to exist. Six of these solutions are located about the collinear points of the restricted problem of three axisymmetric ellipsoids. A special case of this problem is studied and sixteen solutions are found in the neighborhood of the triangular Lagrangian points.  相似文献   

15.
We study the equilibrium points and the zero-velocity curves of Chermnykh’s problem when the angular velocity ω varies continuously and the value of the mass parameter is fixed. The planar symmetric simple-periodic orbits are determined numerically and they are presented for three values of the parameter ω. The stability of the periodic orbits of all the families is computed. Particularly, we explore the network of the families when the angular velocity has the critical value ω = 2√2 at which the triangular equilibria disappear by coalescing with the collinear equilibrium point L1. The analytic determination of the initial conditions of the family which emanate from the Lagrangian libration point L1 in this case, is given. Non-periodic orbits, as points on a surface of section, providing an outlook of the stability regions, chaotic and escape motions as well as multiple-periodic orbits, are also computed. Non-linear stability zones of the triangular Lagrangian points are computed numerically for the Earth–Moon and Sun–Jupiter mass distribution when the angular velocity varies.  相似文献   

16.
In this paper we study a particular four-body problem: three bodies revolve around their center of mass in circular orbits under the influence of their mutual gravitational attraction, while a fourth body moves in the plane defined by the three bodies but non influencing their motion. The linear stability of the eight equilibrium points is studied, and it is found that it depends on the values of the masses.  相似文献   

17.
The work presented in paper I (Papadakis, K.E., Goudas, C.L.: Astrophys. Space Sci. (2006)) is expanded here to cover the evolution of the approximate general solution of the restricted problem covering symmetric and escape solutions for values of μ in the interval [0, 0.5]. The work is purely numerical, although the available rich theoretical background permits the assertions that most of the theoretical issues related to the numerical treatment of the problem are known. The prime objective of this work is to apply the ‘Last Geometric Theorem of Poincaré’ (Birkhoff, G.D.: Trans. Amer. Math. Soc. 14, 14 (1913); Poincaré, H.: Rend. Cir. Mat. Palermo 33, 375 (1912)) and compute dense sets of axisymmetric periodic family curves covering the initial conditions space of bounded motions for a discrete set of values of the basic parameter μ spread along the entire interval of permissible values. The results obtained for each value of μ, tested for completeness, constitute an approximation of the general solution of the problem related to symmetric motions. The approximate general solution of the same problem related to asymmetric solutions, also computable by application of the same theorem (Poincaré-Birkhoff) is left for a future paper. A secondary objective is identification-computation of the compact space of escape motions of the problem also for selected values of the mass parameter μ. We first present the approximate general solution for the integrable case μ = 0 and then the approximate solution for the nonintegrable case μ = 10−3. We then proceed to presenting the approximate general solutions for the cases μ = 0.1, 0.2, 0.3, 0.4, and 0.5, in all cases building them in four phases, namely, presenting for each value of μ, first all family curves of symmetric periodic solutions that re-enter after 1 oscillation, then adding to it successively, the family curves that re-enter after 2 to 10 oscillations, after 11 to 30 oscillations, after 31 to 50 oscillations and, finally, after 51 to 100 oscillations. We identify in these solutions, considered as functions of the mass parameter μ, and at μ = 0 two failures of continuity, namely: 1. Integrals of motion, exempting the energy one, cease to exist for any infinitesimal positive value of μ. 2. Appearance of a split into two separate sub-domains in the originally (for μ = 0) unique space of bounded motions. The computed approximations of the general solution for all values of μ appear to fulfill the ‘completeness’ criterion inside properly selected sub-domains of the domain of bounded motions in the (x, C) plane, which means that these sub-domains are filled countably densely by periodic family curves, which form a laminar flow-line pattern. The family curves in this pattern may, or may not, be intersected by a ‘basic’ family curve segment of order from 1 up to 3. The isolated points generating asymptotic solutions resemble ‘sink’ points toward which dense sets of periodic family curves spiral. The points in the compact domain in the (x, C) plane resting outside the domain of bounded motions (μ = 0), including the gap between the two large sub-domains (μ > 0) created by the aforementioned split, generate escape motions. The gap between the two large sub-domains of bounded motions grows wider for growing μ. Also, a number of compact gaps that generate escape motions exist within the body of the two sub-domains of bounded motions. The approximate general solutions computed include symmetric, heteroclinic, asymptotic, collision and escape solutions, thus constituting one component of the full approximate general solution of the problem, the second and final component being that of asymmetric solutions.  相似文献   

18.
This paper deals with the perturbations which rotation can produce to the orbital elements of a close binary system. The rectangular components,R, S andW of the disturbing accelerations due to rotation have been substituted to the Gauss form of Lagrange's planetary equations to yield the first order approximation. The results obtained are exact for any value of orbital eccentricity between the values 0<e<1 and for arbitrary inclinations of the rotational axes to the orbital plane.First and second order approximations are given for the special case when equators are coplanar to the orbit.  相似文献   

19.
The question about the interpretation of numerical experiments on magnetic reconnection in solar flares is considered. A correspondence between the standard classification of magnetohydrodynamic discontinuities and the parameters characterizing the mass flux through a discontinuity and the magnetic field configuration has been established within a classical formulation of the problem on discontinuous magnetohydrodynamic flows. A pictorial graphical representation of the relationship between the angles of the magnetic field vector relative to the normal to the discontinuity plane on both its sides has also been found. The relations between the parameters of a two-dimensional discontinuous flow have the simplest form in a frame of reference where the magnetic field lines (B) are parallel to the matter velocity (u)—the deHoffmann-Teller frame. The question about the transformation of the magnetic field configuration when passing to a “laboratory” frame of reference where (v · B) ≠ 0, i.e., an electric field is present, is considered in this connection. The result is applied to the analytical solution of the problem on the magnetic field structure in the vicinity of a reconnecting current sheet obtained previously by Bezrodnykh et al. The regions of nonevolutionary shocks are shown to appear near the endpoints of a current sheet with reverse currents.  相似文献   

20.
G. M. Webb  G. P. Zank 《Solar physics》1990,127(2):229-252
Solutions of the sine-Poisson equation are used to construct a class of isothermal magnetostatic atmospheres, with one ignorable coordinate corresponding to a uniform gravitational field in a plane geometry. The distributed current in the model j is directed along the x-axis, where x is the horizontal ignorable coordinate. The current j varies as the sine of the magnetostatic potential and falls off exponentially with distance vertical to the base with an e-folding distance equal to the gravitational scale height. We investigate in detail solutions for the magnetostatic potential A corresponding to the one-soliton, two soliton, and breather solutions of the sine-Gordon equation. Depending on the values of the free parameters in the soliton solutions, horizontally, periodic magnetostatic structures are obtained possessing either (a) a single X-type neutral point, (b) multiple neutral X-points, or (c) solutions without X-points. The solution cases (b) and (c) contain two families of intersecting current sheets, in which the line of intersection forms flux concentration points (or singularities) for the magnetic field. The solutions illustrate the contribution of the anisotropic J × B force (B, magnetic field induction), the gravitational force, and the gas pressure gradient to the force balance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号