首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
Array analysis is performed on surface waves recorded in the French Alps using a small‐aperture (25 km) temporary array of six broad‐band stations. The analysis shows that both Rayleigh and Love waves deviate relative to the great‐circle path. The deviations are particularly strong, up to 30°, between 20 and 40 s period. To interpret these observations, we first study the effect of large‐scale structures using ray tracing in a smooth, laterally heterogeneous model of the Earth. Second, we evaluate the local effect by considering a model for the French Alps including strong lateral heterogeneities around the array that were not taken into account in the ray tracing. By combining these two possible causes of the observed deviations, we propose an explanation for the general trend in the observed deviations. Finally, we show that by taking into account azimuthal deviations, phase velocities measured at a regional scale can be significantly improved.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
Volcano seismology often deals with rather shallow seismic sources and seismic stations deployed in their near field. The complex stratigraphy on volcanoes and near‐field source effects have a strong impact on the seismic wavefield, complicating the interpretation techniques that are usually employed in earthquake seismology. In addition, as most volcanoes have a pronounced topography, the interference of the seismic wavefield with the stress‐free surface results in severe waveform perturbations that affect seismic interpretation methods. In this study we deal predominantly with the surface effects, but take into account the impact of a typical volcano stratigraphy as well as near‐field source effects. We derive a correction term for plane seismic waves and a plane‐free surface such that for smooth topographies the effect of the free surface can be totally removed. Seismo‐volcanic sources radiate energy in a broad frequency range with a correspondingly wide range of different Fresnel zones. A 2‐D boundary element method is employed to study how the size of the Fresnel zone is dependent on source depth, dominant wavelength and topography in order to estimate the limits of the plane wave approximation. This approximation remains valid if the dominant wavelength does not exceed twice the source depth. Further aspects of this study concern particle motion analysis to locate point sources and the influence of the stratigraphy on particle motions. Furthermore, the deployment strategy of seismic instruments on volcanoes, as well as the direct interpretation of the broad‐band waveforms in terms of pressure fluctuations in the volcanic plumbing system, are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号