首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dr. A. Suwa 《GeoJournal》1980,4(2):153-159
Japan is very rich in active volcanoes, so that the surveillance and prediction of volcanic activities are indespensable in order to protect human life and properties from catastrophic volcanic eruptions. The author intends here to review the volcanic activities in Japan and the history and status quo of the volcanological observation and research by the Japan Meteorological Agency (JMA), universities, etc. for that purpose. Needless to say, in Japan, volcanoes are studied from various view points such as geophysical, geochemical, geological and geographical. However, the observations for the purpose of detecting of reliable premonitory symptoms of volcanic eruptions are mainly based on geophysical and geochemical methods. In this country, there are permanent observatories at 18 active volcanoes, and there are also several mobile teams of volcanologists. It must be noticed that almost all the volcanic activities including very slight volcanic extraordinary phenomena are nowadays detected in Japan, and unexpected eruptions are very scarce, because the information on the actual state of activities of Japanese volcanoes are made public frequently.  相似文献   

2.
Kamchatka Peninsula is one of the most active volcanic regions in the world. Many Holocene explosive eruptions have resulted in widespread dispersal of tephra-fall deposits. The largest layers have been mapped and dated by the 14C method. The tephra provide valuable stratigraphic markers that constrain the age of many geological events (e.g. volcanic eruptions, palaeotsunamis, faulting, and so on). This is the first systematic attempt to use electron microprobe (EMP) analyses of glass to characterize individual tephra deposits in Kamchatka. Eighty-nine glass samples erupted from 11 volcanoes, representing 27 well-identified Holocene key-marker tephra layers, were analysed. The glass is rhyolitic in 21 tephra, dacitic in two, and multimodal in three. Two tephra are mixed with glass compositions ranging from andesite/dacite to rhyolite. Tephra from the 11 eruptive centres are distinguished by their glass K2O, CaO, and FeO contents. In some cases, individual tephra from volcanoes with multiple eruptions cannot be differentiated. Trace element compositions of 64 representative bulk tephra samples erupted from 10 volcanoes were analysed by instrumental neutron activation analysis (INAA) as a pilot study to further refine the geochemical characteristics; tephra from these volcanoes can be characterized using Cr and Th contents and La/Yb ratios.

Unidentified tephra collected at the islands of Karaginsky (3), Bering (11), and Attu (5) as well as Uka Bay (1) were correlated to known eruptions. Glass compositions and trace element data from bulk tephra samples show that the Karaginsky Island and Uka Bay tephra were all erupted from the Shiveluch volcano. The 11 Bering Island tephra are correlated to Kamchatka eruptions. Five tephra from Attu Island in the Aleutians are tentatively correlated with eruptions from the Avachinsky and Shiveluch volcanoes.  相似文献   

3.
More than 65 potentially active volcanoes on the Kamchatka Peninsula and the Kurile Islands pose a substantial threat to aircraft on the Northern Pacific (NOPAC), Russian Trans-East (RTE), and Pacific Organized Track System (PACOTS) air routes. The Kamchatka Volcanic Eruption Response Team (KVERT) monitors and reports on volcanic hazards to aviation for Kamchatka and the north Kuriles. KVERT scientists utilize real-time seismic data, daily satellite views of the region, real-time video, and pilot and field reports of activity to track and alert the aviation industry of hazardous activity. Most Kurile Island volcanoes are monitored by the Sakhalin Volcanic Eruption Response Team (SVERT) based in Yuzhno-Sakhalinsk. SVERT uses daily moderate resolution imaging spectroradiometer (MODIS) satellite images to look for volcanic activity along this 1,250-km chain of islands. Neither operation is staffed 24 h per day. In addition, the vast majority of Russian volcanoes are not monitored seismically in real-time. Other challenges include multiple time-zones and language differences that hamper communication among volcanologists and meteorologists in the US, Japan, and Russia who share the responsibility to issue official warnings. Rapid, consistent verification of explosive eruptions and determination of cloud heights remain significant technical challenges. Despite these difficulties, in more than a decade of frequent eruptive activity in Kamchatka and the northern Kuriles, no damaging encounters with volcanic ash from Russian eruptions have been recorded.  相似文献   

4.
The paper reports newly obtained stratigraphic, petrographic, and isotope-geochronological data on modern moderately acid lavas from the Keli Highland at the Greater Caucasus and presents a geological map of the territory, in which 35 volcanoes active in Late Quaternary time were documented by the authors. The total duration of volcanic activity at the highland was estimated at 250 ka. The volcanic activity was discrete and occurred in three phases: Middle Neopleistocene (245−170 ka), Late Neopleistocene (135−70 ka), and Late Neopleistocene-Holocene (<30 ka). Newly obtained lines of evidence indicate that certain volcanoes erupted in the latest Neopleistocene-Holocene. The first phase of volcanic activity was connected mainly with lava volcanoes, and eruptions during the later phases of volcanic activity in this part of the Greater Caucasus produced mainly lavas. The most significant eruptions are demonstrated to occur in the territory during the second phase. The major evolutionary trends of volcanic processes during the final phase in the Keli Highland are determined. It was also determined that the overwhelming majority of volcanoes that were active less than 30 ka B.P. are spatially restricted to long-liven local magmatic zones, which were active during either all three or only the final two phases of activity. These parts of the territory are, perhaps, the most hazardous in terms of volcanic activity.  相似文献   

5.
Pyroclastic materials dispersed in recent volcanic eruptions in Northern Patagonia were analysed in order to characterize the volcanic provenance by the geochemical fingerprint. The volcanic products studied were dispersed by eruptions of volcanoes Calbuco in 1961, Chaitén in 2008, and Cordón Caulle Volcanic Complex (CCVC) in 1960 and 2011. The geochemical characterization was based on the determination of 35 major and trace elements by Instrumental Neutron Activation Analysis, including geochemical tracer such as Rare Earth Elements (REE). The study of the pyroclastic products also included the morphological analysis by petrographic and scanning electron microscopy, and the mineralogical characterization by X-ray diffraction.Geochemical tracers determined in the glass fraction of the dispersed pyroclastic materials allowed a clear discrimination of the three volcanoes that gave origin to the tephras, the three of them with different evolution degree. Tephras from 1960 and 2011 CCVC eruptions showed the same geochemical signature. The geochemical parameters providing the differential characterization are the normalized REE and multi-element patterns, the Eu anomaly, the heavy to light and medium to light REE normalized ratios, and the Cs, Sc, Rb, Ta and Th concentrations. The bulk glassy fraction showed the same composition for each volcanic eruption in samples collected even in distant sites (from 100 to 220 km in Chaitén, 2008, and from 80 to 650 km in CCVC 2011), attesting to be the most reliable material for correlation purposes.According to the mineralogy, cristobalite was found in volcano Chaitén tephra as an indicator of such origin. Arsenic, an element of environmental interest, exhibited concentrations ranging from 6 to 16 μg g−1, with the highest values corresponding to Puyehue–Cordón Caulle and Chaitén products.  相似文献   

6.
Thirty-two tephra layers were identified in the time-interval 313–366 ka (Marine Isotope Stages 9–10) of the Quaternary lacustrine succession of the Fucino Basin, central Italy. Twenty-seven of these tephra layers yielded suitable geochemical material to explore their volcanic origins. Investigations also included the acquisition of geochemical data of some relevant, chronologically compatible proximal units from Italian volcanoes. The record contains tephra from some well-known eruptions and eruptive sequences of Roman and Roccamonfina volcanoes, such as the Magliano Romano Plinian Fall, the Orvieto–Bagnoregio Ignimbrite, the Lower White Trachytic Tuff and the Brown Leucitic Tuff. In addition, the record documents eruptions currently undescribed in proximal (i.e. near-vent) sections, suggesting a more complex history of the major eruptions of the Colli Albani, Sabatini, Vulsini and Roccamonfina volcanoes between 313 and 366 ka. Six of the investigated tephra layers were directly dated by single-crystal-fusion 40Ar/39Ar dating, providing the basis for a Bayesian age–depth model and a reassessment of the chronologies for both already known and dated eruptive units and for so far undated eruptions. The results provide a significant contribution for improving knowledge on the peri-Tyrrhenian explosive activity as well as for extending the Mediterranean tephrostratigraphical framework, which was previously based on limited proximal and distal archives for that time interval.  相似文献   

7.
活火山是指1万年来有过喷发历史的全新世火山。火山的高分辨年代学对火山灾害评估和火山分类具有重要意义。对于缺乏历史记载的全新世火山,直接对火山岩进行同位素定年很困难。本文利用具有高时间分辨率的镭-钍-铀非平衡确定中国东部年轻火山的年龄。根据镭-钍-铀同位素,海南岛的马鞍岭和雷虎岭是全新世火山(马鞍岭:4.3ka;雷虎岭:4.7ka);镜泊湖火山(4.9ka)也是全新世火山;龙岗火山存在晚更新世和全新世活动(7.0ka,15.0ka);大兴安岭阿尔山和诺敏河Ra/Th非平衡消失但~(230)Th/~(238)U非平衡显著,属于晚更新世喷发(阿尔山:63ka;诺敏河:71ka)。海南岛的马鞍岭火山、雷虎岭火山和东北地区的龙岗火山、镜泊湖火山,是4座活火山。至于东北地区的阿尔山和诺敏河火山是否是活火山,有待测试更多样品的Ra/Th同位素。五大连池老黑山和火烧山有历史喷发记录,这与它们都存在显著Ra/Th非平衡一致。五大连池老黑山和火烧山的岩浆滞留年龄分别小于4.2ka和3.2ka,岩浆上升速率 18~23m/y。  相似文献   

8.
The Azores Archipelago is one of the most active volcanic areas in the North Atlantic region. Approximately 30 eruptions have been reported over the last 600 years with some major VEI 5 (Volcanic Explosivity Index) eruptions further back in time. The geochemical composition of associated tephra-derived glass, however, is not well characterized. An Azorean origin of cryptotephras found in distal areas such as North Africa, the British Isles and Greenland has been suggested, but proximal data from the Azores are scarce and the correlations have only been tentative. These tephras have a traychtic composition, which excludes an Icelandic origin. In a previous study, we presented major element analyses of proximal tephra-derived glass from five Holocene eruptions on the Azores Islands. There is a striking geochemical similarity between tephras from volcanoes on São Miguel and Irish cryptotephras, and especially with eruptives from the Furnas volcano. Here we present new analyses of proximal tephras that confirm and strengthen a link between Furnas and cryptotephras found in south-west Ireland. We also suggest a correlation between a previously unsourced tephra found in a Swedish bog with an eruption of the Sete Cidades volcano c. 3880 a cal BP.  相似文献   

9.
A total of 24 tephra-bearing volcanic layers have been recognized between 550 and 987 m depth in the Siple Dome A (SDM-A) ice core, in addition to a number already recognized tephra in the upper 550 m (Dunbar et al., 2003, Kurbatov et al., 2006). The uniform composition and distinctive morphological of the particles composing these tephra layers suggest deposition as a result of explosive volcanic eruptions and that the layers therefore represent time-stratigraphic markers in the ice core. Despite the very fine grain size of these tephra (mostly less than 20 microns), robust geochemical compositions were determined by electron microprobe analysis. The source volcanoes for these tephra layers are largely found within the Antarctic plate. Statistical geochemical correlations tie nine of the tephra layers to known eruptions from Mt. Berlin, a West Antarctic volcano that has been very active for the past 100,000 years. Previous correlations were made to an eruption of Mt. Takahe, another West Antarctic volcano, and one to Mt. Hudson, located in South America (Kurbatov et al., 2006). The lowest tephra layer in the ice core, located at 986.21 m depth, is correlated to a source eruption with an age of 118.1 ± 1.3 ka, suggesting a chronological pinning point for the lower ice. An episode of anomalously high volcanic activity in the ice in the SDM-A core between 18 and 35 ka (Gow and Meese, 2007) appears to be related to eruptive activity of Mt. Berlin volcano. At least some of the tephra layers found in the SDM-A core appear to be the result of very explosive eruptions that spread ash across large parts of West Antarctica, off the West Antarctic coast, as well as also being recognized in East Antarctica (Basile et al., 2001, Narcisi et al., 2005, Narcisi et al., 2006). Some of these layers would be expected to should be found in other deep Antarctic ice cores, particularly ones drilled in West Antarctica, providing correlative markers between different cores. The analysis of the tephra layers in the Siple Dome core, along with other Antarctic cores, provides a timing framework for the relatively proximal Antarctic and South American volcanic eruptive events, allowing these to be distinguished from the tropical eruptions that may play a greater role in climate forcing.  相似文献   

10.
Geophysical and geochemical data have been analyzed jointly in order to gain better understanding of subduction-related active volcanism in Kamchatka. The velocity structure of lithosphere beneath volcanic arcs has been imaged on three scales. Regional tomography to distances of thousands of kilometers has allowed constraints on slab geometry, which changes markedly in dip angle and thickness beneath the Kuriles-Kamchatka arc, possibly, because of a change in the interplay of the subduction driving forces. Intermediate-scale regional tomography (hundreds of kilometers) has been applied to the cases of Toba caldera in Sumatra, Mount Merapi in Java, and volcanoes in the Central Andes and provided evidence of magma conduits marked by low-velocity zones that link the suprasubduction volcanic arcs with clusters of earthquake hypocenters on the slab top. Local tomography resolves the shallow structure immediately under volcanoes and the geometry of respective melting zones. An example time-lapse (4D) seismic model of the crust beneath the Klyuchevskoy group of volcanoes has imaged a decade-long history of anomalous velocity zones and their relation with the activity cycles of Bezymyanny and Klyuchevskoy volcanoes. As modeling shows, andesitic Bezymyanny and basaltic Klyuchevskoy volcanoes have different feeding patterns during their eruption cycles: the former feeds directly from the mantle while the material coming to the latter passes through a complicated system of intermediate chambers.The local tomography model has been applied as reference to interpret the available major- and trace-element data from the Klyuchevskoy and Bezymyanny volcanoes. The lava compositions of the two volcanoes have becoming ever more proximal since 1945 in many major and trace elements while some parameters remain different. Paroxysmal eruptions of Bezymyanny for several recent decades correlate with the time when Klyuchevskoy erupted lavas with high percentages of high-Mg basalts. The difference in the evolution trends of the Kamchatka volcanic rocks may be due either to fractional crystallization or to the presence of concentrator minerals in the source, titanomagnetite, orthopyroxene, rutile, garnet, and plagioclase being especially active as to uptake of some elements. The natural compositions of rocks have been compared in this context with published experimental data.According to the seismic velocity structure and lava compositions analyzed jointly, there are five levels of crystallization beneath the studied volcanoes, while the number and spatial patterns of magma sources are different for two types of andesitic volcanoes.  相似文献   

11.
1 IntroductionThe Longgang volcanic cluster located in the middle partof Longgang Mountain is one of the active volcanoes innortheast China, potentially hazardous of explosion in thefuture (Fan et al., 2002). Within an area of 1700 km2, thereare about 160 volcanic cones, craters and maars (Ou, 1984).Among these volcanoes, the Jinlongdingzi and Dayizishanvolcanoes which are well studied have experiencedrepetitious eruptions (Wang and Jin, 1999). Detailedresearch on their eruption cycles is …  相似文献   

12.
As the regions around active volcanoes succumb to large increases in population, particularly in the developing world where most of the high-risk volcanoes are located, the threat posed by eruptions becomes increasingly serious. Improvements in eruption forecasting are critical to combat this situation, for reducing injury and loss of life, and for minimizing the detrimental effects to local economies and to the fabric of society. Better-constrained forecasts are strongly dependent on geophysical and other data gathered during a program of volcano surveillance, and we reveal how, if interpreted in terms of static rock fracturing, analysis of changes in volcanic seismicity and ground deformation may be used to forecast more accurately the onset of eruptive activity. As illustrated by recent events at several volcanoes, studies of previous activity, increased levels of monitoring, and improved training of scientists are also all crucial to improving forecasts of impending eruptions.  相似文献   

13.
Eruption records in the terrestrial stratigraphy are often incomplete due to erosion after tephra deposition, limited exposure and lack of precise dating owing to discontinuity of strata. A lake system and sequence adjacent to active volcanoes can record various volcanic events such as explosive eruptions and subaqueous density flows being extensions of eruption triggered and secondary triggered lahars. A lacustrine environment can constrain precise ages of such events because of constant and continuous background sedimentation. A total of 71 subaqueous density flow deposits in a 28 m long core from Lake Inawashiro‐ko reveals missing terrestrial volcanic activity at Adatara and Bandai volcanoes during the past 50 kyr. Sedimentary facies, colour, grain size, petrography, clay mineralogy, micro X‐ray fluorescence analysis and chemistry of included glass shards characterize the flow event deposits and clarify their origin: (i) clay‐rich grey hyperpycnites, extended from subaerial cohesive lahars at Adatara volcano, with sulphide/sulphate minerals and high sulphur content which point to a source from hydrothermally altered material ejected by phreatic eruptions; and (ii) clay‐rich brown density flow deposits, induced by magmatic hydrothermal eruptions and associated edifice collapse at Bandai volcano, with the common presence of fresh juvenile glass shards and low‐grade hydrothermally altered minerals; whereas (iii) non‐volcanic turbidites are limited to the oldest large slope failure and the 2011 Tohoku‐oki earthquake events. The high‐resolution chronology of volcanic activity during the last 50 kyr expressed by lacustrine event deposits shows that phreatic eruption frequency at Adatara has roughly tripled and explosive eruptions at Bandai have increased by ca 50%. These results challenge hikers, ski‐fields and downstream communities to re‐evaluate the increased volcanic risks from more frequent eruptions and far‐reaching lahars, and demonstrate the utility of lahar and lacustrine volcanic density flow deposits to unravel missing terrestrial eruption records, otherwise the recurrence rate may be underestimated at many volcanoes.  相似文献   

14.
Volcanic hazards to airports   总被引:3,自引:1,他引:2  
Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. Analysis of a new compilation of incidents of airports impacted by volcanic activity from 1944 through 2006 reveals that, at a minimum, 101 airports in 28 countries were affected on 171 occasions by eruptions at 46 volcanoes. Since 1980, five airports per year on average have been affected by volcanic activity, which indicates that volcanic hazards to airports are not rare on a worldwide basis. The main hazard to airports is ashfall, with accumulations of only a few millimeters sufficient to force temporary closures of some airports. A substantial portion of incidents has been caused by ash in airspace in the vicinity of airports, without accumulation of ash on the ground. On a few occasions, airports have been impacted by hazards other than ash (pyroclastic flow, lava flow, gas emission, and phreatic explosion). Several airports have been affected repeatedly by volcanic hazards. Four airports have been affected the most often and likely will continue to be among the most vulnerable owing to continued nearby volcanic activity: Fontanarossa International Airport in Catania, Italy; Ted Stevens Anchorage International Airport in Alaska, USA; Mariscal Sucre International Airport in Quito, Ecuador; and Tokua Airport in Kokopo, Papua New Guinea. The USA has the most airports affected by volcanic activity (17) on the most occasions (33) and hosts the second highest number of volcanoes that have caused the disruptions (5, after Indonesia with 7). One-fifth of the affected airports are within 30 km of the source volcanoes, approximately half are located within 150 km of the source volcanoes, and about three-quarters are within 300 km; nearly one-fifth are located more than 500 km away from the source volcanoes. The volcanoes that have caused the most impacts are Soufriere Hills on the island of Montserrat in the British West Indies, Tungurahua in Ecuador, Mt. Etna in Italy, Rabaul caldera in Papua New Guinea, Mt. Spurr and Mt. St. Helens in the USA, Ruapehu in New Zealand, Mt. Pinatubo in the Philippines, and Anatahan in the Commonwealth of the Northern Mariana Islands (part of the USA). Ten countries—USA, Indonesia, Ecuador, Papua New Guinea, Italy, New Zealand, Philippines, Mexico, Japan, and United Kingdom—have the highest volcanic hazard and/or vulnerability measures for airports. The adverse impacts of volcanic eruptions on airports can be mitigated by preparedness and forewarning. Methods that have been used to forewarn airports of volcanic activity include real-time detection of explosive volcanic activity, forecasts of ash dispersion and deposition, and detection of approaching ash clouds using ground-based Doppler radar. Given the demonstrated vulnerability of airports to disruption from volcanic activity, at-risk airports should develop operational plans for ashfall events, and volcano-monitoring agencies should provide timely forewarning of imminent volcanic-ash hazards directly to airport operators.  相似文献   

15.
New data are reported on the structure of the sections, the geochemical composition, and the age of the volcano-sedimentary and volcanic rocks from the Sinii Utes Depression in the southern Primorye region. The Sinii Utes Depression is filled with two sequences: the lower sequence composed of sedimentary-volcanogenic coaliferous rocks (the stratotype of the Sinii Utes Formation) and the upper sequence consisting of tephroid with overlying basalts. This work addresses the geochemical composition and the problems of K-Ar dating of the basalts. The uppermost basaltic flow yielded a K-Ar age of 22.0 ± 1.0 Ma. The dates obtained for the middle and upper parts of the lava flows are underestimated, which is explained by their heating due to the combustion of brown coals of the Sinii Utes Formation underlying the lava flow. Calculations show that argon could only partly have been removed from the basalts owing to the conductive heat transfer and was lost largely due to the infiltration of hot gases in the heterogeneous fissured medium. The basaltic volcanism on the continental margins of the southern Primorye region and the adjacent Korean and Chinese areas at the Oligocene-Miocene boundary preceded the Early-Middle Miocene spreading and formation of the Sea of Japan basin. The undifferentiated moderately alkaline basalts of within-plate affinity developed in the Amba Depression and some other structures of the southern Primorye region and the within-plate alkali basalts of the Phohang Graben in the Korean Peninsula serve as an indicator of the incipient spreading regime in the Sea of Japan. Potassic basalt-trachybasalt eruptions occurred locally in riftogenic depressions and shield volcanoes; in some structures, this volcanism was terminated by eruptions of intermediate and acid lavas. Such an evolution of the volcanism is explained by the selective contamination of basaltic melts during their interaction with crustal acid material and the generation of acid anatectic melts.  相似文献   

16.
火山学述评     
丁毅 《地质论评》2022,68(5):1955-1968
火山学研究有了长足的进步。笔者总结近些年全球火山学研究各个方面的成果,包括对火山基本概念的新的认识、火山机构、火山的各种分类、火山岩石学和地球化学、火山岩相学、评估火山爆发大小的火山爆发指数、岩石和地球化学分类、各种常量和微量元素区分图、活火山分布与板块构造理论的关系、活火山给人类带来的灾害与利益和活火山的监测、曾经的火山活动与生物毁灭、单成因火山研究等。火山—构造是未来火山学研究的一个方向,通过火山与构造关系的研究以揭示火山的分布和地球的演化。火山喷出的岩浆是其通过地下以岩墙或管道形式为通道运移到地表的结果。中朝边境上的长白山的位置是个特例,应当值得深入的研究。中国分布有许多新生代火山,它们是否为单成因火山、这些火山在成分上是否有演化规律、它们的分布与大地构造的关系等都有待深入和系统的研究。  相似文献   

17.
Estimating the occurrence probability of volcanic eruptions with VEI ??3 is challenging in several aspects, including data scarcity. A?suggested approach has been to use a simple model, where eruptions are assumed to follow a Poisson process, augmenting the data used to estimate the eruption onset rate with that from several analog volcanoes. In this model the eruption onset rate is a random variable that follows a gamma distribution, the parameters of which are estimated by an empirical Bayes analysis. The selection of analog volcanoes is an important step that needs to be explicitly considered in this model, as we show that the analysis is not always feasible due to the required over-dispersion in the resulting negative binomial distribution for the numbers of eruptions. We propose a modification to the method which allows for both over-dispersed and under-dispersed data, and permits analog volcanoes to be chosen on other grounds than mathematical tractability.  相似文献   

18.
大兴安岭哈拉哈河—淖尔河地区第四纪火山活动初步研究   总被引:16,自引:11,他引:5  
大兴安岭中部哈拉哈河-淖尔河地区受基底断裂控制,发育28座第四纪火山,这些火山总体呈北东向带状分布。研究区第四纪火山岩分布面积约1000km^2,岩性主要为碱性玄武岩。根据喷发时代和火山地质特征,这里的火山大体可分为更新世和全新世两期。按照火山作用方式不同,区内火山可分为岩浆成因和射汽岩浆成因两类:前者活动产物主要包括火山碎屑锥、碎屑席、熔岩流,其中发育结壳熔岩、渣状熔岩、块状熔岩,以及喷气锥、熔岩冢等火山地质现象;后者产物主要是射汽岩浆喷发形成的基浪堆积物,其中发育大型平行层理及交错层理。不同的火山作用形成了火山口湖、低平火山口湖、火山堰塞湖和塌陷熔岩湖四种不同规模与形态特征的湖泊,这种水火相容的火山地质现象为阿尔山火山温泉国家地质公园增添了景观。  相似文献   

19.
Western Canada lies in a zone of active tectonics and volcanism, but thedispersed population has witnessed few eruptions due to the remoteness of the volcanoes and their low level ofactivity. This has created a false perception that Canada's volcanoes are extinct.There are more than 200 potentially-active volcanoes in Canada, 49of which have erupted in the past 10,000 years. They occur in five belts, with origins related totectonic environment. The minimum annual probability of a Canadian volcanic eruption is approximately 1/200;for an effusive (lava) eruption the probability is about 1/220, and for a significant explosive eruptionit is about 1/3333. In-progress studies show that there have been earthquakes associated with at least 9 ofthe youngest Canadian volcanoes since 1975. A scenario of an eruption of Mt. Cayley (50.1°N,123.3°W) shows how western Canada is vulnerable to an eruption. The scenario is basedon past activity in the Garibaldi volcanic belt and involves both explosive and effusive activity.The scenario impact is largely a result of the concentration of vulnerable infrastructure in valleys.Canadian volcanoes are monitored only by a regional seismic network,that is capable of detecting a M > 2 event in all potentially-active areas.This level of monitoring is probably sufficient to alert scientistsat or near eruption onset, but probably insufficient to allow a timelyforecast of activity. Similarly the level of geological knowledge about the volcanoes is insufficient to createhazard maps. This will improve slightly in 2002 when additional monitoring is implemented in theGaribaldi volcanic belt. The eruption probabilities, possible impacts, monitoring limitations and knowledgegaps suggest that there is a need to increment the volcanic risk mitigation efforts.  相似文献   

20.
通过对比中国长白山区和朝鲜白头山区新生代火山岩系的层序和同位素年代学资料,首次编制出中朝边境地区新生代火山岩系分布图和新生代火山喷发阶段对比表。其岩石化学和地球化学演化趋势表明,该区新生代火山完全有可能再次喷发。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号