首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal behaviour of silica rocks upon heat treatment is dependent on the constituent minerals and petrographic texture types. These constituents can be shown to be mainly quartz in the form of two types of chalcedony (Length-fast (LF) chalcedony and Length-slow (LS) chalcedony, the latter also being termed quartzine) and moganite. Even though the thermal behaviour of LF-chalcedony is well understood, major uncertainties persist concerning the high-temperature behaviour of LS-chalcedony and moganite. We present here a comparative study of these three constituents of common silica rocks. Our results show that the chemical reaction is the same in all three, Si–OH + HO–Si → Si–O–Si + H2O, but that the reaction kinetics and activation temperatures are very different. LS-chalcedony begins to react from 200 °C upwards, that is at temperatures 50 °C below the ones observed in LF-chalcedony, and shows the fastest reaction kinetics of this ‘water’ loss. Chemically bound water (SiOH) in moganite is more stable at high temperatures and no specific activation temperature is necessary for triggering the temperature-induced ‘water’ loss. Moganite is also found to act as a stabilizer in silica rocks preventing them from temperature-induced fracturing. These findings have implications for the study of potential heat treatment temperatures of silica rocks (in industry and heritage studies), but they also shed light on the different structures of SiO2 minerals and the role of OH impurities therein.  相似文献   

2.
Representative samples of the two fabric varieties of microcrystalline quartz, chalcedony and quartzine, from agates of different origin were investigated by transmission electron microscopy (TEM). Both varieties contain lamellar admixtures of the SiO2 mineral moganite. The transitions from quartz to moganite within the fabric differ in a characteristic way. Whereas in quartzine the gradient between the structures is steep, the transition is more continuous in chalcedony. The morphology of moganite in chalcedony and quartzine is determined by the (101)-face; in pure moganite from Gran Canaria it is governed by the (110)-face.  相似文献   

3.
The structural disparities that distinguish chalcedony from macrocrystalline quartz suggest that different crystallization mechanisms are operative during the growth of these two forms of silica. Although the paragenesis of chalcedony has provoked marked disagreement among researchers, a review of previous studies supports the idea that chalcedony can precipitate from slightly saturated aqueous solutions at relatively low temperatures (<100° C). These conditions for deposition suggest a model for chalcedony crystallization that involves the assembly of short-chain linear polymers via bridging silica monomers. This assembly occurs through a spiral growth mechanism activated by a screw dislocation withb=n/2 [110], wheren is an integer. The proposed model can account for a number of peculiarities that have been observed in chalcedony at the microstructural scale, such as: (1) the direction of fiber elongation along [110] rather than [001]; (2) the periodic twisting of chalcedony fibers about [110]; (3) the high density of Brazil twin composition planes; (4) the common intergrowth of moganite within chalcedony.  相似文献   

4.
Chalcedony from Brazilian agates, has been investigated by using transmission-electron microscopy, X-ray-diffraction, thermogravimetry and optical techniques. The quartz fibers of length-fast chalcedony are composed of submicroscopical polysynthetic, lamellar-twinned right- and lefthanded crystals, according to the Brazil law. This very narrow twinning causes 3 systems of diffuse diffraction streaks (corresponding to the three-fold symmetry) parallel to 〈10.1〉, very frequently possessing an intensity maximum at h±1/2, k, l±1/2. These extra reflections were detected both in electron- and X-ray-diffraction patterns. Wall-lining chalcedony is parallel fibrous consisting of smaller crystallites with a higher total water content (0.06±0.01 μm and 1.2±0.1 wt %) than spherulitic chalcedony in horizontal agate bands (ca. 0.1 μm and 0.7±0.1 wt%).  相似文献   

5.
Agate/chalcedony samples of different origin were investigated by performing Raman, X-ray diffraction (using Rietveld refinement), and cathodoluminescence measurements. These analyses were performed to measure the content and spatial distribution of the silica polymorph moganite, which is considered to represent periodic Brazil-law twinning of α-quartz at the unit-cell scale in agate/chalcedonies. Homogeneous standard samples including the nearly α-quartz free moganite type material from Gran Canaria were analysed in order to compare results of the X-ray diffractometry and Raman spectroscopy techniques and to provide a calibration curve for the Raman results. However, due to the different length scales analysed by the two techniques, the “moganite content” in microcrystalline SiO2 samples measured by Raman spectroscopy (short-range order) was found to be considerably higher than the “moganite content” measured by X-ray diffractometry (long-range order). The difference is explained by the presence of moganite nanocrystals, nano-range moganite lamellae, and single Brazil-law twin-planes that are detected by vibrational spectroscopy but that are not large enough (in the sense of coherently scattering lattice domains) to be detected by X-ray diffractometry. High resolution Raman analysis provides a measure of the moganite content and its spatial variation in microcrystalline silica samples with a lateral resolution in the μm-range. Variations in the moganite-to-quartz ratio are revealed by varying intensity ratios of the main symmetric stretching-bending vibrations (A1 modes) of α-quartz (465 cm−1) and moganite (502 cm−1), respectively. Traces of Raman microprobe analyses perpendicular to the rhythmic zoning of agates revealed that the moganite-to-quartz ratio is often not uniform but shows a cyclic pattern that correlates with the observed cathodoluminescence pattern (colour and intensity). Data obtained from an agate sample from a fluorite deposit near Okorusu, Namibia and from a volcanic agate from Los Indios, Cuba were selected for detailed presentation. Variations of cathodoluminescence and Raman data between single bands in agates suggest alternating formation of fine-grained, highly defective chalcedony intergrown with moganite, and coarse-grained low-defect quartz. Multiple zones indicate dynamic internal growth during a self-organizational crystallization process from silica-rich fluids. Received: 4 December 1997 / Accepted 19 June 1998  相似文献   

6.
Chalcedony is a spatial arrangement of hydroxylated nanometre-sized α-quartz (SiO2) crystallites that are often found in association with the silica mineral moganite (SiO2). A supplementary Raman band at 501 cm−1 in the chalcedony spectrum, attributed to moganite, has been used for the evaluation of the quartz/moganite ratio in silica rocks. Its frequency lies at 503 cm−1 in sedimentary chalcedony, representing a 2 cm−1 difference with its position in pure moganite. We present a study of the 503 cm−1 band’s behaviour upon heat treatment, showing its gradual disappearance upon heating to temperatures above 300 °C. Infrared spectroscopic measurements of the silanole (SiOH) content in the samples as a function of annealing temperature show a good correlation between the disappearance of the 503 cm−1 Raman band and the decrease of structural hydroxyl. Thermogravimetric analyses reveal a significant weight loss that can be correlated with the decreasing of this Raman band. X-ray powder diffraction data suggest the moganite content in the samples to remain stable. We propose therefore the existence of a hitherto unknown Raman band at 503 cm−1 in chalcedony, assigned to ‘free’ Si–O vibrations of non-bridging Si–OH that oscillate with a higher natural frequency than bridging Si–O–Si (at 464 cm−1). A similar phenomenon was recently observed in the infrared spectra of chalcedony. The position of this Si–OH-related band is nearly the same as the Raman moganite band and the two bands may interfere. The actually observed Raman band in silica rocks might therefore be a convolution of a silanole and a moganite vibration. These findings have broad implications for future Raman spectroscopic studies of moganite, for the assessment of the quartz/moganite ratio, using this band, must take into account the contribution from silanole that are present in chalcedony and moganite.  相似文献   

7.
Micro- and non-crystalline opals, chalcedony and flint show diffuse small angle neutron scattering (SANS). Precious opals give rise to two additional intensity maxima at very small scattering angles which are due to Bragg reflections from the closest packed non-crystalline silica spheres. A small angle texture diagram reveals that the closest packing is faulty. Synthetic non-crystalline opals yield much less intense small angle scattering due to lower contrast between silica spheres and interstitial cement or particles; in this case intensity maxima were not observed. The outer part of the scattering curves of opal-CT and microcrystalline quartz deviates from Porod's law. The specific surface of natural non-crystalline opals ranges from 0.006 to 0.018 nm–1. In microcrystalline opals, the specific surface is about 10 times larger than in non-crystalline opals.  相似文献   

8.
The fossil forest in the Çaml?dere-Çeltikçi-Güdül region of the province of Ankara in Turkey has a large number of petrified coniferous and oak tree remains. Petrification occurred in volcanic ashes and tuffs with permineralization, and Fe, Mg, Ca and Ni ions played important roles in the substitution of Si for C. However, the petrified wood samples are heterogeneous in colouration, weight, toughness, and durability, despite being obtained from the same source. Those features are very important for end-users because petrified woods, if cut and polished, are used widely as both decorative indoor tiles and gemstone objects, but heterogeneous materials suffer large wastage while they are being worked and used.Chemical analyses, specific gravity measurements, polarizing microscope studies, X-ray diffraction patterns, and scanning electron image evaluations were performed to classify and identify the homogenous material of the petrified woods relating to its physical and mineralogical characteristics.The different characteristics of the petrified wood samples are due to their varying inner structures, which depend on the replacement silica-building phases and their ratios, and silica particle sizes. Thin sections and XRD patterns revealed that petrified woods in the region were silicified by replacement with both chalcedonic quartz components, including chalcedony (length-fast quartz), moganite and orthorhombic-silica (length-slow quartz), and opalline quartz components including opal-CT and opal-C (length-slow quartz). The scanning electron microscope images were shown that the internal structures of the petrified woods consist of mostly submicron-sized (100–800 nm), and partially nano-sized (60–120 nm) silica-building particles.So, the petrified wood samples can be firstly classified into five main-groups based on their colourations and specific gravity values, then, into three sub-groups based on the principal chalcedonic and opalline quartz silica-building phases and related particle sizes, and also weighing, toughness, and durability. In the first group (samples 1, 2, and 3), the crystallinity gradation of the petrified woods can be classified as quasi-coarse crystalline because they include mainly chalcedony and moganite phases with 800–200 nm ranging in particle size. They are heavy, tough, and resistance as a material, as shown by specific gravity values of 2.60, 2.56, and 2.54, respectively. In the second group (sample 4), the crystallinity gradation of the petrified wood can be classified as quasi-fine crystalline because it includes mainly o-silica and moganite phases with 400–100 nm ranging in particle size. It is medium-heavy, semi-tough and quasi-resistance as a material, as shown by a specific gravity value of 2.42. In the third group (sample 5), the crystallinity gradation of the petrified wood can be classified as quasi-nano-crystalline because it includes mainly opal-CT and opal-C phases with 120–60 nm ranging in particle size. The material is slight, brittle, and weak as a material, as shown by a specific gravity value of 2.18.Ultimately, in the petrified wood found in the Çaml?dere-Çeltikçi-Güdül region of Ankara province in Turkey, it is revealed that samples 1, 2, and 3 represent flint and chalcedony quartz mineral species, samples 4 and 5 represent chalcedony and opal quartz mineral species.  相似文献   

9.
Samples of microcrystalline silica varieties containing variable amounts of the new silica polymorph moganite (up to R~82 wt.%) have been studied by a combination of high temperature solution calorimetry using lead borate (2 PbO · B2O3) solvent and transposed temperature drop calorimetry near 977 K, in order to investigate the thermochemical stability of this new silica mineral. The enthalpy of solution at 977 K and the heat content (H977 — H298) of “pure” moganite phase were estimated to be -7.16 ± 0.35 kJ/mol and 43.62 ± 0.50 kJ/mol, respectively. The standard molar enthalpy of formation is-907.3 ± 1.2 kJ/mol. Thus, calorimetry strongly supports results of previous X-ray and Raman spectroscopic studies that moganite is a distinct silica polymorph. Its thermochemical instability relative to quartz at 298 K of 3.4 ± 0.7 kJ/mol is marginally higher than those of cristobalite and tridymite. Structurally, this instability may be related to the presence of distorted 4-membered rings of SiO4 tetrahedra, which are not found in the quartz structure. The metastability relative to quartz may also explain the apparent scarcity of moganite in altered rocks and in rocks that are older than 130 my.  相似文献   

10.
The water species (H2O(SiOH) and H2O(mol)) of length-fast chalcedony and opal-C in Brazilian agates were studied with thermoanalytical, chemical and infrared absorption methods. Specific surfaces were measured with the BET nitrogen adsorption method and the specific densities were determined. Chalcedony and opal-C have fully hydrated crystal surfaces at the open porosity. They contain additional water at inner surfaces, which are closed micropores in the case of opal-C and regions of accumulated defects (e.g. twinlamellae boundaries) in chalcedony. All surfaces are covered with silanole groups, hydrogen-bonded to molecular water. Additional hydroxyl groups, weakly hydrogen bonded to the structural framework within the crystallites, are located at structural point defects. Wall-lining chalcedony ranges from translucent gray to milky white bands corresponding with decreasing total water content, the H2O(SiOH)/H2O(mol)-ratio, BET-surfaces and increasing density. The H2O(SiOH)/H2O(mol)-ratio is sensitive to subsequent hydrothermal treatment and indicates a low temperature formation of chalcedony.  相似文献   

11.
玛瑙是一种隐晶质硅质岩石,主要由玉髓以及少量蛋白石、斜硅石和微晶石英等组成.其在世界各地分布广泛,质地坚硬细腻、色彩鲜艳多样、纹理交错、造型千姿百态,是一种平凡而美丽的宝石.本文结合国内外最新研究进展,对玛瑙矿物的结构、水含量和成因机制进行了综合评述.玛瑙以纹带构造为特征,其内部纹带花纹和化学组成呈韵律性变化,并在不同观察尺度表征出来.因此,玛瑙也被定义为条带状玉髓.然而,多数玛瑙实际上是由纤维状玉髓、同心环带状玉髓、水平条带状玉髓、微晶石英和自形石英晶体等组成,它们的相对含量与玛瑙的产地和形成过程密切相关.X射线衍射和电子背散射衍射(EBSD)测量数据揭示,玛瑙中的硅质矿物多发生定向生长,其中微晶石英a轴倾向于垂直韵律环带,c轴则近似平行韵律环带.傅立叶变换红外光谱(FTIR)测量表明,玛瑙含有少量分子水和羟基水,并且总水含量随着硅质矿物结晶度提高而降低.至今实验室仍然无法合成玛瑙,还不清楚玛瑙纹带构造的形成机制和过程.一种代表性假设认为,玛瑙中的纹带源于硅质热液沉淀作用或者硅胶原位结晶作用.但是,最近研究发现玛瑙纹带中共生矿物的结晶度、晶体取向和含水量具有系统差异,揭示其形成过程可能与成岩序列密切相关.将实验岩石学与定量显微结构观察以及多种矿物微区分析测试手段有机结合,深入研究玛瑙环带内部微量元素、水含量和晶体取向数据,获得其系统性变化特征及其内部联系,可以为玛瑙成因机制和形成过程研究提供重要数据支撑和关键性的约束条件.  相似文献   

12.
The mineral macaulayite, which is thought to consist of layers equivalent to two hematite unit cells flanked by silicate sheets, has been investigated in the temperature range 4.2K–650K by Mössbauer spectroscopy. At low temperatures there is a close resemblance between the spectra of macaulayite and that of hematite in its weakly ferrimagnetic state. At higher temperatures, however, the spectra of macaulayite show two distinct magnetically-ordered components corresponding to surface and bulk iron in the hematite units. Superparamagnetism is observed in the spectra resulting from the microcrystalline nature of the sample. The Néel temperature of macaulayite is measured by extrapolation to be T N=750 ± 20K, substantially below that of hematite (T N=950K), even when the effect of possible aluminium substitution is taken into account. This reduction in the magnetic ordering temperatures is discussed in terms of the proposed layer structure of the mineral.  相似文献   

13.
The products of the transformation of natural (Mg0.83Fe0.17)2SiO4 olivine have been prepared at various high pressures (between 25 GPa and 90 GPa), and high temperature in a laser-heated diamond-anvil cell (DAC). Studies of the high-pressure phases have been made by transmission electron microscopy (TEM), and X-ray microanalysis. The olivine/spinel boundaries exhibit all the characteristics of a diffusionless shear transition, having a finely sheared structure and a constant orientation relationship between the close-packed planes of the two structures ((100)ol∥(111)sp). The TEM observations of zones where olivine (or spinel) transforms into post-spinel phases show that the transformation possesses the features of an eutectoïdal decomposition, leading to a lamellar intergrowth of magnesiowüstite (Mg,Fe)O and perovskite (Mg,Fe)SiO3. With increasing temperature and/or decreasing pressure, the grain size of the high-pressure phases increases and obeys an Arrhenius law with an activation volume equal to zero. (Mg,Fe)O grains exhibit a very high density of dislocations (higher than 1011cm?2), whereas (Mg,Fe)SiO3 grains exhibit no dislocations but systematic twinning. The composition plane of the twins is (112) of the GdFeO3-type perovskite, corresponding to the {110} plane of the cubic lattice of ideal perovskite.  相似文献   

14.
The decomposition of fayalite (Fe2SiO4) in oxygen potential gradients is studied at T=1,418 K. The compound will be decomposed into its component oxides wüstite, Fe1?δO, and silica, SiO2, by the simultaneous action of two different oxygen partial pressures, exceeding a critical ratio, despite the fact that fayalite is stable at both the lower and the higher oxygen potential. A quantitative analysis of the decomposition process caused by defect fluxes within the bulk Fe2SiO4 is given.  相似文献   

15.
Dachiardite-K (IMA No. 2015-041), a new zeolite, is a K-dominant member of the dachiardite series with the idealized formula (К2Са)(Al4Si20O48) · 13H2О. It occurs in the walls of opal–chalcedony veinlets cutting hydrothermally altered effusive rocks of the Zvezdel paleovolcanic complex near the village of Austa, Momchilgrad Municipality, Eastern Rhodopes, Bulgaria. Chalcedony, opal, dachiardite-Ca, dachiardite-Na, ferrierite-Mg, ferrierite-K, clinoptilolite-Ca, clinoptilolite-K, mordenite, smectite, celadonite, calcite, and barite are associated minerals. The mineral forms radiated aggregates up to 8 mm in diameter consisting of split acicular individuals. Dachiardite-K is white to colorless. Perfect cleavage is observed on (100). D meas = 2.18(2), D calc = 2.169 g/cm3. The IR spectrum is given. Dachiardite-K is biaxial (+), α = 1.477 (calc), β = 1.478(2), γ = 1.481(2), 2V meas = 65(10)°. The chemical composition (electron microprobe, mean of six point analyses, H2O determined by gravimetric method) is as follows, wt %: 4.51 K2O, 3.27 CaO, 0.41 BaO, 10.36 A12O3, 67.90 SiO2, 13.2 H2O, total is 99.65. The empirical formula is H26.23K1.71Ca1.04Ba0.05Al3.64Si20.24O61. The strongest reflections in the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 9.76 (24) (001), 8.85 (58) (200), 4.870 (59) (002), 3.807 (16) (202), 3.768 (20) (112, 020), 3.457 (100) (220), 2.966 (17) (602). Dachiardite-K is monoclinic, space gr. C2/m, Cm or C2; the unit cell parameters refined from the powder X-ray diffraction data are: a = 18.670(8), b = 7.511(3), c = 10.231(4) Å, β = 107.79(3)°, V= 1366(1) Å3, Z = 1. The type specimen has been deposited in the Earth and Man National Museum, Sofia, Bulgaria, with the registration number 23927.  相似文献   

16.
Ejected plutonic blocks from the Soufrière volcano, St. Vincent, consist of the mineral phases plagioclase (An96?An89, average An93), olivine (Fo79?Fo67, most frequent interval Fo74?72), salite containing 5–6 percent Al2O3, hastingsitic amphibole and magnetite containing 6% Al2O3, 4% MgO and 7% TiO2. Aluminous salitic pyroxenes are not confined to alkaline suites but also occur as high temperature phases in certain calc-alkaline suites. Similarly low silica amphiboles with comparatively high Fe+3+Ti contents are unusual in common sub-alkaline rocks. Magnetite in the St. Vincent blocks is an example of a single homogeneous iron oxide phase precipitated in equilibrium with the other four phases in the blocks. Conditions of crystallisation are just as important as silica activity in determining the compositions of phases separating from basaltic magmas at relatively shallow depths (P tot< 8 kb). It is argued mainly on crystal chemical grounds that the mineral assemblage in the St. Vincent blocks can crystalline from a sub-alkaline magma under conditions of relatively high temperature, high water vapor pressure, and oxygen fugacity.  相似文献   

17.
A relationship between the energy gap (E G) and density (ρ) for pure SiO2 polymorphs is derived from atomic weights and first ionization potentials of free silicon and oxygen atoms. Theoretical considerations are based on the Lorentz electron theory of solids. The eigenfrequency v0 of elementary electron oscillators, in energy units h v0, is identified with the energy gap of a solid. The numerical relation is expressed as \(E_G = \sqrt {139.24 - 13.8327\rho } \) is in eV. For low-quartz with a density of 2.65 g/cm3 and also for stishovite with a density of 4.28 g/cm3, the energy gap E G=10.1 eV and 8.9 eV, respectively. From laboratory measurements for low-quartz E G=10.2 eV. The energy gap-density relation suggests a critical density value of ρx ≈ 10.1 g/cm3 for an SiO2 phase when the energy gap vanishes (E G=0), which is consistent with estimated densities for a high pressure silica polymorph with the fluorite structure.  相似文献   

18.
Clinopyroxene, orthopyroxene, and garnet megacrysts show consistent increase of Na and Ti, and decrease of Cr, with increasing Fe/Mg. Three groups of clinopyroxenes occur with increasing Fe/Mg: subcalcic diopside, lamellar intergrowth with ilmenite, and augite. Chemical relationships indicate simultaneous crystallization of garnet, orthopyroxene and sub-calcic diopside megacrysts, and pyroxene thermometry-barometry indicates a trend from 29 kb?1,230 ° C to 25 kb?1,080 ° C as crystallization proceeded to higher Fe/Mg. Ilmenite-pyroxene thermometry suggests a mean of 965 ° C for crystallization of the intergrowths, but calibration depends on crystal-chemical assumptions. Lherzolite assemblages fall into three groups: two garnet-bearing types which equilibrated at 31 kb?1,150 ° C and 22 kb?900 ° C, and a type bearing Al-rich spinel which probably crystallized below 20 kb. The minerals from the lherzolites have lower Fe/Mg than the megacrysts. The simplest model involves: (i) metamorphic equilibration of lherzolitic rocks to the local geotherm, (ii) local melting of lherzolite at P > 30 kb, (iii) sequential crystallization of megacrysts as the magma rose intermittently, (iv) generation of alnöitic magma at P > 32 kb, and (v) eruption to surface with transport of megacrysts and lherzolitic xenoliths. Garnet, olivine, orthopyroxene and clinopyroxene in these Malaita xenoliths have lower Na, Ti, and P relative to their equivalents from southern African kimberlites. Only clinopyroxene contains K (up to 270 ppmw), and no Na was found in olivine.  相似文献   

19.
《Sedimentology》2018,65(3):745-774
This paper explores little investigated diagenesis of spicule‐dominated sediments, based on Permian spiculites and cool‐water carbonates of the Tempelfjorden Group in central Spitsbergen. Field observations, petrography, stable isotope geochemistry, and mineralogical and chemical analyses reveal that the strata have been subjected to multistage diagenesis as the result of silica phase transitions at medium burial depths and deep‐burial overprinting. The growth of silica concretions occurred during the opal‐A/opal‐CT conversion and was controlled by the content and distribution of clay and spicules in the sediment, resulting in a variety of megascopic silica fabrics. Opal‐CT was subsequently dissolved, and all silica is now in a stable quartz stage. Petrographically, the rocks are characterized by a variety of chalcedony and quartz cements which perfectly preserve precursor textures. Most cements precipitated from silica‐oversaturated fluids, and their shapes reflect the silica saturation state and geometry of the pore space. Some microquartz and cryptoquartz also formed by a solid–solid inversion (recrystallization) of chalcedony. The cements have δ 18O values between +30‰ and +20‰ Standard Mean Ocean Water and display a systematic depletion in 18O from the first to the last crystallized, interpreted to reflect a gradual increase in temperature during burial. The precipitation of quartz cements started in the Middle Triassic when the strata passed the 19°C isotherm at burial depths of ca 600 m, and was completed in the mid‐Cretaceous, 2·3 km beneath the sea floor at temperatures of 75°C. Late diagenetic overprinting of the chert includes fracturing, brecciation and cementation with carbonate cements having δ 18O values between +2‰ and −30‰ Pee Dee Belemnite and δ 13C values between +4‰ and −14‰ Pee Dee Belemnite; they are linked to hot solutions introduced during Cretaceous volcanism or Palaeogene tectonism. This study illustrates the diagenetic pathway during burial of spicule‐rich sediments in a closed system and thereby provides a baseline for studies of more complexly altered chert deposits.  相似文献   

20.
Analytical uncertainties in oxygen isotopic studies of hydrous silica have been investigated using a partial fluorination procedure in which fractional oxygen yields are achieved by reducing the amount of fluorine. Stepwise reaction of opaline silica results in a set of sequential oxygen fractions which show a wide range of δ18O values due to variable amounts of water, organic matter, and other impurities, δ-values for successive fractions in non-biogenic opal systematically increase as water is reacted away and then remain constant to within ±0.2%. as the remaining silica reacts, δ-values in biogenic silica increase similarly but then decrease when low 18O oxide(?) impurities begin to react.The troublesome water component in opal is readily removed by Stepwise fluorination. This technique allows more precise oxygen isotope analysis of non-biogenic opal-A, and may improve the analytical precision for biogenic silica and any silicate mineral containing a significant water component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号