首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Observations of 1-s average concentration fluctuations during two trials of a U.S. Army diffusion experiment are presented and compared with model predictions based on an exponential probability density function (pdf). The source is near the surface and concentration monitors are on lines about 30 to 100 m downwind of the source. The observed ratio of the standard deviation to the mean of the concentration fluctuations is about 1.3 on the mean plume axis and 4 to 5 on the mean plume edges. Plume intermittency (fraction of non-zero readings) is about 50%; on the mean plume axis and 10%; on the mean plume edges. A meandering plume model is combined with an exponential pdf assumption to produce predictions of the intermittency and the standard deviation of the concentration fluctuations that are within 20%; of the observations.  相似文献   

2.
This paper describes a study of the vertical structure of concentration fluctuations in a neutrally buoyant plume from an elevated point source in slightly convective to moderately stable meteorological conditions at ranges of between 12.5 and 100 m for a range of source heights between 1 and 5 m. Observations were made of concentration fluctuations in a dispersing plume using a vertical array of sixteen very fast-response photoionization detectors placed at heights between 0.5 and 16 m. Vertical profiles of a number of concentration statistics were extracted, namely, mean concentration, fluctuation intensity, intermittency factor, peak-to-mean concentration ratio, mean dissipation rate of concentration variance, and various concentration time and length scales of dominant motions in the plume (e.g., integral macro-scale, in-plume mid-scale and Taylor micro-scale). The profiles revealed a similarity to corresponding crosswind profiles for a fully elevated plume, but showed greater and greater departure from the latter shapes once the plume had grown in the vertical so that its lower dege began to interact progressively more strongly with the ground. The evolution of the concentration probability density function at a fixed range, but with decreasing height from the ground, is similar to that obtained at a fixed height but with increasing distance from the source. Concentration power spectra obtained at different heights all had an extensive inertial-convective subrange spanning at least two decades in frequency, but spectra measured near the ground had a greater proportion of the total concentration variance in the lower frequencies (energetic subrange), with a correspondingly smaller proportion in the higher frequencies (inertial-convective subrange). It is believed that these effects result from the increased mean shear near the surface, and blocking by the surface. The effect of enhanced shear-induced molecular diffusion on concentration fluctuations is examined.  相似文献   

3.
The fluctuations of the instantaneous values of line integrated concentrations across plumes from point sources diffusing in turbulent shear flows, and in grid generated turbulence, have been studied experimentally using a fast response system which measured the attenuation of the intensity of an infrared beam crossing the plume. Analysis of the measurements show that the dimensionless statistical properties of the fluctuations at different distances from the source at each flow are approximately similar, in the sense that they depend primarily on the relative off-center location of the line of integration and almost independent of the distance from the source and the nature of the turbulence in the flows, as long as the characteristic length of the mean plume is not large compared to the size of the large eddies. The characteristic time of the fluctuations, on the other hand, was found to grow with the distance from the source and the autocorrelations of the fluctuations, particularly in the case of a plume diffusing in grid generated turbulence, were it found to be proportional to the lateral size of the mean plume. A—5/3 decay law of the power spectrum of the fluctuations was observed in the low frequency range which corresponds to the scale of the large eddies. The decay of the fluctuations caused by smaller eddies was much faster, as expected.  相似文献   

4.
Measurements have been made of concentration fluctuations in a dispersing plume from an elevated point source in the atmospheric surface layer using a recently developed fast-response photoionization detector. This detector, which has a frequency response (–6 dB point) of about 100 Hz, is shown to be capable of resolving the fluctuation variance contributed by the energetic subrange and most of the inertial-convective subrange, with a reduction in the fluctuation variance due to instrument smoothing of the finest scales present in the plume of at most 4%.Concentration time series have been analyzed to obtain the statistical characteristics of both the amplitude and temporal structure of the dispersing plume. We present alongwind and crosswind concentration fluctuation profiles of statistics of amplitude structure such as total and conditional fluctuation intensity, skewness and kurtosis, and of temporal structure such as intermittency factor, burst frequency, and mean burst persistence time. Comparisons of empirical concentration probability distributions with a number of model distributions show that our near-neutral data are best represented by the lognormal distribution at shorter ranges, where both plume meandering and fine-scale in-plume mixing are equally important (turbulent-convective regime), and by the gamma distribution at longer ranges, where internal structure or spottiness is becoming dominant (turbulent-diffusive regime). The gamma distribution provides the best model of the concentration pdf over all downwind fetches for data measured under stable stratification. A physical model is developed to explain the mechanism-induced probabilistic schemes in the alongwind development of a dispersing plume, that lead to the observed probability distributions of concentration. Probability distributions of concentration burst length and burst return period have been extracted and are shown to be modelled well with a powerlaw distribution. Power spectra of concentration fluctuations are presented. These spectra exhibit a significant inertial-convective subrange, with the frequency at the spectral peak decreasing with increasing downwind fetch. The Kolmogorov constant for the inertial-convective subrange has been determined from the measured spectra to be 0.17±0.03.  相似文献   

5.
Measurements of concentration fluctuation intensity, intermittency factor, and integral time scale were made in a water channel for a plume dispersing in a well-developed, rough surface, neutrally stable, boundary layer, and in grid-generated turbulence with no mean velocity shear. The water-channel simulations apply to full-scale atmospheric plumes with very short averaging times, on the order of 1–4 min, because plume meandering was suppressed by the water-channel side walls. High spatial and temporal resolution vertical and crosswind profiles of fluctuations in the plume were obtained using a linescan camera laser-induced dye tracer fluorescence technique. A semi-empirical algebraic mean velocity shear history model was developed to predict these concentration statistics. This shear history concentration fluctuation model requires only a minimal set of parameters to be known: atmospheric stability, surface roughness, vertical velocity profile, and vertical and crosswind plume spreads. The universal shear history parameter used was the mean velocity shear normalized by surface friction velocity, plume travel time, and local mean wind speed. The reference height at which this non-dimensional shear history was calculated was important, because both the source and the receptor positions influence the history of particles passing through the receptor position.  相似文献   

6.
The dynamical characteristics of concentration fluctuations in a dispersing plume over the energetic and inertial-convective range of scales of turbulent motion are studied using a multiscale analysis technique that is based on an orthonormal wavelet representation. It is shown that the Haar wavelet concentration spectrum is similar to the Fourier concentration spectrum in that both spectra exhibit an extensive inertial-convective subrange spanning about two decades in frequency, with a scaling exponent of -5/3. Analysis of the statistical properties (e.g., fluctuation intensity, skewness, and kurtosis) of the concentration wavelet coefficients (i.e., the concentration discrete detailed signal) suggests that the small scales are always more intermittent than the large scales. The degree of intermittency increases monotonically with decreasing scale within the inertial-convective subrange, reaching a plateau at the very small scales associated with the beginning of the near-dissipation subrange. The probability density function (pdf) of the concentration discrete detailed signal displays stretched exponential tails with an intermittency exponent (tail slope) q that increases as a , where is the scale or dilation and a is a power-law exponent that is dependent on downwind distance, plume height, and stratification strength with typical values in the range from about 0.25 to 0.35. It is shown that the concentration variance cascade process requires a phase coherency of eddies between different scales at the small-scale end of the inertial-convective subrange.The variation of the concentration wavelet statistics with height above the ground is investigated. The increased mean shear near the ground smooths the fine-scale plume structure for scales within the inertial-convective subrange, producing a weaker spatiotemporal intermittency in the concentration field compared to that measured higher up in the plume. The pdf of the concentration detailed signal at a fixed scale possesses less elongated tails with decreasing height z. The intermittency exponent q is found to decrease roughly linearly with increasing z.Finally, the results of the wavelet decomposition are combined to provide a conceptual model of the turbulent transport, stirring, and mixing regimes in a dispersing plume. The implications of the results for contaminant texture in a plume are discussed.  相似文献   

7.
8.
This paper describes an experimental investigation of the behaviour of the statistics of concentration fluctuations in a passive plume dispersing over a two-dimensional hill of moderate steepness. Recently developed high frequency response Flame Ionization Detector (FID) technology with a frequency response in excess of 200 Hz was utilized to obtain an extensive set of measurements of the mean and fluctuating plume concentrations. Plumes dispersing over flat terrain and over a hill with a maximum slope of 0.3 were studied. For both cases, extensive turbulent flow measurements were also carried out.The measured mean plume concentration profiles were of a generally Gaussian form and showed the expected effects of surface reflection for the flat terrain and hill. Plume intermittency and concentration fluctuation intensity were calculated at all measurement locations. Conditional and unconditional plume concentration statistics were calculated. The conditional (in-plume) concentrations and intensities were more uniform with height than for the unconditional ones.  相似文献   

9.
This paper presents a new model of concentration fluctuations for neutrally buoyant gas clouds dispersing in a wind tunnel. It is derived from a series of exact results, which apply in the hypothetical case when there is no molecular diffusion, coupled with a probability density function model previously used to describe steady releases of contaminant. A simple self-similar relationship between the evolution of the concentration intensity and mean is established. As a first step the time independent variant of the model, applicable to a continuous plume, is tested against some previously published experimental data for steady wind-tunnel releases. Comparisons of experimental results and model predictions at different downwind positions, heights and source geometry are presented. Then, the results for the time dependent model, applicable to instantaneous releases, are discussed. The experimental evidence presented here supports the self-similar relationship established earlier. The implications for modelling higher moments of concentration and the fixed point probability density function are investigated.  相似文献   

10.
A meandering plume model that explicitly incorporatesinternal fluctuations has been developed and used to model the evolutionof concentration fluctuations in point-source plumes in grid turbulenceobtained from a detailed water-channel simulation. This fluctuating plumemodel includes three physical parameters: the mean plume spread in fixedcoordinates, which represents the outer plume length scale; the meaninstantaneous plume spread in coordinates attached to the instantaneousplume centroid, which represents the inner plume length scale; and, theconcentration fluctuation intensity in the meandering reference frame,which represents the in-plume fluctuation scale. These parameters arespecified in terms of a set of coupled dynamical equations that modeltheir development with downstream distance from the source. Explicitexpressions for the concentration moments of arbitrary integral orderand the concentration probability density function have been obtainedfrom the fluctuating plume model. Detailed comparisons of model predictionsagainst water-channel measurements for the first four concentrationmoments and the concentration probability distributions generally showvery good overall quantitative agreement. Exact quantitative conditions,expressed in terms of the physical parameters of the fluctuating plumemodel, have been derived for the emergence of off-centreline peaks inthe concentration variance profile. These quantitative conditions havebeen illustrated in terms of a diagram of states of the dispersing plume,and the qualitatively different regimes of plume concentration variancebehaviour on this state diagram have been identified and characterized.  相似文献   

11.
The micromixing technique, widely used in engineering calculations of mixing and chemical reaction, is extended to atmospheric boundary-layer flows. In particular, a model based on the interaction-by-exchange-with-the-conditional-mean (IECM) micromixing approach is formulated to calculate concentration fluctuation statistics for a line source and a point source in inhomogeneous and non-Gaussian turbulence in the convective boundary layer. The mixing time scale is parameterised as a linear function of time with the intercept value determined by the source size at small times. Good agreement with laboratory data for the intensity of concentration fluctuations is obtained with a value of 0.9 for the coefficient of the linear term in the time-scale parameterisation for a line source, and a value of 0.6 for a point source. Calculation of higher-order moments of the concentration field for a line source shows that non-Gaussian effects persist into the vertically well-mixed region. The cumulative distribution function predicted by the model for a point source agrees reasonably well with laboratory data, especially in the far field. In the limit of zero mixing time scale, the model reduces to a meandering plume model, thus enabling the concentration variance to be partitioned into meandering and relative components. The meandering component is shown to be more persistent for a point source than for a line source.  相似文献   

12.
The reduction in variance of concentration fluctuations due to line averaging is estimated assuming that the process is influenced by the integral distance scale, y I , of ambient turbulence and the scaling width, W, of the time-averaged plume. An analytical formula is derived for the line-averaged variance for situations where the autocorrelogram is exponential and the point variance decreases exponentially with distance from plume centerline. Predictions of concentration fluctuation variance are compared with water tank and field data, with the result that the decrease of variance with averaging distance is well-simulated if the model parameters y I and W are carefully chosen.  相似文献   

13.
A set of concentration time series from ground-level plumes in the atmosphere has been used to generate conditionally sampled (zeros ignored) plume concentration statistics. These have been compared and contrasted with corresponding unconditionally sampled statistics. It is found that conditional statistics are much less sensitive to the location of the receptor (relative to the mean plume) and to averaging time. Indeed, most of the variation apparent in unconditionally sampled statistics (both explained and unexplained) resides in the intermittency, the fraction of non-zero readings.The data are used to test three commonly used models for the concentration frequency distribution. At the simplest level of modelling, it is assumed that conditional statistics are invariant; then the data are best represented by a clipped-normal distribution. However, an exponential distribution is only slightly conservative and has the advantage of simplicity. A log-normal distribution is clearly not supported by the data. With this simple approach the intermittency remains unspecified and this is a serious deficiency.More advanced modelling must account for the residual variation in conditional statistics, which implies a relationship between these statistics and the intermittency. Although there is evidence for such a relationship in the data, it is not adequately represented by any of the distribution models considered.  相似文献   

14.
Surface-layer intermittency investigated with conditional sampling   总被引:1,自引:0,他引:1  
A conditional sampling technique is used to provide statistics of surface-layer plume properties. A selection criterion based on the high-frequency variance of the horizontal wind component enables an accurate division of plume and nonplume states. The intermittency factor derived with this technique closely matches values obtained using other techniques at various heights in the atmospheric boundary layer. The intermittency factor in addition to other plume statistics are found to be stability dependent. Conditional averages are used to produce scatter diagrams from which the interrelationships between properties of both the plume and nonplume states can be examined. Several provocative relationships discovered in this way are discussed.An extensive investigation into the bimodal nature of the fine structure of turbulence is described. These results provide the most compelling support for the division of surface-layer turbulence into separate states. Length scales derived from the second moments of distributions fitted to conditionally sampled data are found to correlate with external parameters of the flow.Department of Atmospheric Sciences contribution number 514.  相似文献   

15.
A meandering plume model that explicitly incorporates the effects of small-scale structure in the instantaneous plume has been formulated. The model requires the specification of two physically based input parameters; namely, the meander ratio,M, which is dependent on the ratio of the meandering plume dispersion to the instantaneous relative plume dispersion and, a relative in-plume fluctuation measure,k, that is related inversely to the fluctuation intensity in relative coordinates. Simple analytical expressions for crosswind profiles of the higher moments (including the important shape parameters such as fluctuation intensity, skewness, and kurtosis) and for the concentration pdf have been derived from the model. The model has been tested against some field data sets, indicating that it can reproduce many key aspects of the observed behavior of concentration fluctuations, particularly with respect to modeling the change in shape of the concentration pdf in the crosswind direction.List of Symbols C Mean concentration in absolute coordinates - C r Mean concentration in relative coordinates - C0 Centerline mean concentration in absolute coordinates - C r,0 Centerline mean concentration in relative coordinates - f Probability density function of concentration in absolute coordinates - f c Probability density function of plume centroid position - f r Probability density function of concentration in relative coordinates - i Absolute concentration fluctuation intensity (standard deviation to mean ratio) - i r Relative concentration fluctuation intensity (standard deviation to mean ratio) - k Relative in-plume fluctuation measure:k=1/i r 2 - K Concentration fluctuation kurtosis - M Meander ratio of meandering plume variance to relative plume variance - S Concentration fluctuation skewness - x Downwind distance from source - y Crosswind distance from mean-plume centerline - z Vertical distance above ground - Instantaneous (random) concentration - Crosswind dispersion ofnth concentration moment about zero - ny Mean-plume crosswind (absolute) dispersion - y Plume centroid (meandering) dispersion in crosswind direction - y,c Instantaneous plume crosswind (relative) dispersion - Normalized mean concentration in absolute coordinates:C/C 0 - Particular value taken on by instantaneous concentration,   相似文献   

16.
Atmospheric tracer dispersion experiments have been carried out to measure the statistical characteristics (variance, frequency distribution, spectrum) of the concentration downwind of a pair of partly overlapping plumes. By releasing different tracer substances from each source, it was possible to identify the contributions of the two sources at a given measurement point, both separately and jointly, and thus to compare and interpret the joint statistics in terms of those from the individual sources.Statistics for the individual sources agree well with, and support, existing wind tunnel and theoretical results. Nondimensionalization of the data using the mean concentration and the lateral width of the plume as concentration and length scales successfully removes much of the variation due to changes in atmospheric and surface conditions.Measurements of the correlation between the concentration contributions from separated sources are consistent with recent wind tunnel measurements. Entirely new measurements of the frequency distribution of the combined concentration from a pair of sources show that in many situations, high concentrations relative to the mean occur much less frequently than for an isolated source. Generally the extent of the reduction in frequency of occurrence is inversely related to the degree of correlation between concentrations from the two sources.  相似文献   

17.
Plume meandering and averaging time effects were measured directly using a high spatial resolution, high frequency, linescan laser-induced fluorescence (LIF) technique for measuring scalar concentrations in a plume dispersing in a water channel. Post-processing of the collected data removed time dependent background dye levels and corrected for attenuation across the laser beam to produce accurate measurements over long sample times in both a rough surface boundary-layer shear flow and shear free grid-generated turbulent flow. The data were used to verify the applicability of a meandering plume model for predicting the properties of mean and fluctuating concentrations. The centroid position of the crosswind concentration profile was found to have a Gaussian probability density function and the instantaneous plume spread about the centroid fluctuated log-normally. A modified travel-time power law model for averaging time adjustment was developed and compared to the widely used, but much less accurate, 0.2 power-law model.  相似文献   

18.
Experiments have been carried out to investigate the dispersion of plumes at short range in the atmospheric boundary layer during stable and unstable conditions. The experiments and measurement system are described, and the results are compared with those of previous experiments. The slow meandering under stable conditions found by Mylne (1992) is not present here (probably because of topographic effects), so the plume is present on the mean centreline more often, and timescales are shorter, under stable conditions. Associated with this, statistics during stable conditions exhibit greater stability to changes in total sampling time. Intensity is found to be greater under unstable conditions, but there do not appear to be large differences in the shape of the probability density function between stable and unstable conditions. The intermittency is calculated using several variations on the conventional definition. The values obtained vary substantially according to which definition is used (although they are always higher in the stable than in the unstable experiments), demonstrating the sensitivity to both the precise definition and to measurement system characteristics. It is shown that even at very short range the mean and variance of concentration are determined almost entirely by the fluid not emanating from the source. Thus the partition between source and non-source fluid suggested by Chatwin and Sullivan (1989), while providing a more scientifically sound definition of intermittency, does not have an obvious direct practical application.  相似文献   

19.
A steady-state, three-dimensional turbulent diffusion equation describing the concentration distribution of an air pollutant from an elevated point source in the lower atmosphere is solved analytically. The same formulation can be used to obtain solutions from line, area or other kinds of sources. The solution is developed for the cases in which the velocity, vertical and lateral diffusivities are given by the power law. The model preserves the beauty of analytical solution without sacrificing much on the accuracy of approximating the velocity and eddy diffusivities. Methods of evaluating the parameters, which are required for the model applications, are discussed. Results indicate that the ratio of the plume width to the plume length increases with decreasing stability and with increasing source height. These consequences are in response to the variations of the size of eddies in the vertical direction.  相似文献   

20.
Surface-layer aerosol diffusion experiments have been conducted using artificial smoke plume releases at ground level over flat and homogeneously vegetated terrain at the Meppen proving grounds in the Federal Republic of Germany (1989). At fixed downwind locations in the range out to 800 m from the source, instantaneous crosswind plume profiles were detected repetitively at high spatial (1.5 m) and temporal (3 sec) intervals by use of a mini LIDAR system. The experiments were accompanied by measurement of the surface-layer mean wind and turbulence quantities by sonic anemometers. On the basis of measured crosswind concentration profiles, the following statistics were obtained: 1) Mean profile, 2) Root mean square profile, 3) Fluctuation intensities, and 4) Intermittency factors. Furthermore, some experimentally determined probability density functions (pdf's) of the fluctuations are presented. All the measured statistics are referred to a fixed and a moving frame of reference, the latter being defined as a frame of reference from which the (low frequency) plume meander is removed. Finally, the measured statistics are compared with statistics on concentration fluctuations obtained with a simple puff diffusion model (RIMPUFF) developed at Risø.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号