首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
CM chondrites are aqueously altered rocks that contain ∼9 wt% H2O+ (i.e., indigenous water) bound in phyllosilicates; also present are clumps of serpentine-tochilinite intergrowths (previously called “poorly characterized phases” or PCP), pentlandite and Ni-bearing pyrrhotite. We studied 11 CM chondrites that span the known range from least altered to most altered. We used various petrologic properties (many previously identified) that provide information regarding the degree of aqueous alteration. There are no known unaltered or slightly altered CM chondrites (e.g., rocks containing numerous chondrules with primary igneous glass). Some CM properties result from processes associated with early and intermediate stages of the alteration sequence (i.e., hydration of matrix, alteration of chondrule glass, and production of large PCP clumps). Other petrologic properties reflect processes active throughout the alteration sequence; these include oxidation of metallic Fe-Ni, alteration of chondrule phenocrysts, changes in PCP composition (reflecting an increase in the phyllosilicate/sulfide ratio), and changes in carbonate mineralogy (reflecting the development of dolomite and complex carbonates at the expense of Ca carbonate).On the basis of these parameters, we propose a numerical alteration sequence for CM chondrites. Because there are no known CM samples that display only incipient alteration, the least altered sample was arbitrarily assigned to subtype 2.6. The most altered CM chondrites, currently classified CM1, are assigned to subtype 2.0. These highly altered rocks have essentially no mafic silicates; they contain chondrule pseudomorphs composed mainly of phyllosilicate. However, their bulk compositions are CM-like, and they are closer in texture to other C2 chondrites than to CI1 chondrites (which lack chondrule pseudomorphs). Using several diagnostic criteria, we assigned petrologic subtypes (±0.1) to every CM chondrite in our study: QUE 97990, CM2.6; Murchison, CM2.5; Kivesvaara, CM2.5; Murray, CM2.4/2.5; Y 791198, CM2.4; QUE 99355, CM2.3; Nogoya, CM2.2; Cold Bokkeveld, CM2.2; QUE 93005, CM2.1; LAP 02277, CM2.0; MET 01070, CM2.0.The proposed CM numerical alteration sequence improves upon the existing scheme of Browning et al. (1996) in that it does not require a complicated algorithm applied to electron-microprobe data to determine the average matrix phyllosilicate composition. The new sequence is more comprehensive and employs petrologic subtypes that are easier to use and remember than mineralogic alteration index values.New neutron-activation analyses of QUE 97990, QUE 93005, MET 01070, Murchison and Crescent, together with literature data, confirm the compositional uniformity of the CM group; different degrees of alteration among CM chondrites do not lead to resolvable bulk compositional differences. This suggests that the textural differences among individual CM chondrites reflect progressive alteration of similar hypothetical CM3.0 starting materials in different regions of the same parent body, with minimal aqueous transport of materials over appreciable (e.g., meters) distances.  相似文献   

2.
We report the textures, mineralogy and mineral chemistry of the Mukundpura matrix component, a clast-bearing, brecciated, new CM2 carbonaceous chondrite. Like other CMs, Mukundpura is matrix-enriched and has experienced different degrees of aqueous alteration with evidences of fracturing and compaction of clasts due to the impact. A few relict chondrule clasts and CAIs (diopside and spinel) survived despite of the alteration amidst accessory phases of olivine, magnetite, sulphides and calcite. X-Ray Diffraction (XRD), Visible Near Infrared (VNIR) and Fourier Transform Infrared (FTIR) spectroscopic studies reveal higher phyllosilicate content (∼90 %) comprising of both Mg and Fe-serpentine and abundant serpentine-sulphide intergrowths. Even then, the presence of accessory olivine as relict clasts can be interpreted from the presence of certain typical olivine absorptions in the FTIR spectra. The non-stoichiometric, Tochilinite-Cronstedtite occurrences probably relate to broadening of XRD and FTIR spectra and can be explained by coupled Al–Si and Mg–Al substitutions in talc and serpentine. The FTIR spectra suggest widespread transformation of olivine to serpentine, unlike the largely unaltered chondrules. The correlations of mineralogical alteration index with FeO/SiO2 and S/SiO2 in different domains of matrix suggest different extent of alterations. Thus, the aqueous alteration is extensive but not pervasive. The majority of alteration seems to have occurred within the asteroidal parent body. The Mukundpura CM2 thus preserves a unique combination of relict chondrules and highly aqueous altered variegated matrix clasts, although the surface mineralogy resembles the C-type asteroids recently probed by OSIRIS-REx and Hayabusa-2 missions.  相似文献   

3.
We report bulk chemical compositions and physical properties for a suite of 94 objects, mostly chondrules, separated from the Mokoia CV3ox carbonaceous chondrite. We also describe mineralogical and petrologic information for a selected subset of the same suite of chondrules. The data are used to examine the range of chondrule bulk compositions, and to investigate the relationships between chondrule mineralogy, texture and bulk compositions, as well as oxygen isotopic properties that we reported previously. Most of the chondrules show minimal metamorphism, corresponding to petrologic subtype <3.2. In general, elemental fractionations observed in chondrule bulk compositions are reflected in the compositions of constituent minerals. For chondrules, mean bulk compositions and compositional ranges are very similar for large (>2 mg) and small (<2 mg) size fractions. Two of the objects studied are described as matrix-rich clasts. These have similar bulk compositions to the chondrule mean, and are potential chondrule precursors. One of these clasts has a similar bulk oxygen isotopic composition to Mokoia chondrules, but the other has an anomalously high value of Δ17O (+3.60‰).Chondrules are diverse in bulk chemical composition, with factor of 10 variations in most major element abundances that cannot be attributed to secondary processes. The chondrules examined show evidence for extensive secondary oxidation, and possible sulfidization, as expected for an oxidized CV chondrite, but minimal aqueous alteration. Some of the bulk chondrule compositional variation might be the result of chemical (e.g. volatilization or condensation) or physical (e.g. metal loss) processes during chondrule formation. However, we suggest that it is mainly the result of significant variations in the assembly of particles that constituted chondrule precursors. Precursor material likely included a refractory component, possibly inherited from disaggregated CAIs, an FeO-poor ferromagnesian component such as olivine or pyroxene, an oxidized ferromagnesian component, and a metal component. Bulk oxygen isotope ratios of chondrules can be explained if refractory and ferromagnesian precursor materials initially shared similar oxygen isotopic compositions of δ17O, δ18O around −50‰, and then significant exchange occurred between the chondrule and surrounding 16O-poor gas during melting.  相似文献   

4.
Bulk chemical compositions of matrix material in Antarctic CM chondrites and other non-Antarctic CM and CI chondrites have been determined using microprobe defocused beam techniques. These are used, along with the results of previously published mineralogical studies, to provide mass balance constraints on the relative proportions of intergrown and intermixed phyllosilicate phases in carbonaceous chondrite matrices. Results of these calculations indicate differing amounts of PCP (a mixture of approximately 25% tochilinite and 75% cronstedtite) and serpentines (Mg-rich and Fe-rich varieties in varying proportions or intermediate compositional varieties). Additional sulfide phases are also probably necessary to account for excess Ni and S. Fe/Si ratios for matrices of individual meteorites range from 1.21 to 2.77, corresponding to PCP/(PCP + SERF) ratios of 0.16 to 0.58. Progressive aqueous alteration of matrix appears to have occurred by formation of tochilinite, then cronstedtite and Mg-rich serpentine, and finally Fe-rich serpentine and sulfides. CM matrix clearly did not behave as an isolated system during alteration. CI chondrite matrices appear to contain little if any PCP; this may be a natural consequence of the absence of chondrule-associated metal, from which PCP forms, in the unaltered precursor material. These data provide a more quantitative picture of low-temperature aqueous alteration processes in carbonaceous chondrite parent bodies than has heretofore been possible from TEM studies alone.  相似文献   

5.
6.
CM carbonaceous chondrites are samples of incompletely serpentinized primitive asteroids. Using position sensitive detector X-ray diffraction (PSD-XRD) and a pattern stripping technique, we quantify the modal mineralogy of CM2 chondrites: Mighei; Murray; Murchison; Nogoya and Cold Bokkeveld. There is a narrow range in the combined modal volume (vol%) of the most abundant phases Mg-serpentine (25-33%) and Fe-cronstedtite (43-50%). Cold Bokkeveld is anomalous in containing more Mg-serpentine (49-59%) than Fe-cronstedtite (19-27%). Even including Cold Bokkeveld, the range in modal total phyllosilicate is 73-79% (average = 75%). Total phyllosilicate abundance provides a non-ambiguous measure of the degree of aqueous alteration and indicates that these meteorites have all experienced essentially the same degree of aqueous alteration. This reflects pervasive hydration of matrix across CM2 samples. Apparent differences in the alteration of chondrules observed in petrographic studies represent various stages in the progression towards complete hydration of all components but are not manifest in significant differences in modal mineralogy. For all samples there is a limited range in olivine (6.9%) and pyroxene (5%) abundances. Modal abundances of the remaining identified phases also show a limited range: calcite (0-1.3%); gypsum (0-1.6%); magnetite (1.1-2.4%); pentlandite (0-2.1%) and pyrrhotite (1-3.8%).As expected, we observe a strong negative correlation in the modal abundance of anhydrous Fe-Mg silicates (olivine + pyroxene) and total phyllosilicate (Mg-serpentine + Fe-cronstedtite) consistent with the idea that phyllosilicate is forming by aqueous alteration of the anhydrous components. The negative correlation in the modal abundance between Mg-serpentine and Fe-cronstedtite indicates: (a) mineralogic transformation of Fe-cronstedtite to Mg-serpentine by fluid driven recrystallisation or (b) that these meteorites had different initial abundances of olivine and pyroxene. The observed positive correlation in the relative proportion of Mg-serpentine with increasing total phyllosilicate abundance reflects the evolution of increasingly Mg-rich phyllosilicate during aqueous alteration. Fe-cronstedtite is the dominant phyllosilicate, while CM chondrule olivines are forsteritic and will form Mg-serpentine during aqueous alteration. This implies that matrix olivine was more Fe-rich than chondrule olivine prior to aqueous alteration.  相似文献   

7.
Sequential non-destructive neutron activation analysis was used to determine the bulk abundance of Fe, Al, Na, Mn, Or, Sc, Co and Ir in approximately 300 individual chondrules from 16 chondrites representing the H (3–5), L4 and LL(3–6) compositional and petrologic classes. For some of the chondrules, Si, Ni, Ca and V were also determined. The histograms indicate that the most probable abundances for lithophilic elements, except Cr, are enriched in the chondrules, while the siderophilic elements are depleted in the chondrules compared to the whole chondrite. Some of the abundance populations, such as Al and Fe, appear to be multimodal. Systematic variations in the composition of the chondrules with increasing petrologic type were observed; most consistent are an increasing Na-Al and Cr-Al correlation, a decreasing Na-Mn correlation, increasing Na abundance and decreasing Na and Mn dispersions among chondrules. The systematic compositional variations with increasing petrologic type are consistent with an increasing approach to equilibrium between chondrules and matrix.Observed elemental correlations are generally consistent with mineralogical controls expected on the basis of geochemical affinities suggested by the mineral assemblages present in the chondrules. However, a prevalent Al-Ir correlation was observed, and is most pronounced for a group of chondrules belonging to a population high in Al. A Sc-Ir correlation was observed. Also, an anti-correlation between chondrule masses and Al (and Ir for some chondrules) content of the chondrules was observed. These correlations are attributed to a fractionation during condensation or chondrule formation and cannot be attributed to classical geochemical similarities i.e. these correlations result from a cosmochemical fractionation. From the compositional evidence, it is suggested that there may be two mechanisms for chondrule production. Some high Al chondrules which exhibit the Al-Ir correlation are believed to be remelted primitive high-temperature aggregates. The elemental composition of the chondrules from the lower Al abundance population is consistent with a preferential remelting of pre-existing silicates.  相似文献   

8.
Mixing was an important process in the early solar nebula and is often used as an argument to explain the compositional scatter among chondrules—mm-sized, once molten silicate spherules in chondritic meteorites. If it is hypothesized that chondrules only acted as closed systems and the scatter in chondrule bulk chemical compositions is only the result of mixing heterogeneous precursor grains—the basic components of chondrules—, it is in turn possible to determine the sizes of the precursor grains using statistical calculations. In order to reproduce the observed compositional scatter in chondrules not more than ∼10 precursor grains should contribute to a single chondrule, each with a diameter of several 100 μm. This finding has important implications for the conditions of chondrule formation and replaces the so far widely accepted model that chondrules formed from fine-grained “dust-balls”. Chondrules rather formed from coarse-grained precursor aggregates with variable amounts of μm-fine matrix material. As a consequence, only chondrite matrix or interstellar material winnows as precursor material. Large grains of variable composition serving as precursor grains must have been formed prior to chondrule formation. Chondrules probably have not been their immediate precursors, as only 1-2 chondrule recycling steps would have homogenized bulk chondrule compositions. Chondrule recycling can therefore only have occurred to a limited extent. Chondrule formation needed at least three steps: (1) production of large and heterogeneous chondrule precursor grains, (2) agglomeration of large precursor grains and fine-grained precursors into aggregates, (3) formation of chondrules during transient heating events. Al-rich chondrules can in this context be explained by the admixture of CAIs to either chondrule precursors or a population of existing chondrules.  相似文献   

9.
The examination of the physical properties of chondrules has generally received less emphasis than other properties of meteorites such as their mineralogy, petrology, and chemical and isotopic compositions. Among the various physical properties of chondrules, chondrule size is especially important for the classification of chondrites into chemical groups, since each chemical group possesses a distinct size-frequency distribution of chondrules. Knowledge of the physical properties of chondrules is also vital for the development of astrophysical models for chondrule formation, and for understanding how to utilize asteroidal resources in space exploration. To examine our current knowledge of chondrule sizes, we have compiled and provide commentary on available chondrule dimension literature data. We include all chondrite chemical groups as well as the acapulcoite primitive achondrites, some of which contain relict chondrules. We also compile and review current literature data for other astrophysically-relevant physical properties (chondrule mass and density). Finally, we briefly examine some additional physical aspects of chondrules such as the frequencies of compound and “cratered” chondrules. A purpose of this compilation is to provide a useful resource for meteoriticists and astrophysicists alike.  相似文献   

10.
Chondrules from the Semarkona (LL3.0) chondrite show refractory and common lithophile fractionation trends similar to those observed among the chondrite groups. It appears that chondrules are mixtures of a small number of pre-existing solid components, and we infer that chondrule precursor materials were related to the nebular components involved in the lithophile element fractionations recognized in ordinary chondrites. Compositional trends among the chondrules can be used to deduce the compositions of these components.We use instrumental neutron activation analysis to measure many (~20) of the lithophile elements in 30 chondrules. The amounts of oxidized iron were calculated from other compositional parameters; concentrations of Si were estimated using mass-balance considerations. The data were corrected for the diluting effects of non-lithophile constituents. Plots of lithophile elements versus a reference refractory element such as Al show that there were two major chondrule silicate precursor components: a refractory, olivine-rich, FeO-free one, and a non-refractory, SiO2-, FeO-rich one.The refractory component probably forms from olivine-enriched condensates formed above the condensation temperature of enstatite. The non-refractory component must have formed from fine-grained materials that were able to equilibrate down to lower nebular temperatures. Chondrite matrix may have had an origin similar to that of the non-refractory material, and constitutes a third lithophile-bearing component that took part in chondrite fractionation processes. The low abundance of refractories and Mg in ordinary and enstatite chondrites was produced by the loss of materials having a higher refractory-element/Mg ratio than that in the refractory component of chondrules.  相似文献   

11.
Based on their mineralogy and petrography, ∼200 refractory inclusions studied in the unique carbonaceous chondrite, Acfer 094, can be divided into corundum-rich (0.5%), hibonite-rich (1.1%), grossite-rich (8.5%), compact and fluffy Type A (spinel-melilite-rich, 50.3%), pyroxene-anorthite-rich (7.4%), and Type C (pyroxene-anorthite-rich with igneous textures, 1.6%) Ca,Al-rich inclusions (CAIs), pyroxene-hibonite spherules (0.5%), and amoeboid olivine aggregates (AOAs, 30.2%). Melilite in some CAIs is replaced by spinel and Al-diopside and/or by anorthite, whereas spinel-pyroxene assemblages in CAIs and AOAs appear to be replaced by anorthite. Forsterite grains in several AOAs are replaced by low-Ca pyroxene. None of the CAIs or AOAs show evidence for Fe-alkali metasomatic or aqueous alteration. The mineralogy, textures, and bulk chemistry of most Acfer 094 refractory inclusions are consistent with their origin by gas-solid condensation and may reflect continuous interaction with SiO and Mg of the cooling nebula gas. It appears that only a few CAIs experienced subsequent melting. The Al-rich chondrules (ARCs; >10 wt% bulk Al2O3) consist of forsteritic olivine and low-Ca pyroxene phenocrysts, pigeonite, augite, anorthitic plagioclase, ± spinel, FeNi-metal, and crystalline mesostasis composed of plagioclase, augite and a silica phase. Most ARCs are spherical and mineralogically uniform, but some are irregular in shape and heterogeneous in mineralogy, with distinct ferromagnesian and aluminous domains. The ferromagnesian domains tend to form chondrule mantles, and are dominated by low-Ca pyroxene and forsteritic olivine, anorthitic mesostasis, and Fe,Ni-metal nodules. The aluminous domains are dominated by anorthite, high-Ca pyroxene and spinel, occasionally with inclusions of perovskite; have no or little FeNi-metal; and tend to form cores of the heterogeneous chondrules. The cores are enriched in bulk Ca and Al, and apparently formed from melting of CAI-like precursor material that did not mix completely with adjacent ferromagnesian melt. The inferred presence of CAI-like material among precursors for Al-rich chondrules is in apparent conflict with lack of evidence for melting of CAIs that occur outside chondrules, suggesting that these CAIs were largely absent from chondrule-forming region(s) at the time of chondrule formation. This may imply that there are several populations of CAIs in Acfer 094 and that mixing of “normal” CAIs that occur outside chondrules and chondrules that accreted into the Acfer 094 parent asteroid took place after chondrule formation. Alternatively, there may have been an overlap in the CAI- and chondrule-forming regions, where the least refractory CAIs were mixed with Fe-Mg chondrule precursors. This hypothesis is difficult to reconcile with the lack of evidence of melting of AOAs which represent aggregates of the least refractory CAIs and forsterite grains.  相似文献   

12.
Chondrite groups (CV, CK, CR) with large average chondrule sizes have low proportions of RP plus C chondrules, high proportions of enveloping compound chondrules, high proportions of chondrules with (thick) igneous rims, and relatively low proportions of type-I chondrules containing sulfide. In contrast, chondrite groups (CM, CO, OC, R, EH, EL) with smaller average chondrule sizes have the opposite properties. Equilibrated CK chondrites have plagioclase with relatively low Na; equilibrated OC, R, EH and EL chondrites have more sodic plagioclase. Enveloping compound chondrules and chondrules with igneous rims formed during a remelting event after the primary chondrule was incorporated into a dustball. Repeated episodes of remelting after chondrules were surrounded by dust would tend to produce large chondrules. RP and C chondrules formed by complete melting of their precursor assemblages; remelting of RP and C chondrules surrounded by dust would tend to produce porphyritic chondrules as small dust particles mixed with the melt, providing nuclei for crystallizing phenocrysts. This process would tend to diminish the numbers of RP and C chondrules. Correlations among these chondrule physical properties suggest that chondrite groups with large chondrules were typically surrounded by thick dust-rich mantles that formed in locally dusty nebular environments. Chondrules that were surrounded by thick dust mantles tended to cool more slowly because heat could not quickly radiate away. Slow cooling led to enhanced migration of sulfide to chondrule surfaces and more extensive sulfide evaporation. These chondrules also lost Na; the plagioclase that formed from equilibrated CK chondrites was thus depleted in Na.  相似文献   

13.
Petrographic study of 124 chondrules in the Hallingeberg (L-3) chondrite and electron probe microanalyses of olivine and low-Ca pyroxene in 96 of them reveal patterns of variation like those encountered previously in Sharps (H-3). Chondrule mineralogy, mineral composition, and the incidence of shock-related textures vary systematically with chondrule type. This fact and evidence of recrystallization in at least a fourth of the chondrules studied indicate that the pre-accretion histories of chondrules included complex and overlapping episodes of magmatic crystallization, burial, metamorphism and exhumation, in which impact shock was heavily involved. Data for Hallingeberg and Sharps suggest that orthopyroxene accompanies or replaces clinoenstatite in some chondrules and that its presence is due, in part at least, to pre-accretion recrystallization. A comparison of modes for chondrules in Sharps and Hallingeberg shows the former to contain more olivine, on the average, than the latter. It appears that the mean compositions of chondrules in H- and L-group chondrites reflect bulk chemical differences between the two groups, and that chondrule formation followed the siderophile fractionation which differentiated H-, L- and LL-group ordinary chondrites.  相似文献   

14.
Matrix material in type 3 chondrites forms rims on chondrules, metal-sulfide aggregates, Ca,Al-rich inclusions and chondritic clasts; it also forms lumps up to a millimeter in size, which may contain coarser silicates. Chondrules of all types were found with internal matrix lumps that appear to have entered the chondrules before the latter had crystallized. Mean concentrations of Mg, Na, Al and Ca in matrix occurrences show up to fivefold variations in a single chondrite. Variations between mean matrix compositions of individual type 3 ordinary chondrites are almost as large and partly reflect systematic differences between H, L and LL matrices. Such variations are probably a result of nebular separation of feldspathic material and ferromagnesian silicates.Compositions of chondrules and their matrix rims are normally unrelated, although rim compositions are correlated with those of matrix lumps inside chondrules. A single chondrule was found with a composition nearly identical to that of its internal matrix lump, suggesting that some chondrules may have formed from matrix material. Matrix lumps are as heterogeneous as chondrules, but mean chondrule and matrix compositions differ, even allowing for possible loss of metallic Fe,Ni during chondrule formation. Since bulk compositions of matrix lumps and rims have probably not changed significantly since their formation except for Fe-Mg exchange, our matrix samples cannot represent typical chondrule precursor materials.  相似文献   

15.
We report a study of the oxygen isotope ratios of chondrules and their constituent mineral grains from the Mokoia, oxidized CV3 chondrite. Bulk oxygen isotope ratios of 23 individual chondrules were determined by laser ablation fluorination, and oxygen isotope ratios of individual grains, mostly olivine, were obtained in situ on polished mounts using secondary ion mass spectrometry (SIMS). Our results can be compared with data obtained previously for the oxidized CV3 chondrite, Allende. Bulk oxygen isotope ratios of Mokoia chondrules form an array on an oxygen three-isotope plot that is subparallel to, and slightly displaced from, the CCAM (carbonaceous chondrite anhydrous minerals) line. The best-fit line for all CV3 chondrite chondrules has a slope of 0.99, and is displaced significantly (by δ17O ∼ −2.5‰) from the Young and Russell slope-one line for unaltered calcium-aluminum-rich inclusion (CAI) minerals. Oxygen isotope ratios of many bulk CAIs also lie on the CV-chondrule line, which is the most relevant oxygen isotope array for most CV chondrite components. Bulk oxygen isotope ratios of most chondrules in Mokoia have δ18O values around 0‰, and olivine grains in these chondrules have similar oxygen isotope ratios to their bulk values. In general, it appears that chondrule mesostases have higher δ18O values than olivines in the same chondrules. Our bulk chondrule data spread to lower δ18O values than any ferromagnesian chondrules that have been measured previously. Two chondrules with the lowest bulk δ18O values (−7.5‰ and −11.7‰) contain olivine grains that display an extremely wide range of oxygen isotope ratios, down to δ17O, δ18O around -50‰ in one chondrule. In these chondrules, there are no apparent relict grains, and essentially no relationships between olivine compositions, which are homogeneous, and oxygen isotopic compositions of individual grains. Heterogeneity of oxygen isotope ratios within these chondrules may be the result of incorporation of relict grains from objects such as amoeboid olivine aggregates, followed by solid-state chemical diffusion without concomitant oxygen equilibration. Alternatively, oxygen isotope exchange between an 16O-rich precursor and an 16O-poor gas may have taken place during chondrule formation, and these chondrules may represent partially equilibrated systems in which isotopic heterogeneities became frozen into the crystallizing olivine grains. If this is the case, we can infer that the earliest nebular solids from which chondrules formed had δ17O and δ18O values around -50‰, similar to those observed in refractory inclusions.  相似文献   

16.
In the Piancaldoli LL3 chondrite, we found a mm-sized clast containing ~100 chondrules 0.2–64 μm in apparent diameter (much smaller than any previously reported) that are all of the same textural type (radial pyroxene; FS1–17). This clast, like other type 3 chondrites, has a fine-grained Ferich opaque silicate matrix, sharply defined chondrules, abundant low-Ca clinopyroxene and minor troilite and Si- and Cr-bearing metallic Fe,Ni. However, the very high modal matrix abundance (63 ± 8 vol. %), unique characteristics of the chondrules, and absence of microscopically-observable olivine indicate that the clast is a new kind of type 3 chondrite. Most chondrules have FeO-rich edges, and chondrule size is inversely correlated with chondrule-core FeO concentration (the first reported correlation of chondrule size and composition). Chondrules acquired Fe by diffusion from Fe-rich matrix material during mild metamorphism, possibly before final consolidation of the rock. Microchondrules (those chondrules ? 100 μm in diameter) are also abundant in another new kind of type 3 chondrite clast in the Rio Negro L chondrite regolith breccia. In other type 3 chondrite groups, microchondrule abundance appears to be anticorrelated with mean chondrule size, viz. 0.02–0.04 vol. % in H and CO chondrites and ?0.006 vol. % in L, LL, and CV chondrites.Microchondrules probably formed by the same process that formed normal-sized droplet chondrules: melting of pre-existing dustballs. Because most compound chondrules in the clast and other type 3 chondrites formed by collisions between chondrules of the same textural type, we suggest that dust grains were mineralogically sorted in the nebula before aggregating into dustballs. The sizes of compound chondrules and chondrule craters, which resulted from collisions of similarly-sized chondrules while they were plastic, indicate that size-sorting (of dustballs) occurred before chondrule formation, probably by aerodynamic processes in the nebula. We predict that other kinds of type 3 chondrites exist which contain chondrule abundances, size-ranges and proportions of textural types different from known chondrite groups.  相似文献   

17.
Chondrules in E3 chondrites differ from those in other chondrite groups. Many contain near-pure endmember enstatite (Fs<1). Some contain Si-bearing FeNi metal, Cr-bearing troilite, and, in some cases Mg, Mn- and Ca-sulfides. Olivine and more FeO-rich pyroxene grains are present but much less common than in ordinary or carbonaceous chondrite chondrules. In some cases, the FeO-rich grains contain dusty inclusions of metal. The oxygen three-isotope ratios (δ18O, δ17O) of olivine and pyroxene in chondrules from E3 chondrites, which are measured using a multi-collection SIMS, show a wide range of values. Most enstatite data plots on the terrestrial fractionation (TF) line near whole rock values and some plot near the ordinary chondrite region on the 3-isotope diagram. Pyroxene with higher FeO contents (∼2-10 wt.% FeO) generally plots on the TF line similar to enstatite, suggesting it formed locally in the EC (enstatite chondrite) region and that oxidation/reduction conditions varied within the E3 chondrite chondrule-forming region. Olivine shows a wide range of correlated δ18O and δ17O values and data from two olivine-bearing chondrules form a slope ∼1 mixing line, which is approximately parallel to but distinct from the CCAM (carbonaceous chondrite anhydrous mixing) line. We refer to this as the ECM (enstatite chondrite mixing) line but it also may coincide with a line defined by chondrules from Acfer 094 referred to as the PCM (Primitive Chondrite Mineral) line (Ushikubo et al., 2011). The range of O isotope compositions and mixing behavior in E3 chondrules is similar to that in O and C chondrite groups, indicating similar chondrule-forming processes, solid-gas mixing and possibly similar 16O-rich precursors solids. However, E3 chondrules formed in a distinct oxygen reservoir.Internal oxygen isotope heterogeneity was found among minerals from some of the chondrules in E3 chondrites suggesting incomplete melting of the chondrules, survival of minerals from previous generations of chondrules, and chondrule recycling. Olivine, possibly a relict grain, in one chondrule has an R chondrite-like oxygen isotope composition and may indicate limited mixing of materials from other reservoirs. Calcium-aluminum-rich inclusions (CAIs) in E3 chondrites have petrologic characteristics and oxygen isotope ratios similar to those in other chondrite groups. However, chondrules from E3 chondrites differ markedly from those in other chondrite groups. From this we conclude that chondrule formation was a local event but CAIs may have all formed in one distinct place and time and were later redistributed to the various chondrule-forming and parent body accretion regions. This also implies that transport mechanisms were less active at the time of and following chondrule formation.  相似文献   

18.
The concentrations of Ni, Cu, Zn, Ga, Ge, and Se in five, fine-grained chondrule rims in the highly unequilibrated CO3 chondrite ALH A77307 (3.0) have been determined for the first time by synchrotron X-ray fluorescence (SXRF) microprobe at Brookhaven National Laboratory. These elements are especially useful for tracing the role of condensation and evaporation processes which occurred at moderate temperatures in the solar nebula. Understanding the distribution of moderately volatile elements between matrix and chondrules is extremely important for evaluating the different models for the volatile depletions in chondritic meteorites. The data show that the trace element chemistry of rims on different chondrules is remarkably similar, consistent with data obtained for the major and minor elements by electron microprobe. These results support the idea that rims are not genetically related to individual chondrules, but all sampled the same reservoir of homogeneously mixed dust. Of the trace elements analyzed, Zn and Ga show depletions relative to CI chondrite values, but in comparison with bulk CO chondrites all the elements are enriched by approximately 1.5 to 3.5 x CO. The abundance patterns for moderately volatile elements in ALH A77307 chondrule rims closely mimic those observed in the bulk chondrite, indicating that matrix is the major reservoir for these elements. The close matching of the patterns for the volatile depleted bulk chondrite and enriched matrix is especially striking for Na, which is anomalously depleted in ALH A77307 in comparison with average CO chondrite abundances. The depletion in Na is probably attributable to the effects of leaching in Antarctica. With the exception of Na, the volatile elements show a relatively smooth decrease in abundance as a function of condensation temperature, indicating that their behavior is largely controlled by their volatility.  相似文献   

19.
不同球粒陨石群的物理和岩石学性质,包括球粒的平均大小、球粒结构类型、复合球粒、带火成边球粒及含硫化物的比例、化学组成及矿物学特征等可用以划分球粒陨石的化学-岩石类型和小行星类型,这些性质提供了不同球粒陨石群有用的分类参数及其形成环境的信息.由于不同球粒陨石群的△17O与日心距离存在有相关关系,因此,依据不同球粒陨石群形...  相似文献   

20.
An Fe isotope study of ordinary chondrites   总被引:3,自引:0,他引:3  
The Fe isotope composition of ordinary chondrites and their constituent chondrules, metal and sulphide grains have been systematically investigated. Bulk chondrites fall within a restricted isotopic range of <0.2‰ δ56Fe, and chondrules define a larger range of >1‰ (−0.84‰ to 0.21‰ relative to the IRMM-14 Fe standard). Fe isotope compositions do not vary systematically with the very large differences in total Fe concentration, or oxidation state, of the H, L, and LL chondrite classes. Similarly, the Fe isotope compositions of chondrules do not appear to be determined by the H, L or LL classification of their host chondrite. This may support an origin of the three ordinary chondrite groups from variable accretion of identical Fe-bearing precursors.A close relationship between isotopic composition and redistribution of Fe during metamorphism on ordinary chondrite parent bodies was identified; the largest variations in chondrule compositions were found in chondrites of the lowest petrologic types. The clear link between element redistribution and isotopic composition has implications for many other non-traditional isotope systems (e.g. Mg, Si, Ca, Cr). Isotopic compositions of chondrules may also be determined by their melting history; porphyritic chondrules exhibit a wide range in isotope compositions whereas barred olivine and radial pyroxene chondrules are generally isotopically heavier than the ordinary chondrite mean. Very large chondrules preserve the greatest heterogeneity of Fe isotopes.The mean Fe isotope composition of bulk ordinary chondrites was found to be −0.06‰ (±0.12‰ 2 SD); this is isotopically lighter than the terrestrial mean composition and all other published non-chondritic meteorite suites e.g. lunar and Martian samples, eucrites, pallasites, and irons. Ordinary chondrites, though the most common meteorites found on Earth today, were not the sole building blocks of the terrestrial planets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号