首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
东海新生代构造格架特征与油气关系   总被引:4,自引:0,他引:4  
东海海域存在着二个不同时期、不同类型、不同结构秒同成因机制的新生代盆地,即发育在陆壳之上的东海陆架陆缘裂谷盆地和发育在过渡地壳之上的冲绳海槽弧后盆地。前者是大陆向洋蠕散时两次裂离而形成的,后者是洋壳向陆壳俯冲导致陆壳裂离而产生的。  相似文献   

2.
北黄海盆地中生代地层的地质特征和油气潜力(英文)   总被引:5,自引:1,他引:4  
位于山东半岛东北部的北黄海盆地沿东北方向可以延伸到朝鲜的西朝鲜湾盆地和安州盆地 ,而沿西南方向可以延伸到中国的胶莱盆地。长期以来该盆地的找油重点为第三系 ,结果收效甚微。2 0世纪 80年代末朝鲜在西朝鲜湾靠北黄海盆地一侧钻井数口且在中生代地层中发现了商业性油气流 ,自此中生代地层替代新生代第三纪地层成为人们关注的焦点 ,人们希望在北黄海盆地的中生代地层中也能找出商业性油气流。本文以李四光 ( 1 979)划分的新华夏系第二隆起带理论为指导 ,将胶莱盆地、北黄海盆地、西朝鲜湾盆地和安州盆地作为一个整体进行考虑 ,在详细分析了安州盆地、西朝鲜湾盆地和胶莱盆地的中生代地层分布、油气潜力及其类比关系后认为 ,北黄海盆地在基底结构及其上覆盖层的沉积特征上应具有与安州盆地、西朝鲜湾盆地和胶莱盆地相似的特征。目前 ,西朝鲜湾盆地和胶莱盆地在中生代地层中已取得重要的油气发现和油气显示 ,而它们主要是由下白垩统和上侏罗统组成。因此 ,我们有理由相信 ,北黄海盆地的中生代地层很可能成为有远景的勘探靶区。  相似文献   

3.
Identifying distinct tectonic units is key to understanding the geotectonic framework and distribution law of oil and gas resources. The South China Sea and its adjacent areas have undergone complex tectonic evolution processes, and the division of tectonic units is controversial. Guided by block tectonics theory, this study divide the South China Sea and its adjacent areas into several distinguished tectonic units relying on known boundary markers such as sutures(ophiolite belts), subduction-collision zones, orogenic belts, and deep faults. This work suggests that the study area is occupied by nine stable blocks(West Burma Block, Sibumasu Block, LanpingSimao Block, Indochina Block, Yangtze Block, Cathaysian Block, Qiongnan Block, Nansha Block, and Northwest Sulu Block), two suture zones(Majiang suture zone and Southeast Yangtze suture zone), two accretionary zones(Sarawak-Sulu accretionary zone and East Sulawesi accretionary zone), one subduction-collision zone(RakhineJava-Timor subduction-collision zone), one ramp zone(Philippine islands ramp zone), and six small oceanic marginal sea basins(South China Sea Basin, Sulu Sea Basin, Sulawesi Sea Basin, Banda Sea Basin, Makassar Basin, and Andaman Sea Basin). This division reflects the tectonic activities, crustal structural properties, and evolutionary records of each evaluated tectonic unit. It is of great theoretical and practical importance to understand the tectonic framework to support the exploration of oil and gas resources in the South China Sea and its adjacent areas.  相似文献   

4.
Riphean basins of the central and western Siberian Platform   总被引:1,自引:0,他引:1  
The Siberian Platform is unique by its volume of Meso-Neoproterozoic sedimentary deposits. For about one billion years (∼1650-650 Ma) several sedimentary basins were developed here, resulting in the formation of several kilometers thickness of sedimentary cover. The Riphean (Mesoproterozoic-Lower Neoproterozoic) rocks are exposed mainly along platform peripheries. The most complete sections are represented by several megacycles. Each megacycle contains terrigenous series at the base and carbonate formations in the upper part. Several isolated and anisochronous basins were created during the Riphean on the territory of East Siberia. Some of them were intracratonic, others were developed on passive margins. Neoproterozoic orogeny along the platform boundaries resulted in re-organization of the Siberian basins, with extensive faulting, uplifting and erosion of the territories.In eastern Siberia, Riphean series contain large hydrocarbon accumulations. The reservoirs were formed mainly due to fracturing and leaching of carbonate strata (e.g. vugular carbonates of the pre-Vendian weathering crust). The Upper Proterozoic deposits are overlain by thick clayey-carbonate and saliferous-carbonate series of the Upper Vendian and Cambrian, isolating them from the upper sedimentary cover. The Riphean basins contained thick, organic rich, clayey and clayey carbonate. In some of them a hydrocarbon generation maximum took place at the end of the Riphean. The pre-Vendian erosion has removed a significant volume of Riphean sediments. During this time a majority of already formed hydrocarbon accumulations have been lost or degraded. Remaining Riphean series have generated hydrocarbons during the Paleozoic.Despite its complex history, the Riphean is still considered highly prospective, with source rocks developing at multiple levels and reservoirs occurring in both carbonate and clastic rocks. Discoveries of new oil-and-gas fields in East Siberia are likely, but will depend on integration of detailed seismic data and a large volume of core data for the correct prognosis of Riphean reservoir distribution.  相似文献   

5.
High-quality seismic data document a Maastrichtian-Paleocene rift episode on the Vøring margin lasting for 20 m.y. prior to continental breakup. The rift structures are well imaged in the Fenris Graben and Gjallar Ridge region in the western Vøring Basin, and are characterized by low-angle detachment faults with variable fault geometries from south to north. The structural restoration has facilitated the division of pre- and syn-rift sediments across the extensional terrain, which is subsequently used to evaluate mode and mechanism for the lithospheric deformation. Extension estimates based on the structural restoration, subsidence analysis and crustal thickness evaluations yield stretching factors ranging between 1.5 to 2.3 across the main fault zone just landward of the early Tertiary flood basalts. The structural restoration also shows that a middle crustal dome structure, observed beneath the low-angle faults, can be explained by extensional unroofing. Thus, the dome structure may represent a possible metamorphic core complex. Calculations of the effects on vertical motion, assuming uniform and two-layer differential stretching models combined with the arrival of the Iceland mantle plume during rifting, indicate that the uniform extension model may account for both observed early rift subsidence and subsequent late rift uplift and erosion. Although the differential model can not be excluded, it implies early rift uplift which is not compatible with our seismic interpretation. The direct and indirect effects of the Iceland mantle plume may have caused as much as 1.2 km of late rift uplift. Comparison of the volcanic Vøring margin and the non-volcanic West Iberian margin shows similarities in terms of structural style as well as in mode and distribution of extension.  相似文献   

6.
Analysis of multi-channel seismic data from the northern East China Sea Shelf Basin (ECSSB) reveals three sub-basins (Socotra, Domi, and Jeju basins), separated by structural highs (Hupijiao Rise) and faulted basement blocks. These sub-basins show a typical rift-basin development: faulted basement and syn-rift and post-rift sedimentation separated by unconformities. Four regional unconformities, including the top of acoustic basement, have been identified and mapped from multi-channel seismic data. Faults in the acoustic basement are generally trending NE, parallel to the regional structural trend of the area. The depths of the acoustic basement range from less than 1000 m in the northwestern part of the Domi Basin to more than 4500 m in the Socotra Basin and 5500 m in the Jeju Basin. The total sediment thicknesses range from less than 500 m to about 1500 m in the northwest where the acoustic basement is shallow and reach about more than 5500 m in the south.Interpretation of seismic reflection data and reconstruction of three depth-converted seismic profiles reveal that the northern ECSSB experienced two phases of rifting, followed by regional subsidence. The initial rifting in the Late Cretaceous was driven by the NW-SE crustal stretching of the Eurasian Plate, caused by the subduction of the Pacific Plate beneath the Eurasian Plate. Extension was the greatest during the early phase of basin formation; estimated rates of extension during the initial rifting are 2%, 6.5%, and 3.5% in the Domi, Jeju, and Socotra basins, respectively. A regional uplift terminated the rifting in the Late Eocene-Early Oligocene. Rifting and extension, although mild, resumed in the Early Oligocene; while fluvio-lacustrine deposition continued to prevail. The estimated rates of extension during the second phase of rifting are 0.7%, 0.8%, and 0.5% in the Domi, Jeju, and Socotra basins, respectively. A second phase of uplift in the Early Miocene terminated the rifting, marking the transition to the post-rift phase of regional subsidence. Regional subsidence dominated the study area between the Early Miocene and the Late Miocene. An inversion in the Late Miocene interrupted the post-rift subsidence, resulting in an extensive thrust-fold belt in the eastern part of the area. Uplift and subsequent erosion were followed by regional subsidence.  相似文献   

7.
Surface samples, mostly from abyssal sediments of the South Atlantic, from parts of the equatorial Atlantic, and of the Antarctic Ocean, were investigated for clay content and clay mineral composition. Maps of relative clay mineral content were compiled, which improve previous maps by showing more details, especially at high latitudes. Large-scale relations regarding the origin and transport paths of detrital clay are revealed. High smectite concentrations are observed in abyssal regions, primarily derived from southernmost South America and from minor sources in Southwest Africa. Near submarine volcanoes of the Antarctic Ocean (South Sandwich, Bouvet Island) smectite contents exhibit distinct maxima, which is ascribed to the weathering of altered basalts and volcanic glasses. The illite distribution can be subdivided into five major zones including two maxima revealing both South African and Antarctic sources. A particularly high amount of Mg- and Fe-rich illites are observed close to East Antarctica. They are derived from biotite-bearing crystalline rocks and transported to the west by the East Antarctic Coastal Current. Chiorite and well-crystallized dioctaedral illite are typical minerals enriched within the Subantarctic and Polarfrontal-Zone but of minor importance off East Antarctica. Kaolinite dominates the clay mineral assemblage at low latitudes, where the continental source rocks (West Africa, Brazil) are mainly affected by intensive chemical weathering. Surprisingly, a slight increase of kaolinite is observed in the Enderby Basin and near the Filchner-Ronne Ice shelf.

The investigated area can be subdivided into ten, large-scale clay facies zones with characteristic possible source regions and transport paths. Clay mineral assemblages of the largest part of the South Atlantic, especially of the western basins are dominated by chlorite and illite derived from the Antarctic Peninsula and southernmost South America and supported by advection within the Circumantarctic Deep Water flow. In contrast, the East Antarctic provinces are relatively small. Assemblages of the eastern basins north of 30°S are strongly influenced by African sources, controlled by weathering regimes on land and by a complex interaction of wind, river and deep ocean transport. The strong gradient in clay mineral composition at the Brazilian slope indicate a relatively low contribution of tropically derived assemblages to the western basins.  相似文献   


8.
Tectonic evolution of the Cape and Karoo basins of South Africa   总被引:1,自引:0,他引:1  
The Cape and Karoo basins formed within the continental interior of Gondwana. Subsidence resulted from the vertical motion of rigid basement blocks and intervening crustal faults. Each basin episode records a three-stage evolution consisting of crustal uplift, fault-controlled subsidence, and long periods of regional subsidence largely unaccompanied by faulting or erosional truncation. The large-scale episodes of subsidence were probably the result of lithospheric deflection due to subduction-driven mantle flow. The early Paleozoic Cape basin records the combined effects of a north-dipping intra-crustal décollement (a late Neoproterozoic suture) and a right-stepping offset between thick Rio de la Plata craton and Namaqua basement. Following the Saldanian orogeny, a suite of small rift basins and their post-rift drape formed at this releasing stepover. Great thicknesses of quartz sandstone (Ordovician–Silurian) and mudstone (Devonian) accumulation are attributed to subsidence by rheological weakening and mantle flow. In contrast, the Karoo basin is a cratonic cover that mimics the underlying basement blocks. The Permian Ecca and lower Beaufort groups were deposited in a southward-deepening ramp syncline by extensional decoupling on the intra-crustal décollement. Reflection seismic and deep-burial diagenetic studies indicate that the Cape orogeny started in the Early Triassic. Deformation was partitioned into basement-involved strike-slip faults and thin-skinned thrusting. Uplift of the Namaqua basement resulted in erosion of the Beaufort cover. East of the Cape fold belt, contemporaneous subsidence and tilting of the Natal basement created a late Karoo transtensional foreland basin, the Stormberg depocentre. Early Jurassic tectonic resetting and continental flood basalts terminated the Karoo basin.  相似文献   

9.
黄海含油气盆地区域地质与大地构造环境   总被引:25,自引:4,他引:25  
概述了黄海含油气盆地的区域地质背景和大地构造环境,对盆地内的油气勘探现状和远景进行了简要的评价。  相似文献   

10.
南海北部陆缘记录了南海形成演化的历史,但是其新生代构造沉积演化特征在东段和西段的差异及其原因目前还不太清楚。本文分别在珠江口盆地和琼东南盆地的深水区选择了数口构造地理位置相似的井通过精细地层回剥分析,重建了两沉积盆地的沉积速率和沉降速率并结合前人研究成果进行了对比分析。研究结果发现,两沉积盆地在裂陷期的沉积和沉降特征基本相似,但是两者在裂后期的构造沉积演化特征差异明显。珠江口盆地深水区沉积和沉降速率都表现为幕式变化特征,其中沉积速率表现为“两快三慢”的特征而沉降速率表现为“两快一慢”的特征。琼东南盆地深水区的沉积速率表现为“地堑式”变化特征,但是沉降速率表现为“台阶式”上升的变化特征。琼东南盆地“台阶式”上升的沉降速率推测主要是受到海南地幔柱伴随红河断裂的右旋走滑而向西北漂移的影响,这也与南海西北部的岩浆活动以及周围盆地的沉降特征吻合。红河断裂在2.1 Ma BP的右旋走滑控制了琼东南盆地1.8 Ma BP以来的快速沉积和加速沉降分布。  相似文献   

11.
The discovery of the giant Daqing oil field in the Songliao Basin led to the realisation of the significant petroleum potential of non-marine basins. In order to reconstruct the basin evolution and oil formation, an integrated organic geochemical-basin modelling study along a regional transect across the Songliao Basin was conducted. It provided a regional heat flow evolution model, and revealed post-orogenic or late syn-orogenic maturation in the Central Depression and pre-orogenic maturation in the Southeast Uplift Zone. Kinetic parameters of petroleum generation for the lacustrine source formations are the basis for the simulation of oil generation and migration in the Songliao Basin. Using the principle activation energy peaking at 54 kcal/mol and a pre-exponential factor of about 4.2·1027 Ma−1, the simulation obtained a relatively good match with the measured transformation ratios. The Qingshankou Formation in the West and East Central Depressions constituted the major source in the basin. Major oil generation, migration and accumulation occurred during the Early Tertiary. In the West Central Depression, the generated oils migrated upwards into the Yaojia Formation followed by the updip migration into the Daqing Anticline and towards the local structural high along the West Slope. In contrast, the oil migration in the East Central Depression was dominated by the downward movement from the lower member of the Qingshankou Formation followed by the updip migration towards the Caoyang Anticline. The simulated oil accumulations are in good agreement with discovered oil fields, implying a potential application of the model for prediction and evaluation of new exploration targets in the basin.  相似文献   

12.
The Campos, Santos and Pelotas basins have been investigated in terms of 2D seismo-stratigraphy and subsidence. The processes controlling accommodation space (e.g. eustacy, subsidence, sediment input) and the evolution of the three basins are discussed. Depositional seismic sequences in the syn-rift Barremian to the drift Holocene basin fill have been identified. In addition, the subsidence/uplift history has been numerically modeled including (i) sediment flux, (ii) sedimentary basin framework, (iii) relation to plate-tectonic reconfigurations, and (iv) mechanism of crustal extension. Although the initial rift development of the three basins is very similar, basin architecture, sedimentary infill and distribution differ considerably during the syn-rift sag to the drift basin stages. After widespread late Aptian–early Albian salt and carbonate deposition, shelf retrogradation dominated in the Campos Basin, whereas shelf progradation occurred in the Santos Basin. In the Tertiary, these basin fill styles were reversed: since the Paleogene, shelf progradation in the Campos Basin contrasts with overall retrogradation in the Santos Basin. In contrast, long-term Cretaceous–Paleogene shelf retrogradation and intense Neogene progradation characterize the Pelotas Basin. Its specific basin fill and architecture mainly resulted from the absence of salt deposition and deformation. These temporally and spatially varying successions were controlled by specific long-term subsidence/uplift trends. Onshore and offshore tectonism in the Campos and Santos basins affected the sediment flux history, distribution of the main depocenters and occurrence of hydrocarbon stratigraphic–structural traps. This is highlighted by the exhumation and erosion of the Serra do Mar, Serra da Mantiqueira and Ponta Grossa Arch in the hinterland, as well as salt tectonics in the offshore domain. The Pelotas Basin was less affected by changes in structural regimes until the Eocene, when the Andean orogeny caused uplift of the source areas. Flexural loading largely controlled its development and potential hydrocarbon traps are mainly stratigraphic.  相似文献   

13.
冲绳海槽--弧后背景下大陆张裂的最高阶段   总被引:22,自引:4,他引:22  
高热流、强地震活动、火山活动、张性断层作用以及快速沉降等特征表明部绳海槽的演化已经达到了大陆张裂的最高阶段。根据地震折射和重力资料的计算表明冲绳海槽底下存在低密度的异常地幔,冲绳海槽的莫霍面介于15.4-23.8km之间。在我们提出的边缘海盆地演化旋回中,冲绳海槽处于胚胎期,即处在大陆张裂的最高阶段和弧后海底扩张的过滤阶段。冲绳海槽也可视为是威尔逊旋回中连接东非裂谷和红海阶段的一个重要的中间环节。  相似文献   

14.
This study proposed a new reconstruction of the tectono-sedimentary evolution of the Lake Albert Rift based on a biostratigraphical, sedimentological and structural re-evaluation of the outcropping data and on an exceptional subsurface dataset. The infilling of the rift consists of lacustrine deposits wherein two major unconformities dated at 6.2 Ma and 2.7 Ma were characterized, coeval with major subsidence and climatic changes. Combined with the fault analysis, the evolution and distribution of the subsidence highlights a four-steps evolution of the rift after its initiation dated at 17.0 Ma. The first phase (17.0 – 6.2 Ma) consists of low and diffuse extension associated with low accommodation rates ranging from 150 to 200 m/Ma. Restricted in the southern part of the basin, the depocenter location is poorly controlled by faults, meaning that the basin extension was potentially larger at this time. The second time interval (6.2 – 2.7 Ma) shows an increase of accommodation rates with values reaching more than 800 m/Ma. These high rates combined with the location of the major depocenters down the bounding faults argue for a first true rifting phase. Between 2.7 Ma and 0.4 Ma, the accommodation rates decreases to reach less than 400 m/Ma and the individualization of major depocenters continue down the major fault in the southern and northwestern parts of the basin. Finally, between 0.4 Ma and present-day, a late uplift led the formation of the Ugandan scarp. Comparison of the Lake Albert Rift evolution with the data available in the rifts of both branches of the East African Rift System shows that most of the sedimentary basins experienced the same geometrical evolution from large basins with limited fault control during Late Miocene to narrow true rift in Late Pleistocene.  相似文献   

15.
Most of the basins developed in the continental core of SE Asia (Sundaland) evolved since the Late Cretaceous in a manner that may be correlated to the conditions of the subduction in the Sunda Trench. By the end of Mesozoic times Sundaland was an elevated area composed of granite and metamorphic basement on the rims; which suffered collapse and incipient extension, whereas the central part was stable. This promontory was surrounded by a large subduction zone, except in the north and was a free boundary in the Early Cenozoic. Starting from the Palaeogene and following fractures initiated during the India Eurasia collision, rifting began along large faults (mostly N–S and NNW–SSE strike-slip), which crosscut the whole region. The basins remained in a continental fluvio-lacustrine or shallow marine environment for a long time and some are marked by extremely stretched crust (Phu Khanh, Natuna, N. Makassar) or even reached the ocean floor spreading stage (Celebes, Flores). Western Sundaland was a combination of basin opening and strike-slip transpressional deformation. The configuration suggests a free boundary particularly to the east (trench pull associated with the Proto-South China Sea subduction; Java–Sulawesi trench subduction rollback). In the Early Miocene, Australian blocks reached the Sunda subduction zone and imposed local shortening in the south and southeast, whereas the western part was free from compression after the Indian continent had moved away to the north. This suggests an important coupling of the Sunda Plate with the Indo-Australian Plate both to SE and NW, possibly further west rollback had ceased in the Java–Sumatra subduction zone, and compressional stress was being transferred northwards across the plate boundary. The internal compression is expressed to the south by shortening which is transmitted as far as the Malay basin. In the Late Miocene, most of the Sunda Plate was under compression, except the tectonically isolated Andaman Sea and the Damar basins. In the Pliocene, collision north of Australia propagated toward the north and west causing subduction reversal and compression in the short-lived Damar Basin. Docking of the Philippine Plate confined the eastern side of Sundaland and created local compression and uplift such as in NW Borneo, Palawan and Taiwan. Transpressional deformation created extensive folding, strike-slip faulting and uplift of the Central Basin and Arakan Yoma in Myanmar. Minor inversion affected many Thailand rift basins. All the other basins record subsidence. The uplift is responsible for gravity tectonics where thick sediments were accumulated (Sarawak, NE Luconia, Bangladesh wedge).  相似文献   

16.
台西南盆地的构造演化与油气藏组合分析   总被引:14,自引:2,他引:14  
本文根据台西南盆地的地质、地球物理资料,对台西南盆地的地壳结构、基底特征、沉积厚度、断裂构造等基本地质构造特征^[1]作了研究,探讨了台西南盆地的构造发展演化及及油气藏组合。认为该盆地的构造演化为幕式拉张。幕式拉张可分为三大张裂幕,相应的热沉降作用使盆地在不同的张裂幕时期发展为断陷,裂陷,裂拗-拗陷。它们分别与板块作用下的区域构造运动阶段相对应,说明区域构造运动不但控制了盆地的发展演化,同时也制约  相似文献   

17.
东太平洋海盆海山玄武岩特征   总被引:1,自引:0,他引:1  
东太平洋海山玄武岩属于大洋岛屿拉斑玄武岩,主要由橄榄拉斑玄武岩、石英拉斑玄武岩和橄榄玄武岩组成,具有拉斑玄武岩系列和过渡玄武岩系列。岩石具有基质为拉斑玄武结构或间隐结构的斑状结构和气孔构造,斑晶主要由拉长石和普通辉石组成,基质除拉长石和玻璃质外,还有少量普通辉石和磁铁矿等,岩石化学成分中Al2O3、Na2O、K2O含量偏高。玄武岩中稀土元素分配型式基本相同,曲线较平坦,稀土分馏不明显,具Ce、Eu负异常,反映岩石具有共同的成因,属晚白垩世以来的产物  相似文献   

18.
The well-known climate shift that occurred around 1976/1977 in the marine ecosystem of North Pacific Ocean was preceded by changes in the early 1970s over Northeastern Asia. In this paper long-term variability of Siberian High and Aleutian Low parameters, seasonal discharge of Siberian rivers and air temperature and precipitation regime in their watersheds are examined in data sets covering 1945–1995. It was found that the change in seasonal values of Siberian river discharges is a consequence of an atmospheric climatic shift that occurred in the early 1970s over North Asia. This shift was induced by a change in atmospheric circulation pattern in the Eurasian sector and Pacific sector of the Northern Hemisphere after 1970. It resulted in changes in position and intensity of the Siberian High and Aleutian Low before and after the 1970s, which induced a different pattern of precipitation in West and East Siberia. There was an increase in winter precipitation over West Siberia but a decrease over East Siberia. The period after 1970s is characterized by higher amplitude of all parameters and increases in the year-to-year variability.  相似文献   

19.
The Ulleung Basin (Tsushima Basin) in the southwestern East Sea (Japan Sea) is floored by a crust whose affinity is not known whether oceanic or thinned continental. This ambiguity resulted in unconstrained mechanisms of basin evolution. The present work attempts to define the nature of the crust of the Ulleung Basin and its tectonic evolution using seismic wide-angle reflection and refraction data recorded on ocean bottom seismometers (OBSs). Although the thickness of (10 km) of the crust is greater than typical oceanic crust, tau-p analysis of OBS data and forward modeling by 2-D ray tracing suggest that it is oceanic in character: (1) the crust consists of laterally consistent upper and lower layers that are typical of oceanic layers 2 and 3 in seismic velocity and gradient distribution and (2) layer 2C, the transition between layer 2 and layer 3 in oceanic crust, is manifested by a continuous velocity increase from 5.7 to 6.3 km/s over the thickness interval of about 1 km between the upper and lower layers. Therefore it is not likely that the Ulleung Basin was formed by the crustal extension of the southwestern Japan Arc where crustal structure is typically continental. Instead, the thickness of the crust and its velocity structure suggest that the Ulleung Basin was formed by seafloor spreading in a region of hotter than normal mantle surrounding a distant mantle plume, not directly above the core of the plume. It seems that the mantle plume was located in northeast China. This suggestion is consistent with geochemical data that indicate the influence of a mantle plume on the production of volcanic rocks in and around the Ulleung Basin. Thus we propose that the opening models of the southwestern East Sea should incorporate seafloor spreading and the influence of a mantle plume rather than the extension of the crust of the Japan Arc.  相似文献   

20.
Seismic reflection and gravity data show the eastern Mediterranean Sea to be evolving into several basins as a result of differential vertical movements. The Levantine Basin and deeper Herodotus Basin are separated by a buried ridge (horst? or faulted geanticline?) lying west of Eratosthenes Seamount, which in turn is the more elevated part of a northeast-trending geanticline truncated along its eastern flank by a graben. To the east, gravity trends in the Levantine Basin are parallel to the graben. These features and trends are similar to those seen on land in Egypt and the Levant and imply continuity of structure offshore. Combined with other geological and geophysical information the observations suggest that the eastern Mediterranean crust is the marginal extension of the African continental crust. Although the character of the Florence Rise and Anaximander Mountains, the northward tilting and subsidence of the Antalya and Finike Basins, and the apparent continuation of the Strabo Trench south of the Florence Rise suggest underthrusting of the Turkish plate by Africa, there may be insufficient seismicity. There is no active volcanic arc, and the trench is too poorly developed to confirm active subduction as the sole manifestation of plate convergence. Normal subduction probably ended within the past 5 m.y. with the disappearance of all oceanic crust between Turkey and Africa. Plate convergence continues with only limited underthrusting of Africa along the Cypriot Arc, but with regional deformation along zones of weakness within a wide (300 km?) band stretching from the Herodotus Basin to the east along the northern edge of the African and Arabian plates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号