首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long Xuyen Quadrangle is one of the important agricultural areas of the Mekong Delta of Vietnam accounting for 25% of rice production. In recent years, the area faces drought and salinization problems, as part of climate change impact and sea level rise. These are the main causes that led to the crop water deficits for agricultural production. Therefore, this work was conducted to predict crop water requirement (CWR) based on consideration of other related meteorological factors and further redefine the crop planting calendar (CPC) for three main cropping seasons including winter–spring (WS), summer–autumn (SA) and autumn–spring (AS) using the Cropwat crop model based on the current climate conditions and future climate change scenarios. Meteorological data for the baseline period (2006–2016) and future corresponding to timescales 2020s, 2055s and 2090s of Representative Concentration Pathways (RCP)4.5 and RCP8.5 scenarios are used to predict CWR and CPC for the study area. The results showed that WS and SA crops needed more irrigation water than AS crop and the highest irrigation water requirement of the WS and SA crops occurred on developmental stage, while the AW crop appeared on growth, developmental and late stage for the baseline and timescales of RCP4.5 and RCP8.5 scenarios. Calculation results of the shift of CPC indicated that the CWR of the AW crop decreased lowest approximately 6.6–20.6% for timescales of RCP4.5 scenario and 20.6–25.5% for RCP8.5 scenario compared with the baseline.  相似文献   

2.
Stream temperature is an important control of many in-stream processes. There is rising concern about increases in stream temperature with projected climate changes and human-related water activities. Here, we investigate the responses to climate change and water diversions in Eel River basin. The increase in stream temperatures is considered to be the result of changes in air temperature, the proportion of base flow and the amount of stream flow derived from historical and future simulations using the integrated VIC hydrologic model and ANN stream temperature model. The results show that stream temperature will increase throughout the basin in the future under two climate change representative concentration pathways (RCPs 4.5 and 8.5) and will also be influenced by the water diversion activities schedules. Specifically, the stream temperature increases, in the late twenty-first century under RCP8.5 scenarios, from 1.20 to 2.40 °C in summer and from 0.58–3.46 °C in winter respectively; Water diversion activities in Eel River Basin can increase nearly 1 °C in stream temperature. Therefore, both climate change and water diversion activities can substantially cause the rise of more than 2 °C in stream temperature. In conclusion, stream temperature is mainly sensitive to the proportion of base flow in summer, but also the change of the amount of stream flow in winter in our case study area. In addition, it should be noted that the low intensity irrigation schedule has lower impacts on increasing stream temperature, whereas the high intensity irrigation schedule will further exacerbate the rise of stream temperature. Understanding the different impacts of climate change scenarios and irrigation schedules on stream temperature can help identify climate-sensitive regions, climate-sensitive seasons and water diversion schedules as well as assist in planning for climate change and social adaptive management.  相似文献   

3.
ABSTRACT

The impacts of future climate change on the agricultural water supply capacities of irrigation facilities in the Geum River basin (9645.5 km2) of South Korea were investigated using an integrated modeling framework that included a water balance network model (MODSIM) and a watershed-scale hydrologic model (Soil and Water Assessment Tool, SWAT). The discharges and baseflows from upland drainage areas were estimated using SWAT, and the predicted flow was used to feed agricultural reservoirs and multipurpose dams in subwatersheds. Using a split sampling method, we calibrated the daily streamflows and dam inflows at three locations using data from 6 years, including 3 years of calibration data (2005–2007) followed by 3 years of validation data (2008–2010). In the MODSIM model, the entire basin was divided into 14 subwatersheds in which various agricultural irrigation facilities such as agricultural reservoirs, pumping stations, diversions, culverts and groundwater wells were defined as a network of hydraulic structures within each subwatershed. These hydraulic networks between subwatersheds were inter-connected to allow watershed-scale analysis and were further connected to municipal and industrial water supplies under various hydrologic conditions. Projected climate data from the HadGEM3-RA RCP 4.5 and 8.5 scenarios for the period of 2006–2099 were imported to SWAT to calculate the water yield, and the output was transferred to MODSIM in the form of time-series boundary conditions. The maximum shortage rate of agricultural water was estimated as 38.2% for the 2040s and 2080s under the RCP 4.5 scenario but was lower under the RCP 8.5 scenario (21.3% in the 2040s and 22.1% in the 2080s). Under the RCP 4.5 scenario, the projected shortage rate was higher than that during the measured baseline period (1982–2011) of 25.6% and the RCP historical period (1982–2005) of 30.1%. The future elevated drought levels are primarily attributed to the increasingly concentrated rainfall distribution throughout the year under a monsoonal climate, as projected by the IPCC climate scenarios.
EDITOR Z.W. Kundzewicz; ASSOCIATE EDITOR not assigned  相似文献   

4.
Projections of changes in climate are important in assessing the potential impacts of climate change on natural and social systems. However, current knowledge on assembling different GCMs to estimate future climate change over the Pear River basin is still limited so far. This study examined the capability of BMA and arithmetic mean (AM) method in assembling precipitation and temperature from CMIP5 under RCP2.6, RCP4.5 and RCP8.5 scenarios over the Pearl River basin. Results show that the BMA outperforms the traditional AM method. Precipitation tends to increase over the basin under RCP2.6 and RCP4.5 scenarios, whereas decrease under RCP8.5. The most remarkable increase of precipitation is found in the northern region under RCP2.6 scenario. The linear trend of the monthly mean near-surface air temperature increases with the growing CO2 concentration. The warming trends in four seasons are distinct. The warming rate is prominent in summer and spring than that in other season, meanwhile it is larger in western region than in other parts of the basin. The findings can provide beneficial reference to water resources and agriculture management strategies, as well as the adaptation and mitigation strategies for floods and droughts under the context of global climate change.  相似文献   

5.
The hydrological response to the potential future climate change in Yangtze River Basin (YRB), China, was assessed by using an ensemble of 54 climate change simulations. The Coupled Model Intercomparison Project 5 simulations under two new Representative Concentration Pathways (RCP) 4.5 and 8.5 emission scenarios were downscaled and used to drive the Variable Infiltration Capacity hydrological model. This study found that the range of temperature changes is homogeneous for almost the entire region, with an average annual increase of more than 2 °C under RCP4.5 and even more than 4 °C under RCP8.5 in the end of the twenty first century. The warmest period (June–July–August) of the year would experience lower changes than the colder ones (December–January–February). Overall, mean precipitation was projected to increase slightly in YRB, with large dispersion among different global climate models, especially during the dry season months. These phenomena lead to changes in future streamflow for three mainstream hydrological stations (Cuntan, Yichang, and Datong), with slightly increasing annual average streamflows, especially at the end of twenty first century. Compared with the percentage change of mean flow, the high flow shows (90th percentile on the probability of no exceedance) a higher increasing trend and the low flow (10th percentile) shows a decreasing trend or lower increasing trend. The maximum daily discharges with 5, 10, 15, and 30-year return periods show an increasing trend in most sub-basins in the future. Therefore, extreme hydrological events (e.g., floods and droughts) will increase significantly, although the annual mean streamflow shows insignificant change. The findings of this study would provide scientific supports to implement the integrated adaptive water resource management for climate change at regional scales in the YRB.  相似文献   

6.
This paper investigates the potential impacts of climate change on water resources in northern Tuscany, Italy. A continuous hydrological model for each of the seven river basins within the study area was calibrated using historical data. The models were then driven by downscaled and bias‐corrected climate projections of an ensemble of 13 regional climate models (RCMs), under two different scenarios of representative concentration pathway (RCP4.5 and RCP8.5). The impacts were examined at medium term (2031–2040) and long term (2051–2060) in comparison with a reference period (2003–2012); the changes in rainfall, streamflow, and groundwater recharge were investigated. A high degree of uncertainty characterized the results with a significant intermodel variability, the period being equal. For the sake of brevity, only the results for the Serchio River basin were presented in detail. According to the RCM ensemble mean and the RCP4.5, a moderate decrease in rainfall, with reference to 2003–2012, is expected at medium term (?0.6%) and long term (?2.8%). Due to the warming of the study area, the reduction in the streamflow volume is two times the precipitation decrease (?1.1% and ?6.8% at medium and long term, respectively). The groundwater recharge is mainly affected by the changes in climate with expected percolation volume variations of ?3.3% at 2031–2040 and ?8.1% at 2051–2060. The impacts on the Serchio River basin water resources are less significant under the RCP8.5 scenario. The presence of artificial structures, such as dam‐reservoir systems, can contribute to mitigate the effects of climate change on water resources through the implementation of appropriate regulation strategies.  相似文献   

7.
ABSTRACT

Uncertainty in climate change impacts on river discharge in the Upper Awash Basin, Ethiopia, is assessed using five MIKE SHE hydrological models, six CMIP5 general circulation models (GCMs) and two representative concentration pathways (RCP) scenarios for the period 2071–2100. Hydrological models vary in their spatial distribution and process representations of unsaturated and saturated zones. Very good performance is achieved for 1975–1999 (NSE: 0.65–0.8; r: 0.79–0.93). GCM-related uncertainty dominates variability in projections of high and mean discharges (mean: –34% to +55% for RCP4.5, – 2% to +195% for RCP8.5). Although GCMs dominate uncertainty in projected low flows, inter-hydrological model uncertainty is considerable (RCP4.5: –60% to +228%, RCP8.5: –86% to +337%). Analysis of variance uncertainty attribution reveals that GCM-related uncertainty occupies, on average, 68% of total uncertainty for median and high flows and hydrological models no more than 1%. For low flows, hydrological model uncertainty occupies, on average, 18% of total uncertainty; GCM-related uncertainty remains substantial (average: 28%).  相似文献   

8.

The source region of Yellow river is an alpine river sensitive to climate changes, but the potential effects of climate change on hydrological regime characteristics and ecological implications are less understood. This study aims to assess the response of the alterations in the flow regimes over the source region of Yellow river to climate change using Soil and Water Integrated Model driven by different Global Circulation Models (GFDL-ESM2M, IPSL-CM5A-LR and MIROC-ESM-CHEM) under three Representative Concentration Pathway emission scenarios (RCP2.6, RCP4.5 and RCP8.5). Indicators of hydrological alteration and River impact index are employed to evaluate streamflow regime alterations at multiple temporal scales. Results show that the magnitude of monthly and annual streamflow except May, the magnitude and duration of the annual extreme, and the number of reversals are projected to increase in the near future period (2020–2049) and far future period (2070–2099) compared to the baseline period (1971–2000). The timing of annual maximum flows is expected to shift backwards. The source region of Yellow river is expected to undergo low change degree as per the scenarios RCP2.6 for both two future periods and under the scenarios RCP4.5 for the near future period, whereas high change degree under RCP4.5 and RCP8.5 in the far period on the daily scale. On the monthly scale, climate changes mainly have effects on river flow magnitude and timing. The basin would suffer an incipient impact alteration in the far period under RCP4.5 and RCP8.5, while low impact in other scenarios. These changes in flow regimes could have several positive impacts on aquatic ecosystems in the near period but more detrimental effects in the far period.

  相似文献   

9.
Globally, the number of people experiencing water stress is expected to increase by millions by the end of the century. The Great Lakes region, representing 20% of the world's surface freshwater, is not immune to stresses on water supply due to uncertainties on the impacts of climate and land use change. It is imperative for researchers and policy makers to assess the changing state of water resources, even if the region is water rich. This research developed the integrated surface water-groundwater GSFLOW model and investigated the effects of climate change and anthropogenic activities on water resources in the lower Great Lakes region of Western New York. To capture a range of scenarios, two climate emission pathways and three land development projections were used, specifically RCP 4.5, RCP 8.5, increased urbanization by 50%, decreased urbanization by 50%, and current land cover, respectively. Model outputs of surface water and groundwater discharge into the Great Lakes and groundwater storage for mid- and late century were compared to historical to determine the direction and amplitude of changes. Both surface water and groundwater systems show no statistically significant changes under RCP 4.5 but substantial and worrisome losses with RCP 8.5 by mid-century and end of century. Under RCP 8.5, streamflow decreased by 22% for mid-century and 42% for late century. Adjusting impervious surfaces revealed complex land use effects, resulting in spatially varying groundwater head fluctuations. For instance, increasing impervious surfaces lowered groundwater levels from 0.5 to 3.8 m under Buffalo, the largest city in the model domain, due to reduced recharge in surrounding suburban areas. Ultimately, results of this study highlight the necessity of integrated modelling in assessing temporal changes to water resources. This research has implications for other water-rich areas, which may not be immune to effects of climate change and human activities.  相似文献   

10.
The impacts of climate change on future river flows are a growing concern. Typically, impacts are simulated by driving hydrological models with climate model ensemble data. The U.K. Climate Projections 2009 (UKCP09) provided probabilistic projections, enabling a risk-based approach to decision-making under climate change. Recently, an update was released—UKCP18—so there is a need for information on how impacts may differ. The probabilistic projections from UKCP18 and UKCP09 are here applied using the change factor method with catchment-based hydrological modelling for 10 catchments across England. Projections of changes in median, mean, high, and low flows are made for the 2050s, using the A1B emissions scenario from UKCP09 and UKCP18 as well as the RCP4.5 and RCP8.5 emissions scenarios from UCKP18. The results show that, in all catchments for all flow measures, the central estimate of change under UKCP18 is similar to that from UKCP09 (A1B emissions). However, the probabilistic uncertainty ranges from UKCP18 are, in all cases, greater than from UKCP09, despite UKCP18 having a smaller ensemble size than UKCP09. Although there are differences between the central estimates of change using UKCP18 RCP4.5, RCP8.5 and A1B emissions, there is considerable overlap in the uncertainty ranges. The results suggest that existing assessments of hydrological impacts remain relevant, though it will be necessary to evaluate sensitive decisions using the latest projections. The analysis will aid development of advice to users of current guidance based on UKCP09 and help make decisions about the prioritization of further hydrological impacts work using UKCP18, which should also apply other products from UKCP18 like the 12-km regional data.  相似文献   

11.
ABSTRACT

The impact of climate change on hydrology and water salinity of a valuable coastal wetland (Anzali) in northern Iran is assessed using daily precipitation and temperature data from 19 models of Coupled Model Inter-comparison Project Phase 5. The daily data are transiently downscaled using the Long Ashton Research Station Weather Generator to three climatic stations. The temperature is projected to increase by +1.6, +1.9 and +2.7°C and precipitation to decrease by 10.4%, 12.8% and 12.2% under representative concentration pathway (RCP) scenarios RCP2.6, RCP4.5 and RCP8.5, respectively. The wetland hydrology and water salinity are assessed using the water balance approach and mixing equation, respectively. The upstream river flow modelled by the Soil and Water Assessment Tool is projected to reduce by up to 18%, leading to reductions in wetland volume (154 × 106 m3), area (57.47 km2) and depth (2.77 m) by 34%, 21.1% and 20.2%, respectively, under climate change, while the mean annual total dissolved solids (1675 mg/L) would increase by 49%. The reduced volume and raised salinity may affect the wetland ecology.  相似文献   

12.
Climatic and hydrological changes will likely be intensified in the Upper Blue Nile (UBN) basin by the effects of global warming. The extent of such effects for representative concentration pathways (RCP) climate scenarios is unknown. We evaluated projected changes in rainfall and evapotranspiration and related impacts on water availability in the UBN under the RCP4.5 scenario. We used dynamically downscaled outputs from six global circulation models (GCMs) with unprecedented spatial resolution for the UBN. Systematic errors of these outputs were corrected and followed by runoff modelling by the HBV (Hydrologiska ByrånsVattenbalansavdelning) model, which was successfully validated for 17 catchments. Results show that the UBN annual rainfall amount will change by ?2.8 to 2.7% with a likely increase in annual potential evapotranspiration (in 2041–2070) for the RCP4.5 scenario. These changes are season dependent and will result in a likely decline in streamflow and an increase in soil moisture deficit in the basin.  相似文献   

13.
ABSTRACT

This study investigated the impacts of changes in land cover and climate on runoff and sediment yield in a river basin in India. Land Change Modeler was used to derive the future land cover and its changes using the Sankey diagram approach. The future climatic parameters were derived from five general circulation models for two emission scenarios with representative concentration pathways (RCPs) 4.5 and 8.5. The land cover and climate change impacts on runoff and sediment yield were estimated using SWAT model. The results show important changes in land cover and indicate that urban and agricultural areas strongly influence the runoff and sediment yield. Among the land cover and climate change impacts, climate has more predominant (70%–95%) impact. Runoff and sediment yield are likely to decrease in both RCP scenarios in the future period. The impacts of land cover changes are more prominent on sediment yield than runoff.  相似文献   

14.
Climate change and its impact on hydrological processes are overarching issues that have brought challenges for sustainable water resources management. In this study, surface water resources in typical regions of China are projected in the context of climate change. A water balance model based on the Fu rational function equation is established to quantify future natural runoff. The model is calibrated using data from 13 hydrological stations in 10 first-class water resources zones of China. The future precipitation and temperature series come from the ISI-MIP (Inter-Sectoral Impact Model Intercomparison Project) climate dataset. Taking natural runoff for 1961–1990 as a baseline, the impacts of climate change on natural runoff are studied under three emissions scenarios: RCP2.6, RCP4.5 and RCP8.5. Simulated results indicate that the arid and semi-arid region in the northern part of China is more sensitive to climate change compared to the humid and semi-humid region in the south. In the near future (2011–2050), surface water resources will decrease in most parts of China (except for the Liaozhong and Daojieba catchments), especially in the Haihe River Basin and the middle reaches of the Yangtze River Basin. The decrement of surface water resources in the northern part of China is more than that in the southern part. For the periods 2011–2030 and 2031–2050, surface water resources are expected to decrease by 12–13% in the northern part of China, while those in the southern part will decrease by 7–10%.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR R. Hirsch  相似文献   

15.
ABSTRACT

The aim of this paper is to estimate the effect that climate change will have on groundwater recharge at the Yucatan Peninsula, Mexico. The groundwater recharge is calculated from a monthly water balance model considering eight methods of potential and actual evapotranspiration. Historical data from 1961–2000 and climate model outputs from five downscaled general circulation models in the near horizon (2015–2039), with representative concentration pathway (RCP) 4.5 and 8.5 are used. The results estimate a recharge of 118 ± 33 mm·year–1 (around 10% of precipitation) in the historical period. Considering the uncertainty from GCMs under different RCP and evapotranspiration scenarios, our monthly water balance model estimates a groundwater recharge of 92 ± 40 mm·year–1 (RCP4.5) and 94 ± 38 mm·year–1 (RCP8.5) which represent a reduction of 23% and 20%, respectively, a result that threatens the socio-ecological balance of the region.  相似文献   

16.
The present paper offers a brief assessment of climate change and associated impact in Poland, based on selected results of the Polish–Norwegian CHASE-PL project. Impacts are examined in selected sectors, such as water resources, natural hazard risk reduction, environment, agriculture and health. Results of change detection in long time series of observed climate and climate impact variables in Poland are presented. Also, projections of climate variability and change are provided for time horizons of 2021–2050 and 2071–2100 for two emission scenarios, RCP4.5 and RCP8.5 in comparison with control period, 1971–2000. Based on climate projections, examination of future impacts on sectors is also carried out. Selected uncertainty issues relevant to observations, understanding and projections are tackled as well.  相似文献   

17.
The aim of this study was to quantify climate change impact on future blue water (BW) and green water (GW) resources as well as the associated uncertainties for 4 subbasins of the Beninese part of the Niger River Basin. The outputs of 3 regional climate models (HIRHAM5, RCSM, and RCA4) under 2 emission scenarios (RCP4.5 and RCP8.5) were downscaled for the historical period (1976–2005) and for the future (2021–2050) using the Statistical DownScaling Model (SDSM). Comparison of climate variables between these 2 periods suggests that rainfall will increase (1.7% to 23.4%) for HIRHAM5 and RCSM under both RCPs but shows mixed trends (?8.5% to 17.3%) for RCA4. Mean temperature will also increase up to 0.48 °C for HIRHAM5 and RCSM but decrease for RCA4 up to ?0.37 °C. Driven by the downscaled climate data, future BW and GW were evaluated with hydrological models validated with streamflow and soil moisture, respectively. The results indicate that GW will increase in all the 4 investigated subbasins, whereas BW will only increase in one subbasin. The overall uncertainty associated with the evaluation of the future BW and GW was quantified through the computation of the interquartile range of the total number of model realizations (combinations of regional climate models and selected hydrological models) for each subbasin. The results show larger uncertainty for the quantification of BW than GW. To cope with the projected decrease in BW that could adversely impact the livelihoods and food security of the local population, recommendations for the development of adequate adaptation strategies are briefly discussed.  相似文献   

18.
It is expected that climate warming will be experienced through increases in the magnitude and frequency of extreme events, including droughts. This paper presents an analysis of observed changes and future projections for meteorological drought for four different time scales (1 month, and 3, 6 and 12 months) in the Beijiang River basin, South China, on the basis of the standardized precipitation evapotranspiration index (SPEI). Observed changes in meteorological drought were analysed at 24 meteorological stations from 1969 to 2011. Future meteorological drought was projected based on the representative concentration pathway (RCP) scenarios RCP4.5 and RCP8.5, as projected by the regional climate model RegCM4.0. The statistical significance of the meteorological drought trends was checked with the Mann–Kendall method. The results show that drought has become more intense and more frequent in most parts of the study region during the past 43 years, mainly owing to a decrease in precipitation. Furthermore, long-term dryness is expected to be more pronounced than short-term dryness. Validation of the model simulation indicates that RegCM4.0 provides a good simulation of the characteristic values of SPEIs. During the twenty first century, significant drying trends are projected for most parts of the study region, especially in the southern part of the basin. Furthermore, the drying trends for RCP8.5 (or for long time scales) are more pronounced than for RCP4.5 (or for short time scales). Compared to the baseline period 1971–2000, the frequency of drought for RCP4.5 (RCP8.5) tends to increase (decrease) in 2021–2050 and decrease (increase) in 2051–2080. The results of this paper will be helpful for efficient water resources management in the Beijiang River basin under climate warming.  相似文献   

19.
Climate change has significant impacts on water availability in larger river basins. The present study evaluates the possible impacts of projected future daily rainfall (2011–2099) on the hydrology of a major river basin in peninsular India, the Godavari River Basin, (GRB), under RCP4.5 and RCP8.5 scenarios. The study highlights a criteria-based approach for selecting the CMIP5 GCMs, based on their fidelity in simulating the Indian Summer Monsoon rainfall. The nonparametric kernel regression based statistical downscaling model is employed to project future daily rainfall and the variable infiltration capacity (VIC) macroscale hydrological model is used for hydrological simulations. The results indicate an increase in future rainfall without significant change in the spatial pattern of hydrological variables in the GRB. The climate-change-induced projected hydrological changes provide a crucial input to define water resource policies in the GRB. This methodology can be adopted for the climate change impacts assessment of larger river basins worldwide.  相似文献   

20.
利用降尺度方法对CMIP5全球气候模式进行空间降尺度并以此研究鄱阳湖流域未来气候时空变化趋势,能够为流域生态环境保护提供数据、技术和理论上的支持.通过简化原始网络结构,在网络首部添加插值层,采用反卷积算法作为上采样算法对传统U-Net网络进行改进,建立基于深度学习的气候模式空间降尺度模型(DLDM).以1965-200...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号